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Abstract

Concurrent ML (CML) is a statically-typed higher-order concurrent language that is embedded
in Standard ML. Its most notable feature arefirst-class synchronous operations, which allow pro-
grammers to encapsulate complicated communication and synchronization protocols as first-class
abstractions. This feature encourages a modular style of programming, where the actual underlying
channels used to communicate with a given thread are hidden behind data and type abstraction.

While CML has been in active use for well over a decade, little attention has been paid to
optimizing CML programs. In this paper, we present a new program analysis for statically-typed
higher-order concurrent languages that is a significant step toward optimization of CML. Our tech-
nique is modular (i.e., it analyses and optimizes a single unit of abstraction at a time), which plays to
the modular style of many CML programs. The analysis consists of two major components: the first
is a type-sensitive control-flow analysis that uses the program’s type-abstractions to compute more
precise results. We then construct a control-flow graph from the results of the CFA and analyze the
flow of known channel values using the graph. Our analysis is designed to detect special patterns of
use, such as one-shot channels, fan-in channels, and fan-out channels. These special patterns can be
exploited by using more efficient implementations of channel primitives. We show that our analysis
is correct.



1 Introduction

Concurrent ML (CML) [Rep91, Rep99] is a statically-typed higher-order concurrent language that
is embedded in Standard ML [MTHM97]. CML extends SML with synchronous message pass-
ing over typed channels and a novel abstraction mechanism, calledfirst-class synchronous op-
erations, for building synchronization and communication abstractions. This mechanism allows
programmers to encapsulate complicated communication and synchronization protocols as first-
class abstractions, which encourages a modular style of programming, where the actual underly-
ing channels used to communicate with a given thread are hidden behind data and type abstrac-
tion. CML has been used successfully in a number of systems, including a multithreaded GUI
toolkit [GR93], a distributed tuple-space implementation [Rep99], and a system for implementing
partitioned applications in a distributed setting [YYS+01]. The design of CML has inspired many
implementations of CML-style concurrency primitives in other languages. These include other im-
plementations of SML [MLt], other dialects of ML [Ler00], other functional languages, such as
HASKELL [Rus01], SCHEME [FF04], our own MOBY language [FR99], and other high-level lan-
guages, such as JAVA [Dem97].

While CML has been in active use for well over a decade, little attention has been paid to opti-
mizing CML programs. In this paper, we present a new program analysis for statically-typed higher-
order concurrent languages that is a significant step toward optimization of CML. Our technique is
modular (i.e., it analyses and optimizes a single unit of abstraction at a time), which plays to the
modular style of many CML programs. The analysis consists of two major components. The first is
a new twist on traditional control-flow analysis (CFA) that we calltype-sensitiveCFA [Rep05]. This
analysis is a modular 0-CFA that tracks values of abstract type (i.e., types defined in the module that
are abstract outside the module) that escape “into the wild.” Because of type abstraction, we known
that any value of an abstract type that comes in from the wild must have previously escaped from
the module. The second component is a data-flow analysis that uses an extended control-flow graph
(CFG) constructed from the result of the CFA. This extended CFG has extra edges to represent pro-
cess creation, values communicated by message-passing, and values communicated via the outside
world (a.k.a. the wild). Our analysis computes an approximation of the number of processes that
send or receive messages on the channel, as well as an approximation of the number of messages
sent on the channel. This information allows us to detect special patterns of use (or topologies),
such as one-shot channels, fan-in channels, and fan-out channels. These special patterns can then
be exploited by using more efficient implementations of channel primitives.

The paper has the following organization. In the next section, we discuss various specialized
versions of channel operations. We also present an example of a prototypical server as is found in
many CML applications and use it to illustrate the opportunities for specialized communication. In
Section 3, we define the small concurrent language that we use to present our analysis and we give
a dynamic semantics for it. This semantics has the property that it explicitly tracks the execution
history of individual processes; we use these execution histories to characterize the dynamic prop-
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erties of channels that must be guaranteed to safely use the specialized forms. The main technical
content of the paper is the presentation of our analysis, which we break up into five sections. In
Section 4, we present the type-sensitive CFA for our language. The full details of our algorithm
is presented in Section A. This analysis is defined for a single unit of abstraction (e.g., module)
and its result allows us to characterize a subset of the defined channels asknown channels; i.e.,
channels whose send and receive sites are all statically known. We then present the construction of
the extended CFG in Section 5. The edges in this graph are labeled with the set of known channels
that are live across the edge. In Section 6, we describe the analysis of the CFG that results in an
approximation of the module’s communication topology and the static properties that allow safe
specialization of communication primitives. The correctness of our analysis is proved In Section 7.
The full details of proof is presented in Section B. We then revisit the example from Section 2 and
present the extended CFG for the example and its analysis. We discuss related work in Section 9
and the implementation status and future work in Section 10. Finally we conclude in Section 11.

2 Specialization of communication primitives

The underlying protocols used to implement CML’s communication and synchronization primitives
(e.g., channels) are necessarily general, since they must function correctly and fairly in arbitrary
contexts. In practice, most uses of these primitives fall into one of a number of common patterns
that may be amenable to more efficient implementation. As is often the case, the hard part of this
optimization technique is developing an effective, but efficient, analysis that identifies when it is
safe to specialize.

CML’s design emphasizes a modular programming style based on user-defined concurrency
abstractions. While the motivation for this programming style is to promote more robust software,
it also allows modular analysis algorithms to compute high-quality information which can enable
useful optimizations. In particular, the abstraction provided by user-defined communication mech-
anisms allows our modular analysis to effectively determine the communication topology which
describes how threads communicate with each other on channels. In this section, we explain how
specific communication topologies can lead to more efficient implementation and discuss the prob-
lem of determining such topologies via static program analysis.

2.1 Specialized channel operations

In general, a CML channel must support communication involving multiple sending and receiving
processes transmitting multiple messages in arbitrary contexts. This generality requires a compli-
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cated protocol to implement with commiserate overhead.1 Because of this generality, the protocol
used to implement channel communication involves locking overhead. In practice, however, many
(if not most) channels are used in restricted ways, such as for point-to-point and single message
communication. Assuming that the basic communication primitive is a buffered channel, then we
consider the following possible communication topologies:

number of
senders receivers messagestopology
≤1 ≤1 ≤1 one-shot
≤1 ≤1 >1 point-to-point
≤1 >1 >1 one-to-many (fan-out)
>1 ≤1 >1 many-to-one (fan-in)
>1 >1 >1 many-to-many

In this table, the notation>1 denotes the possibility that more than one thread or message may be
involved and the notation≤1 denotes that at most one thread or message is involved. For example, a
point-to-point topology involves arbitrary numbers of messages, but at most one sender and receiver.
An analysis issafeif whenever it approximates the number of messages of threads as≤1, then that
property holds for all possible executions. It is always safe to return an approximation of>1.

We believe that specialized implementations of channel operations (and possibly channel repre-
sentations) can have a significant impact on communication overhead. For example, CML provides
I-variables, which are a form of synchronous memory that supports write-once semantics [ANP89].
Using I-variables in place of channels for one-shot communications can reduce synchronization and
communication costs by 35% [Rep99]. Demaine [Dem98] proposes a dead-lock free protocol for
the efficient implementation of a generalized alternative construct, where fan-out and fan-in chan-
nel operations can be implemented with fewer message cycles per user-level communication than
many-to-many channel operations. Thus, we expect these specialized channel operations can be
implemented more efficiently for distributed or multithreaded implementations.

While programmers could apply these optimizations by hand, doing so would complicate the
programming model and lead to less reliable software. Furthermore, correctness of the protocol
depends on the properties of the chosen primitives. Changes to the protocol may require changes in
the choice of primitives, which makes the protocol harder to maintain. For these reasons, we believe
that an automatic optimization technique based on program analysis and compiler transformations
is necessary.

1Chapter 10 ofConcurrent Programming in MLdescribes CML’s implementation, while Knabe has described a
similar protocol in a distributed setting [Kna92].
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2.2 An example

To illustrate how the analysis and optimization might proceed, consider the simple service imple-
mented in Figure 1.2

Thenew function creates a new instance of the service by allocating a new channel and spawn-
ing a new server thread to handle requests on the channel. The representation of the service is the
request channel, but it is presented as an abstract type. Thecall function sends a request to a
given instance of the service. The request message consists of the request and a fresh channel for
the reply. Because the connection to the service is represented as an abstract type, we know that
even though it escapes out of theSimpleServ module, it cannot be directly accessed by unknown
code. Figure 2 illustrates the data-flow of the service’s request channel. Specifically, we observe the
following facts:

• For a given instance of the service, the request channel has a many-to-one (or fan-in) com-
munication pattern.

• For a given client request, the reply channel is used at most once and has a one-to-one (or
one-shot) communication pattern.

We can exploit these facts to specialize the communication operations, which results in the opti-
mized version of the service shown in Figure 3. We have highlighted the specialized code and have
assumed the existence of a moduleFanIn that implements channels specialized for the many-to-
one pattern and a moduleOneShot that is specialized for one-shot channels.

Because of the signature ascription, we know all of the send and receive sites for thech and
replCh channels, but if we added the function

fun reveal (S ch) = ch

to the service’s interface, then the above transformation would no longer be safe, since clients could
use thereveal function to gain direct access to the server’s request channel and use it to send and
receive messages in ways not supported by the specialized channels.

The technical challenge is to develop program analyses that can detect the patterns described in
Section 2.1 automatically when they are present, but also recognize the situation where access to the
channel is not limited (as with thereveal function). Other issues that the analysis must address is
distinguishing between multiple threads that are created at the same spawn point. For example, say
we have

2To keep the example concise, we use direct operations on channels instead of CML’s event operations, but the
analysis handles event values without difficulty.
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signature SIMPLE_SERV =
sig

type serv
val new : unit -> serv
val call : (serv * int) -> int

end

structure SimpleServ :> SIMPLE_SERV =
struct

datatype serv = S of (int * int chan) chan

fun new () = let
val ch = channel()
fun server v = let

val (req, replCh) = recv ch
in

send(replCh, v);
server req

end
in

spawn (server 0);
S ch

end

fun call (S ch, v) = let
val replCh = channel()
in

send (ch, (v, replCh));
recv replCh

end
end

Figure 1: A simple service with an abstract client-server protocol
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Unknown
clients

fun new () = let
      val ch = channel()
      fun server v = let
            val (req, replCh) = recv ch
            in
              send(replCh, v);
              server req
            end
      in
        spawn (server 0);
        S ch
      end

fun call ( S ch , v) = let
      val replCh = channel()
      in
        send ( ch , (v, replCh));
        recv replCh
      end

Figure 2: Data-flow of the server’s request channel

fun twice f = (f(); f())

and we create two servers sharing a common request channel using the code

twice ( fn () => spawn(server 0));

Then our analysis should detect that the request channelch is not a fan-in channel. Note, however,
thatreplCh is still a one-shot channel.

3 A concurrent language

We present our algorithm in the context of a small statically-typed concurrent language. This lan-
guage is a monomorphic subset of Core SML [MTHM97] with explicit types and concurrency
primitives. Standard ML and other ML-like languages use modules to organize code and signature
ascription to define abstraction. For this paper, we use theabstypedeclaration to define abstractions
in lieu of modules. We further simplify this declaration form to only have a single data constructor.
Figure 4 gives the abstract syntax for this simple language. A programp is a sequence of zero or
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structure SimpleServ :> SIMPLE_SERV =
struct

datatype serv
= S of (int * int OneShot.chan) FanIn.chan

fun new () = let
val ch = FanIn.channel()
fun server v = let

val (req, replCh) = FanIn.recv ch
in

OneShot.send(replCh, v);
server req

end
in

spawn (server 0);
S ch

end

fun call (S ch, v) = let
val replCh = OneShot.channel()
in

FanIn.send (ch, (v, replCh));

OneShot.recv replCh
end

end

Figure 3: A version of Figure 1 with specialized communication operations

moreabstypedeclarations followed by an expression. The analysis that we present below is modu-
lar and works on eachabstypedeclaration (d) independently. Eachabstypedefinition defines a new
abstract type (T ) and corresponding data constructor (C) and a collection of functions (fbi). Out-
side theabstypedeclaration, the typeT is abstract (i.e., the data constructorC is not in scope). The
sequential expression forms include let-bindings, nested function bindings, function application,
data-constructor application and deconstruction,3 and pair construction and projection. In addition,
there are four concurrent expression forms: channel definition, process spawning, message sending,
and message receiving. Types include abstract types (T), function types, pair types, and channel
types. Abstract types are either predefined types (e.g., unit , int , bool , etc.) or are defined by an
abstypedeclaration.

This language does not include CML’s event types or the corresponding event combinators, but
based on experience with our prototype implementation, we believe that it is fairly straightforward

3In a language with sum types, deconstruction would be replaced by a case expression.
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p ::= e
| d p

d ::= abstype T = D of τ with fb1 · · · fbn end

fb ::= fun f (x) = e

e ::= x
| •
| let x = e1 in e2

| fun f (x) = e1 in e2

| e1 e2

| D e
| let D x = e1 in e2

| 〈e1, e2〉
| #i e wherei ∈ {1, 2}
| chan c in e
| spawn e
| send(e1, e2)
| recv e

τ ::= T
| τ1 → τ2

| τ1 × τ2

| chan τ

Figure 4: A simple concurrent language

to add these to the analysis framework, so we omit them to keep the presentation more compact.

We assume that variables, abstract-type names, and data-constructor names are globally unique.
We also assume that variables and constructors are annotated with their type. We omit this type
information most of the time for the sake of brevity, but, when necessary, we write it as a superscript
(e.g., xτ ). One should think of this language as a compiler’s intermediate representation following
typechecking.

We use LVAR to denote the set of variables defined in the program, GVAR to denote variables
defined elsewhere, and VAR = LVAR ∪ GVAR for all variables defined or mentioned in the pro-
gram. We denote the known function identifiers by FUNID ⊂ LVAR (i.e., those variables that are
defined by function bindings) and the known channel identifiers by CHAN ID ⊂ LVAR (i.e., those
variables that are defined by channel bindings). The set ABSTY is the set of abstract type names and
DATACON is the set of data constructors.
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3.1 Dynamic semantics

Following Colby [Col95], the semantics for our language tracks execution history on a per-process
basis. This information is necessary to characterize the dynamic usage of channels. Sinceabstype
declarations do not play a rôle in the dynamic semantics of the language, we think of a program as
a sequence of nested function bindings. For example,

abstype T = D of τ with
fun f (x) = e1

fun g (y) = e2

end
e3

is treated as
fun f (x) = e1 in fun g (y) = e2 in e3

In the dynamic semantics for our language, we represent the state of a computation as a tree,
where nodes are process states and edges represent transition from the parent to the child. Branches
in the tree represent process creations. For a given programp, we assume that each expression
in p is labeled with a unique program pointa ∈ PROGPT. We write a : e to denote thate is
the expression at program pointa. Furthermore, we assume that for eacha ∈ PROGPT, there is
a ā ∈ PROGPT. The ā labels are not used to label expressions, but serve to distinguish between
parent and child threads in control paths. Acontrol pathis a finite sequence of program points:
CTLPATH = PROGPT∗. We useπ to denote an arbitrary control path and juxtaposition to denote
concatenation. We say thatπ � π′ if π is a prefix ofπ′. Control paths are used to uniquely label
dynamic instances of channels, which we writec@π, wherec ∈ CHAN ID. We also usek to denote
dynamic channel values, andK to denote all the dynaic channel values.

Evaluation of the sequential features of the language follows a standard small-step presentation
based on evaluation contexts [FF86]. We modify the syntax of expression terms to distinguish
valuesas follows:

v ::= •
| (fun f (x) = e)
| k
| 〈v1, v2〉

e ::= v
| · · ·

The unit value (•) was already part of the syntax, but we add function values, dynamic channel
values, and pairs of values. With these definitions, we can define the sequential evaluation relation
e e′ by the rules in Figure 5. Evaluation contexts are defined in the standard call-by-value way:
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let x = v in e  e[x 7→ v]
let D x = D v in e  e[x 7→ v]

fun f (x) = e1 in e2  e2[f 7→ (fun f (x) = e1)]
(fun f (x) = e) v  e[f 7→ (fun f (x) = e), x 7→ v]

#i 〈v1, v2〉  vi

Figure 5: Sequential evaluation

E ::= [ ]
| let x = E in e | let D x = E in e
| E e | v E | D E
| send(E, e) | send(v, E) | recv E
| 〈E, e〉 | 〈v, E〉 | #i E

We use these below in the definition of concurrent evaluation.

For the semantics of concurrent evaluation, we represent the state of a computation as a tree,
where the nodes of the tree are labeled with expressions representing process states and edges are
labeled with the program point corresponding to the evaluation step taken from the parent to the
child. The leaves of the tree represent the current states of the processes in the computation. Because
a tree captures the history of the computation as well as its current state, we call it atrace. Nodes
in a trace are uniquely named by control paths that describe the path from the root to the node.
In defining traces, it is useful to view them as prefix-closed finite functions from control paths to
expressions. Ift is a trace, then we writet.π to denote the node one reaches by followingπ from
the root, and ift.π is a leaf oft, a is a program point, ande an expression, thent ∪ {πa 7→ e} is
the trace with a childe added tot.π with the new edge labeled bya. For a programp, the initial
trace will be the map{ε 7→ p}, whereε is the empty control path. Letp be a program and letc be
a channel identifier inp. For any tracet ∈ Trace(p) andk = c@π occurring int, we define the
dynamic send and receive sites ofk as follows:

Sendst(k) = {π | t.π = E[send(k, v)]}
Recvst(k) = {π | t.π = E[recv k]}

To record the communication history between the dynamic send and receive sites, we define the
communication history setH as follows:

H ⊂ {(π1, k, π2) | π1, π2 ∈ CTLPATH, k ∈ K}

where(π1, k, π2) ∈ H if there is communication between the dynamic receive siteπ1 and send site
π2 on channel instancek.
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We define concurrent evaluation as the smallest relation (⇒) satisfying the following four rules.
The first rule lifts sequential evaluation to traces.

t.π = E[a : e] is a leaf e e′

(t, H) ⇒ (t ∪ {πa 7→ E[e′]},H)

The second rule deals with channel creation.

t.π = E[a : chan c in e] is a leaf
(t, H) ⇒ (t ∪ {πa 7→ E[e[c 7→ c@πa]]},H)

The third rule deals with process creation.

t.π = E[a : spawn e] is a leaf
(t, H) ⇒ (t ∪ {πa 7→ E[•], πā 7→ e},H)

The last rule deals with communication.

t.π1 = E1[a1 : recv k] is a leaf
t.π2 = E2[a2 : send(k, v)] is a leaf

(t, H) ⇒ (t ∪ {π1a1 7→ E1[v], π2a2 7→ E2[•]},H ∪ {(π1, k, π2)})

The set of traces of a program represents all possible executions of the program. It is defined as

Trace(p) = {t | ({ε 7→ p}, ε) ⇒∗ (t, H)}

3.2 Properties of traces

We say thatc has thesingle-senderproperty if for anyt ∈ Trace(p), k = c@π occurring int, and
π1, π2 ∈ Sendst(k), eitherπ1 � π2 or π2 � π1. The intuition here is that ifπ1 � π2 thenπ1 is
beforeπ2 and the sends can not be concurrent. On the other hand, ifπ1 andπ2 are not related by
�, then they may be concurrent.4 Note that the single-sender property allows multiple processes
to send messages on a given channel, they are just not allowed to do it concurrently. Likewise, we
say thatc has thesingle-receiverproperty if for anyt ∈ Trace(p), k = c@π occurring int, and
π1, π2 ∈ Recvst(k), eitherπ1 � π2 or π2 � π1.

We can now state the special channel topologies from Section 2.1 as properties of the set of
traces of a program. For a channel identifierc in a programp, we can classify its topology as
follows:

• The channelc is a one-shotchannel if for anyt ∈ Trace(p) andk = c@π occurring int,
|Sendst(k)| ≤ 1.

4There may be other causal dependencies, such as synchronizations, that would orderπ1 andπ2, but our model does
not take these into account.
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• The channelc is point-to-pointif it has both the single-sender and single-receiver properties.

• The channelc is a fan-out channel if it has the single-sender property, but not the single-
receiver.

• The channelc is a fan-in channel if it has the single-receiver property, but not the single-
sender.

Our analysis computes safe approximations of these properties, which we describe in Section 6.1.

4 Type-sensitive control-flow analysis for CML

The first step in our analysis is atype-sensitivecontrol-flow analysis (CFA) [Rep05]. This analysis
is based on Serrano’s 0-CFA algorithm [Ser95], but has the additional property that it exploits type
abstraction, such as provided by ML signature ascription orabstypedefinitions, to track escaping
values. The full details of our algorithm can be found in the appendix A; here we cover main ideas
of 0-CFA and those aspects of the analysis that are unique to our situation.

4.1 Introduction of 0-CFA

Traditional compiler optimization techniques require a knowledge of the control flow of programs.
Control flow analysis serves to construct such control flow graph for programs. Higher-order pro-
gramming languages (HOL) such as Scheme and ML, allow programs to take functions as first
class values, where functions can be passed as arguments to other functions and returned as results
from functions calls. Therefore, for HOL, control-flow and data-flow interdepend on each other; the
control-flow can not be be determined from the program text at compile time.

This fact makes optimization for higher-order languages harder than for first-order languages.
Shivers defines his control flow analysis for Scheme in [Shi88], called 0-CFA. Shivers’s algorithm
uses continuation passing style (CPS) as intermediate language. By CPS representation, all con-
trol transfers are represented by tail recursive function calls. Thus control-flow graph construction
reduces to determing the set of all functions that could be called from each call site. Note that in
Shivers’s analysis, a function is represented as a lambda/contour. His analysis computes a approx-
imation of that set by using a abstract interpretation. The analysis is called zeroth order control
flow analysis, because the approximation identifies all functions that have the same lambda expres-
sions. Although this approximation may introduce more control-flow edges than exist at runtime,
it is safe; that is, any control-flow edge at runtime is included in the control-flow graph. Serrano’s
0-CFA adapts Shivers’ analysis to deal with the full Scheme language, which is direct style instead
of CPS. The analysis also statically computes an approximation of the set of functions that could be
called from each call site. Our analysis described below is based on Serrano’s algorithm.
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4.2 Abstract values

Our analysis computes a mapping from variables to approximate values, which are given by the
following grammar:

v ::= ⊥
| D v | • | 〈v1, v2〉
| F | C

| T̂ | ĉhan τ | ̂τ1 → τ2

| >

whereD ∈ DATACON, F ∈ 2FUNID, C ∈ 2CHAN ID, andT ∈ ABSTY. We use⊥ to denote undefined
or not yet computed values,D v for an approximate value constructed by applyingD to v, 〈v1, v2〉
for an approximate pair,F for a set of known functions, andC for a set of known channels. Our
analysis will only compute sets of functionsF and sets of channels where all the members have the
same type (see [Rep05] for a proof of this property) and so we extend our type annotation syntax to
include such sets. In addition to the singletopvalue found in most presentations of CFA, we have a
family of top values (̂τ ) indexed by type. The valuêτ represents an unknown value of typeτ (where
τ is either a function or abstract type). The auxiliary functionU : TYPE → VALUE maps types to
their corresponding top value:

U(unit) = •
U(T) = T̂

U(τ1 → τ2) = ̂τ1 → τ2

U(τ1 × τ2) = 〈U(τ1), U(τn)〉

Lastly, the> value is used to cutoff expansion of recursive types as described below.

We define thejoin of two approximate values as follows:

⊥∨ v = v
v ∨⊥ = v
•∨ • = •

D v1 ∨D v2 = D(v1 ∨ v2)
〈v1, v2〉 ∨ 〈v′1, v′2〉 = 〈v1 ∨ v′1, v2 ∨ v′2〉

F ∨F ′ = F ∪ F ′

C ∨C ′ = C ∪ C ′

>∨ v = >
v ∨> = >
τ̂ ∨ v = τ̂
v ∨ τ̂ = τ̂

Note that this operation is not total, but it is defined for any two approximate values of the same
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type and we show in [Rep05] that it preserves types. One technical complication is that we need to
keep our approximate values finite; we discuss this issue in the appendix.

4.3 Type-sensitive CFA

Our analysis algorithm computes a 4-tuple of approximations:A = (V, C,R, T ), where

V ∈ VAR → VALUE variable approximation
C ∈ CHAN ID → VALUE channel message approximation
R ∈ FUNID → VALUE function-result approximation
T ∈ ABSTY → VALUE escaping abstract-value

approximation

OurV approximation corresponds to Serrano’sA. TheC approximation is an approximation of the
messages sent on a given known channel; theR approximation records an approximation of function
results for each known function; this approximation is used in lieu of analyzing a function’s body
when the function is already being analysed and is needed to guarantee termination. We use theT
approximation to interpret abstract values of the formT̂ .

Our algorithm follows the same basic structure as that of Serrano[Ser95], so we only cover
the major differences here. The appendix has the complete algorithm. One major difference is
the treatment of escaping values. In Serrano’s analysis (and any other modular CFA that we are
aware of), escaping values are treated conservatively. For example, the analysis assumes that any
escaping function can be called on any value, so the functions parameters are approximated as
>. For escaping channels, this would mean assuming arbitrary senders and receivers and arbitrary
messages, which would make modular analysis of typical CML modules, such as our example,
useless. To avoid this problem, our analysis tracks escaping values of abstract type by recording
them in theT approximation. In turn,T is used to approximate values of abstract type that come in
from the wild.

The other major difference from Serrano’s algorithm is that our language has channels. Send
operations on channels are treated much the same way as function calls. If the approximation of
the first argument to a send isC and the second argument isv, then we addv to the approximation
of message values sent on each channelc ∈ C. We useC to track this information. The message
receive operation is treated much like a function entry, the possible values are taken from theC
approximation.

4.4 Properties

The analysis presented in the previous section allows one to compute certain static approximations
of the dynamic properties described in Section 3.2. Figure 6 gives the approximation of the send
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̂SendSites(c) =
{
{a | a : send(e1, e2) ∈ p ∧ c ∈ A(e1)} if ¬Esc(c)
> if Esc(c)

̂RecvSites(c) =
{
{a | a : recv e ∈ p ∧ c ∈ A(e)} if ¬Esc(c)
> if Esc(c)

Figure 6: Approximation of channel send and receive sites

and receive sites for a given channel. If the channel escapes (denotedEsc(c)), then we use> to
denote the set. A channel for which we know all of the send and receive sites is called aknown
channel.

5 The extended CFG

With the information from the CFA in hand, the next step of our analysis is to construct an extended
control-flow graph (CFG) for the module that we are analyzing. We then use this extended CFG to
compute approximate trace fragments that can be used to analyse the topology of the program.

There is a node in the graph for each program point; in addition, there are is an entry and exit
node for each function definition. A node with a labela corresponds to the point in the program’s
execution where the next redux is labeled witha. The graph has four kinds of edges. The first two
of these represent control flow, while the other two are used to trace the flow of channel values.

1. Control edgesrepresent normal sequential control-flow.

2. Spawn edgesrepresent process creation. If there is an expressiona1 : spawn e anda2 is the
label of the first redux ine, then there will be a spawn edge froma1 to a2.

3. Message edgesare added from send sites to known receiver sites.

4. Wild edgesare added to represent the potential flow of abstract values from functions in the
module to another.

The graph is constructed such that following a control edge froma1 to a2 corresponds to an edge
labeled witha1 in a trace that leads to the trace node labeled bya2. Similarly, following a spawn
edge froma1 to a2 corresponds tōa1 in a trace. More formally, the sets of nodes and edges are
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defined to be

n ∈ NODE = PROGPT ∪ (FUNID × {entry, exit})
EGLABEL = {ctl, spawn,msg,wild}

EDGE = NODE× EGLABEL × NODE

G ∈ GRAPH = 2NODE × 2EDGE

The successors of a noden in a graphG are defined to beSuccG(n) = {n′ | (n, l, n′) is an edge inG}.
Constructing the CFG is done in three steps. First we create the basic graph with control and

spawn edges in the obvious way. One important point is that we use the results of the CFA to
determine the edges from call sites to known functions. Note that because we are only interested in
tracking known channels, which by definition cannot have escaped the module, we can ignore calls
to unknown functions when constructing the graph. Message edges are added in much the same
way as control edges for known function calls. Leta : send(e1, e2) be a send in the program and
assume that the CFA computedC as the approximation ofe1. Then for each channelc ∈ C and
a′ ∈ ̂RecvSites(c), we add a send edge froma to a′ to the graph. We add wild edges from any site
where an abstract value escapes the module to any site where such a value can return from the wild.
And we add wild edges from any site where an abstract value escapes the module to any receive site
of unknown channels. Once we have constructed the graph, we use a liveness analysis to label the
edges with the set of known channels that are live across the edge. As described in the next section,
we use these edge labels to limit the scope of the analysis on a per-channel basis.

6 Analyzing the CFG

The final stage of our analysis involves using the CFG to determine the communication topology.
We do this analysis independently for each channel starting at the CFG node that corresponds to the
site where the channel is created. Because the analysis is concerned with only a single channelc at
a time, we can ignore those parts of the graph wherec is not live (essentially remove any edge that
does not containc in its label set). The analysis computes a finite mapP̂ that maps program points
to an approximation of the control paths that one follows to get to the program point.

P̂ ∈ P̂ATHTO = PROGPT
fin→ 2 ̂CTLPATH

where the set of abstract control paths is defined by the syntax

π̂ ::= ∗:π
| π1:π2

For an approximate control pathŝπ, we split the path into a process ID part before the ‘:’ and a
path. The process ID can either be ‘∗’, which is used to represent an unknown set of processes, or
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a path that uniquely identifies the process. We define an orderingv on abstract control paths as
follows: π1:π′1 v π2:π′2 if π1 = π2 andπ′1 � π′2. In other words,̂π1 v π̂2 if they are in the same
process and̂π1 is a prefix ofπ̂2. The following notation is used to project the process ID part from
an approximate control path:

P̂roc(∗:π2) = ∗
P̂roc(π1:π2) = π1

We lift P̂roc to sets of control paths in the standard way. IfA is a set of approximate control paths,
then we define the number of distinct processes inA as follows:

̂NumProcs(A) = ∞ if ∗ ∈ P̂roc(A)
̂NumProcs(A) = |P̂roc(A)| otherwise

The analysis of the CFG is defined by a pair of mutually recursive functions:

N c
G : NODE→ ̂CTLPATH → P̂ATHTO → P̂ATHTO

Ec
G : EDGE→ ̂CTLPATH → P̂ATHTO → P̂ATHTO

The definition of these functions can be found in Figure 7, wherêPempty = {a 7→ ∅ | a ∈ PROGPT}
is the finite map that assigns the empty path set to every program point. If a known channelc is
defined ata : chan c in e, then we computêPc = N c

G[[a]]ε:ε P̂empty .

TheN c
G function is defined based on the kind of graph node. For a function entry it follows

the unique control edge to the first program point of the function, for a function exit it computes
the union of the analysis for all outgoing edges. These edges will either be control edges tof ’s call
sites, whenf is a known function, or wild edges, whenf is an escaping function. For program-
point nodes, we have three subcases. If the approximationP̂ already contains a pathpid :π1aπ2

that precedeŝπ andpid :π1 ∈ P̂ (a), then we have looped (the loop isa→π2→a) and can stop.
If the number of processes that can reach the program pointa is greater than one, then we stop.5

Otherwise, we record the visit toa in P̂ ′ and compute the union over the outgoing edges.

The Ec
G function is defined by cases on the edge kind. When the edge is a control edge, we

analyze the destination node passing the extended pathπ̂a. When the edge is a spawn edge, we
analyze the destination node passing a new process ID paired with the empty path. For message
edges, we analyze the receive site using the extended control path to send-site program point as a
new process ID. This choice of process ID distinguishes the send from other sends that target the
same receive sites, but in conflates multiple receive sites that are targets of the same send, which
is safe since only one receive site can actually receive the message. For wild edges, we analyze
the destination node using ‘∗’ as the process ID. This value represents the fact than any number of
threads might call the target of the wild edge with the same dynamic instance of the channelc.

5Recall that we are interested in channels that havesinglesenders or receivers.
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N c
G[[(f, entry)]]π̂ P̂ = N c

G[[a′]]π̂ P̂ whereSuccG(f, entry) = {a′}

N c
G[[(f, exit)]]π̂ P̂ = P̂ ∪

 ⋃
e∈EdgeG(a)

Ec
G[[e]]π̂ P̂


N c

G[[a]]π̂ P̂ = P̂ if ∃pid :π1aπ2 ∈ P̂ (a) such that

pid :π1aπ2 v π̂ andpid :π1 ∈ P̂ (a).

= P̂ if ̂NumProcs(P̂ (a)) ≥ 2

= P̂ ′ ∪

 ⋃
e∈EdgeG(a)

Ec
G[[e]]π̂ P̂ ′


whereP̂ ′ = P̂ ∪ {a 7→ P̂ (a) ∪ {π̂}}

Ec
G[[(a, ctl, n)]]π̂ P̂ = N c

G[[n]]π̂a P̂

Ec
G[[(a, spawn, n)]]π̂ P̂ = N c

G[[n]]∗:ε P̂ if π̂ = ∗:π
N c

G[[n]]π1π2ā:ε P̂ if π̂ = π1:π2

Ec
G[[(a,msg, n)]]π̂ P̂ = N c

G[[n]]∗:ε P̂empty if π̂ = ∗:π
N c

G[[n]]π1π2ā:ε P̂empty otherwise and̂π = π1:π2

Ec
G[[(a,wild, n)]]π̂ P̂ = N c

G[[n]]∗:ε P̂empty

Figure 7: Analyzing the CFGG for channelc

6.1 Static classification of channels

Once we have computed̂Pc for a known channelc, we can statically classify the channel by exam-
ining P̂ . First we define the approximate send and receive contexts forc as follows:

Ŝc =
⋃

a∈ ̂SendSites(c)

P̂c(a)

R̂c =
⋃

a∈ ̂RecvSites(c)

P̂c(a)

These are the static approximations of theSends andRecvs sets from Section 3.1. We say that a
known channelc has thestatic single sender(resp.static single receiver) property if ̂NumProcs(Ŝc)
≤ 1 (resp. ̂NumProcs(R̂c) ≤ 1). The static classification of channels then follows the dynamic
classification from Section 3.1.
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• If ̂NumProcs(Ŝc) ≤ 1 and 6 ∃π̂1, π̂2 ∈ Ŝc with π̂1 6= π̂2 andπ̂1 v π̂2, thenc is a one-shot
channel.

• If c has both the static single-sender and static single-receiver properties, then it is a point-to-
point channel.

• If c has the static single-sender property, but not the static single-receiver, then it is afan-out
channel.

• If c has the static single-receiver property, but not the static single-sender, then it is afan-in
channel.

7 Algorithm Soundness

In this section, we show that the static classification of channels from Section 6 correctly follows
the dynamic classfication from Section 3.2, that is, Our analysis computes safe approximations of
the properties from Section 3.2. The full details about proof can be found in the appendix B; here
we cover the ideas underlying the proof. For our notation, we useπ(i) to denote the i-th program
point inπ from left, andπ(−i) to denote the i-th program point inπ from right. Letp be a program
and letc be a channel identifier inp.

Given any channel instancek in tracet ∈ Trace(p), the following definitions gives us the cir-
cumstance in which our analysis will be considered.

Definition 1 For any channel instancek in tracet ∈ Trace(p), the live projection of tracet on k
denoted byt ↓k is the forest created by removing all the nodes fromt in whichk dose not occur.

We sayπ is in t ↓k, if for any two adjacent nodesπ(i), π(i+1) occurring inπ, there is a edge from
π(i) to π(i+1) in t ↓k. Note thatε is in anyt ↓k.

Definition 2 For any channel instancek in trace t ∈ Trace(p), and control pathπ in t, the live
projection ofπ onk is denoted byπ ↓k s.t.

π ↓k=

{
π1 whereπ = π2aπ1, aπ

(1)
1 is not int ↓k, andπ1 is in t ↓k

π otherwise

Given any pathπ in t ∈ Trace(p), π may contain program points in the wild. However, our
CFG only consists of nodes with program points in the module. Then we use the following defini-
tions and lemma to relate paths in the CFG with paths in the trace.
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Given any pathπ in t ∈ Trace(p), the following definition ofPartition : PATH → PATH ∗

partitions theπ into sub-paths which are in the module or in the wild.

Definition 3 For any pathπ in t ∈ Trace(p), Partition(π) =< π1, π2, ..., πm >, whereπ1π2...πm

= π and for anyπi ∈ Partition(π), πi is the longest sub-path inπ s.t. the program points inπi

are either all in the module or all in the wild.

Given any pathπ in t ∈ Trace(p) andPartition(π) =< π1, π2, ..., πm >, the following
definition of ApproxPath : PATH → PATH gives us the paths in our CFG corresponding to
πi ∈ Partition(π).

Definition 4

ApproxPath(π) =
{

π if all the program points inπ are in the module
ε if all the program points inπ are in the wild

Given any tracet of programp, channel instancek in t, and any pathπ in t ↓k, the following
lemma shows that there is an approximation path in our CFG corresponding to the path.

Lemma 1 For any tracet ∈ Trace(p), channel instancec@π′, and any pathπ in t ↓c@π′ , ∃π̂ =
ApproxPath (π1)...ApproxPath(πm) ∈ Ĝc, where< π1, ..., πm >=Partition(π)

Although Lemma 1 shows that there is a corresponding approximation path in our CFG, our
analysis algorithm starts from channel instance creation site. The following definition and lemma
show that there is an approximation path in our CFG starting from instance creation site and reaching
the corresponding approximation path; that is that our algorithm will traverse the corresponding
approximation path if needed.

Given any trace of programp, channel instance in that trace, and any control path in that trace,
the following definition ofPathHtk : PATH → PATH ∗ gives us the history in which channel in-
stancek goes through in tracet. For example,PathHtk(π) =< π1, π2 >, this means from creation
site ofk the program follows pathπ1 reaching sendsite of some other channel, and over the channel
valuek is sent toπ2, andπ2 is the live projection ofπ onk.

Definition 5 For any tracet ∈ Trace(p), channel instancek = c@π′, and control pathπ ∈
Sendst(k) ∪ Recvst(k), let π = π′′′π′′ whereπ′′ = π ↓k,

PathHtk(π) =


< π′′ > if π′′(1) = π′(−1)

< π1, π2, ..., πm >
otherwise, whereπ

′
m = π′′′π′′(1), πm = π′′

(π′i+1, ki+1, π
′
i) ∈ H,πi = π′i ↓k, π

′(1)
1 = π

′(−1)
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Given any trace of programp, channel instance in that trace, and any control path in that trace,
the following lemma shows that there is an approximation path in our CFG corresponding to the
communication history of that control path, that is, our analysis algorithm will traverse the control
path if needed.

Lemma 2 For any tracet ∈ Trace(p), channel instancek, and control pathπ ∈ Sendst(k) ∪
Recvst(k), ∃ π̂ = π̂1π̂2...π̂m ∈ Ĝc, wherePathHtk(π) =< π1, ..., πm >.

Although Lemma 2 shows that our analysis algorithm will traverse the approximation path
corresponding to the control path’s communication history if needed, we still need to show that
our static classification of the channel holds the properties of all traces of the program. Theorem
OneShot Soundness shows that if there are more than one control path in some trace reaching to
the channel sendsite, then our analysis algorithm will not classify the channel as oneshot channel.
Theorem Single Sender (Receiver) Soundness shows that if there is more than one process which
sent(received) message over the channel instance, then our analysis algorithm will not classify the
channel as single sender(receiver) channel.

Theorem 3 ONE-SHOT SOUNDNESS

If ∃t ∈ Trace(p) s.t. for any channel instancec@π in t, |Sendst(c@π)| ≥ 2, then∃π̂1, π̂2 ∈ Ŝc s.t.

π̂1 6= π̂2, or ̂NumProcs(Ŝc) ≥ 2.

Theorem 4 SINGLE -SENDER SOUNDNESS

If ∃t ∈ Trace(p) and for any channel instancec@π in t, ∃π1, π2 ∈ Sendst(c@π),
P roc(π1) 6= Proc(π2), then ̂NumProcs(Ŝc) ≥ 2.

Theorem 5 SINGLE -RECEIVER SOUNDNESS

If ∃t ∈ Trace(p) and for any channel instancec@π in t, ∃π1, π2 ∈ Recvst(c@π),
P roc(π1) 6= Proc(π2), then ̂NumProcs(R̂c) ≥ 2.

8 Analyzing the example

To understand the CFG construction and the intuition behind the analysis, we revisit the example
of Figure 1. We recast this example using the notation of our simple language (with a few syntactic
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liberties) and include program-point labels.

a1 : fun new () = (
a2 : chan ch in
a3 : fun server v = (
a4 : let (w’, replCh’) = recv ch in
a5 : send (replCh’, v);
a6 : server w’ )

in
a7 : spawn ( a8 : server 0);
a9 : S ch)

a10 : fun call (s, w) = (
a11 : let S ch’ = s in
a12 : chan replCh in
a13 : send (ch, (w, replCh));
a14 : recv replCh)

The CFA for this example will produce the following information

̂SendSites(ch ) = {a13}
̂RecvSites(ch ) = {a4}

̂SendSites(replCh ) = {a5}
̂RecvSites(replCh ) = {a14}

Thus, bothch andreplCh are known channels. The CFG for this example is given in Figure 8.
We have labeled each edge with the set of known channels that are live across the edge.

There are three ways that a channel can be shared among multiple threads (and thus have mul-
tiple senders/receivers):

1. A process is spawned that has the channel in its closure. This is represented by the channel
being in the label of the spawn edge (e.g.,ch on the edge froma7 to a8).

2. The channel is sent in a message from one process to another. This is represented by the
channel being in the label of the message edge (e.g.,replCh on the edge froma13 to a4).

3. The channel escapes into the wild and then returns as the argument to an exported function.
This is represented by the channel being in the label of a wild edge from the exit of one
function to the entry of another (e.g.,ch on the edge from the exit ofnew to the entry of
call ).
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a2
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a7

a4

a9

a5
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a13

a14

a11

a12

{}

{ch}

{ch}

{ch} {ch}

{ch}

{ch}

{}

{ch}

{replCh}

{ch, replCh}

{ch, replCh}

{ch}

{ch}

{replCh}

new

call

a8

{ch}

{ch}

Control edge

Spawn edge

Message edge

Wild edge

{}

Figure 8: The CFG for the example
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a4

a5

a13

a14

a11

a12

{replCh}

{ch, replCh}

{ch, replCh}

{ch, replCh}

{replCh}

Figure 9: The sub-CFG forreplCh

When analyzing the usage pattern of the channels created at a given site, we restrict ourselves to
the subset of the graph where the channel actually flows. For example, when analyzing the use of
replCh (created ata12), we restrict the analysis to the subgraph in Figure 9. Notice that although
replCh is received by the server in its loop, the fact thatreplCh is not live after nodea5 means
that we do not analyze the loop in this case and thus we avoid confusing different instances of
replCh with each other. ComputinĝPreplCh = N replCh

G [[a12]]ε:ε P̂empty results in

P̂replCh (a12) = {ε:ε}
P̂replCh (a13) = {ε:a12}
P̂replCh (a14) = {ε:a12a13}
P̂replCh (a4) = {a12ā13:ε}
P̂replCh (a5) = {a12ā13:a4}

From this information, we see thatreplCh is a one-shot channel.
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P̂ch (a2) = {ε:ε}
P̂ch (a3) = {ε:a2}
P̂ch (a7) = {ε:a2a3}
P̂ch (a8) = {π:ε}
P̂ch (a4) = {π:a8, π:a8a4a5a6}
P̂ch (a5) = {π:a8a4, π:a8a4a5a6a4}
P̂ch (a6) = {π:a8a4a5, π:a8a4a5a6a4a5}
P̂ch (a9) = {ε:a2a3a7}

P̂ch (a11) = {∗:ε}
P̂ch (a12) = {∗:a11}
P̂ch (a13) = {∗:a11a12}

Figure 10: Analysis result forch

The analysis forch is more interesting, since it involves spawning, loops, and wild edges.
Applying the analysis algorithm to the relevant subgraph produces the approximation shown in
Figure 10.

whereπ = a2a3ā7. From this approximation, we see that

Ŝch = {∗:a11a12}
R̂ch = {π:a8, π:a8a4a5a6}

and thusch is a fan-in channel.

9 Related work

There are a number of papers that describe various program analyses for message-passing languages
such as CSP [Hoa78] and CML. These analyses can be organized by the techniques used. A num-
ber of researchers have used effect-based type systems to analyse the communication behavior of
message-passing programs. Nielson and Nielson developed an effects-based analysis for detecting
when programs written in a subset of CML havefinite topologyand thus can be mapped onto a
finite processor network [NN94]. Debbabiet al. developed a type-based control-flow analysis for a
CML subset [DFT96], but did not propose any applications for their analysis.

In addition to being used as the basis for analysis algorithms, type systems have been proposed
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that can be used to specify and verify properties of protocols. For example, Vasconceloset al.
have proposed a small message-passing language that usessession typesto describe the sequence of
operations in complex protocols [VRG04]. While this approach is not a program analysis, session
types may be a useful way to represent behaviors in an analysis. In particular, the might provide an
alternative to our sets of approximate control paths.

There have also been a number of abstract interpretation-style analyses of concurrent languages
that are closer in style to the analysis we described in Section 4. Mercouroff designed and imple-
mented an abstract-interpretation style analysis for CSP programs [Mer91] based on an approxi-
mation of the number of messages sent between processes. While this analysis is one of the ear-
liest for message-passing programs, it is of limited utility for our purposes, since it is limited to a
very static language. Jagannathan and Weeks proposed an analysis for parallel SCHEME programs
that distinguishes memory accesses/updates by thread [JW94]. Unfortunately, their analysis is not
fine-grained enough for our problem since it collapses multiple threads that have the same spawn
point to a single approximate thread. Marinescu and Goldberg have developed a partial evaluation
technique for CSP [MG97]. Their algorithm can eliminate redundant synchronization, like Mer-
couroff’s work, it is limited to programs with static structure. Martel and Gengler have developed a
control-flow analysis that determines an approximation of a CML program’s communication topol-
ogy [MG00]. The analysis uses finite automata to approximate the synchronization behavior of a
thread and then extracts the topology from the product automata.

The closest work to ours is probably Colby’s abstract-interpretation for a subset of CML [Col95],
which analyses the communication topology of CML programs. His analysis is based on a seman-
tics that uses control paths (i.e., an execution trace) to identify threads. Unlike using spawn points to
identify threads (as in [JW94]), control paths distinguish multiple threads created at the same spawn
point, which is a necessary condition to understand the topology of a program. The method used to
abstract control-paths is left as a “tunable” parameter in his presentation, so it is not immediately
obvious how to use his approach to provide the information that we need. His analysis is also a
whole-program analysis.

10 Status and future work

We have implemented the type-sensitive CFA for a language that is slightly larger than the one in
the paper (it has tuples, basic values, conditionals, and a subset of the CML event combinators).
We are extending this implementation to include the CFG construction and analysis. The next
stage will be to extend the analysis to the full set of CML primitives and SML features, such
as modules, datatypes, and polymorphism (see [Rep05] for a discussion of the latter). We are also
implementing multi-threaded communication protocols for CML. The next stage will be to measure
the performance benifit from specialized operations. Eventually, we plan to implement the analysis
and optimization as a source-to-source tool for optimizing CML modules.
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Another dimension of interest is whether a channel is used in choice contexts, since there is
additional overhead in the implementation of channels to support fairness and negative acknowl-
edgments in choice contexts. A channel that is not used in choice contexts can have a simpler, and
more efficient, implementation. In the future, we plan to extend our analysis to specialize this kind
of channel operations.

11 Conclusion

We have presented a new analysis technique for analyzing concurrent languages that use message
passing, such as CML. Our technique is designed to be applied on individual units of abstraction
(e.g., modules). For a given module it determines an approximation of the communication topology
for the channels defined in the module. We have shown how this information can be used to replace
general-purpose channel operations with more specialized ones.

The analysis consists of two major components. The first is a new variation of control-flow
analysis that we calltype-sensitiveCFA. The type sensitivity of the analysis is what allows us to
effectively analyze modules independently of their use. The second component of the analysis uses
a CFG constructed from the CFA results to approximate the numbers of messages and processes
involved in communicating with known channels.

We have presented the analysis for a simple concurrent language, but we expect that it will
be straightforward to extend to richer languages. The analysis may also be useful for statically
detecting other properties of concurrent programs (e.g., deadlock), but we have not explored this
direction yet.
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A The type-sensitive CFA algorithm

In this appendix, we present the details of our type-sensitive CFA algorithm. For our notation, we
use SML syntax extended with mathematical notation such as set operations, and the∨ operation
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on approximate values. We use the notation[[e]] to denote an object-language syntactic forme and
V[x 7→ v] to denote the functional update of an approximation (likewise forR andT ).

One technical complication is that we need to keep our approximate values finite. For example,
consider the following pathological example:

abstype T = D of T with fun f (x) = D x end

If we are not careful, our analysis might diverge computing ever larger approximations ofC∞(⊥)
as the result off . To avoid this problem, we define a limit on the depth of approximations for
recursive types as follows:

d⊥eD = ⊥⌈
Dτ→T v

⌉
D

=
{
> if D ∈ D
D(dveD∪{D}) if D 6∈ D

d〈v1, v2〉eD = 〈 dv1eD , dvneD〉
dF eD = F
dCeD = C
dτ̂eD = τ̂

whereD ⊂ DATACON is a set of constructors. We writedve for dve∅. We use> to cutoff the ex-

pansion of approximate values instead ofT̂ the approximation of escaping values of typeT may not
be an accurate approximation of the nested values. This definition does not allow nested applica-
tions of the same constructor. For example, the analysis will be forced to approximate the escaping
values of typeT by D> in the above example.

Our unit of analysis is the abstype declaration. Our algorithm analyses the function definitions
in the declaration repeatedly until a fixed-point is reached. The initial approximation map local
variables, function results, and abstract types to⊥, and map global variables and external types to
unknown values.
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fun cfa [[abstype T = D of τ with fb1 · · · fbn end]] = let
fun iterate A0 = let

val A1 = cfaFB ( A0, fb1)
· · ·
val An = cfaFB ( An−1, fbn)
in

if ( A0 6= An)
then iterate An

else A0

end
let V = {x 7→ ⊥ | x ∈ LVAR}

∪ {x 7→ U(τ) | xτ ∈ GVAR}
let C = {c 7→ ⊥ | c ∈ CHAN ID}
let R = {f 7→ ⊥ | f ∈ FUNID}
let T = {T 7→ ⊥} ∪ {S 7→ Ŝ | S ∈ (ABSTY \ {T})}
in

iterate ( V, C, R, T )
end

ThecfaFB function analyses a function binding in the abstype declaration by “applying” the
function to the top value of the function’s argument type. The result is then recorded as escaping.

fun cfaFB ( A, [[fun f (xτ ) = e]]) = let
val ( A, v) = applyFun ( {}, A, f , U(τ))
in

escape ( {}, A, v)
end

The applyFun function analyses the application of a known functionf to an approximate
valuev. The first argument toapplyFun is a setM ∈ 2FUNID of known functions that are currently
being analysed; iff is in this set, then we use the approximationR instead of recursively analyzing
the f ’s body. This mechanism is necessary to guarantee termination when analyzing recursive
functions. We assume the existence of the functionbindingOf that maps known function names
to their bindings in the source.
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fun applyFun ( M, A as ( V, C, R, T ), f , v) =
if f ∈ M

then ( A, R(f))
else let

val [[fun f (x) = e]] = bindingOf ( f )
val V = V[x 7→ dV(x) ∨ ve]
val (( V, C, R, T ), r) =

cfaExp ( M ∪ {f}, ( V, C, R, T ), [[e]])
val R = R[f 7→ dR(f) ∨ re]
in

(( V, C, R, T ), r)
end

The escape function records the fact that a value escapes into the wild. If the value has an
abstract type, then it is added to the approximation of wild values for the type; if it is a set of known
functions, then we apply them to the appropriate top value; and if it is a tuple, we record that its
subcomponents are escaping. Theescape function also takes the set of currently active functions
as its first argument.

fun escape (_, ( V, C, R, T ), D v) =
( V, R, T [T 7→ dT (T ) ∨D ve])

| escape ( M, A, F ) = let
fun esc ( fτ1 → τ2 , A) = let

val ( A, v) = applyFun( M, A, f , U(τ1))
in A end

in
fold esc A F

end
| escape ( M, ( V, C, R, T ), C) = let

fun esc ( cτ , C) = C[c 7→ dC(c) ∨ τ̂e]
in

( V, fold esc C C, R, T )
end

| escape ( M, A, 〈v1, v2〉) = let
val A = escape ( M, A, v1)
val A = escape ( M, A, v2)
in A end

| escape (_, A, v) = A

Expressions are analysed by thecfaExp function, whose code is given in Figure 11 and Fig-
ure 12.

This function takes the set of active functions, an approximation triple, and an syntactic expres-
sion as arguments and returns updated approximations and a value that approximates the result of
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fun cfaExp ( M, A as ( V, C, R, T ), [[x]]) =
if x ∈ FUNID orelse x ∈ CHAN ID

then ( A, {x})
else ( A, V(x))

| cfaExp ( M, A, [[•]]) = •
| cfaExp ( M, A, [[let x = e1 in e2]]) = let

val (( V, R, T ), v) = cfaExp ( M, A, [[e1]])
val V = V[x 7→ dV(x) ∨ ve]
in

cfaExp ( M, ( V, R, T ), [[e2]])
end

| cfaExp ( M, A, [[fun f (x) = e1 in e2]]) =
cfaExp ( M, A, [[e2]])

| cfaExp ( M, A, [[e1 e2]]) = let
val ( A, v1) = cfaExp ( M, A, [[e1]])
val ( A, v2) = cfaExp ( M, A, [[e2]])
in

apply ( M, A, v1, v2)
end

| cfaExp ( M, A, [[D e]]) = let
val ( A, v) = cfaExp ( M, A, [[e]])
in

( A, D v)
end

| cfaExp ( M, A, [[let D x = e1 in e2]]) = let
val (( V, R, T ), v) = cfaExp ( M, A, [[e1]])
val V = decon ( V, T , [[D x]], v)
in

cfaExp ( M, ( V, R, T ), [[e2]])
end

Figure 11: CFA for expressions Part I
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| cfaExp ( M, A, [[〈e1, e2〉]]) = let
val ( A, v1) = cfaExp ( M, A, [[e1]])
val ( A, v2) = cfaExp ( M, A, [[e2]])
in

( A, 〈v1, v2〉)
end

| cfaExp ( M, A, [[#i e]]) = let
val ( A, 〈v1, . . . , vn〉) = cfaExp ( M, A, [[e]])
in

( A, vi)
end

| cfaExp ( M, A, [[chan c in e]]) =
cfaExp( M, A, [[e]])

| cfaExp ( M, A, [[spawn e]]) = (
cfaExp( M, A, [[e]]); •)

| cfaExp ( M, A, [[send(e1, e2)]]) = let
val ( A, v1) = cfaExp ( M, A, [[e1]])
val ( A, v2) = cfaExp ( M, A, [[e2]])
in

send ( M, A, v1, v2)
end

| cfaExp ( M, A, [[recv e]]) = let
val ( A, v) = cfaExp ( M, A, [[e]])
in

receive ( A, v)
end

Figure 12: CFA for expressions Part II
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the expression. For function applications, we use theapply helper function (discussed below) and
for value deconstruction, we use thedecon helper function, which handles the deconstruction of
approximate values and their binding to variables. When the value is unknown (i.e., T̂ ), then we use
theT approximation to determine the value being deconstructed.

fun decon ( V, T , [[C x]], C v) = V[x 7→ dV(x) ∨ ve]]
| decon ( V, T , [[Cτ→T x]], T̂ ) = (case T (T )

of T̂ => V[x 7→ dV(x) ∨ U(τ)e]
| v => decon( V, T , [[C x]], v)

(* end case *))

Theapply function records the fact that an approximate function value is being applied to a
approximate argument. When the approximation is a set of known functions, then we apply each
function in the set to the argument compute the join of the results. When the function is unknown
(i.e., a top value), then the argument is marked as escaping and the result is the top value for the
function’s range.

fun apply ( M, A, F , arg) = let
fun applyf ( f , ( A, res)) = let

val ( A, v) = applyFun ( M, A, f , arg)
in

( A, res ∨ v)
end

in
fold applyf ( V, T ) F

end
| apply ( M, A, ̂τ1 → τ2, v) = let

val A = escape( M, A, v)
in

( A, τ̂2)
end

Thesend function is used to analyse message-send operations.

fun send ( M, ( V, C, R, T ), C, v) = let
fun esc ( c, C) = C[c 7→ dC(c) ∨ ve]
in

(( V, fold esc C C, R, T ), •)
end

| send ( M, A, _, v) = (escape ( M, A, v), •)

Thereceive function is used to analyse message-receive operations. If the approximation of the
channel is a set of known channels (C), then the approximation of the received message is the join
of the approximations of the messages sent on all the channels inC.
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fun receive (( V, C, R, T ), C) = ∨c∈C C(c)
| receive ( A, v) = τ̂

B Algorithm Soundness

In this appendix, we present the details of the correctness proof for our analysis.

Lemma 1 For any tracet ∈ Trace(p), channel instancec@π′, and any pathπ in t ↓c@π′ , ∃π̂ =
ApproxPath (π1)...ApproxPath(πm) ∈ Ĝc, where< π1, ..., πm >=Partition(π)
Proof: < π1, ..., πm >= Partition(π) ⇒ π1π2...πm = π

First we show that for eachπi, ∃π̂i = ApproxPath(πi) ∈ Ĝc. If ApproxPath(πi) = ε, then
all the program points are in the wild. And the ’wild’ edge in our CFG collapses all the pro-
gram points in the wild. So, ifApproxPath(πi) = ε, ∃π̂i = ApproxPath(πi) ∈ Ĝc. If
ApproxPath(πi) = πi, then all the program points are in the module. And according to our
CFG construction, it is obvious,∃π̂i = ApproxPath(πi) ∈ Ĝc. Then we need to show that
∃π̂ = ApproxPath(π1)...ApproxPath(πm) ∈ Ĝc. We’ll prove by induction of the number of the
elements inPartition(π)
Basis :|Partition(π)| = 1 showed above
Induction step:
Assume when|Partition(π)| = n − 1, ∃π̂ = ApproxPath(π1) ...ApproxPath(πn−1) ∈ Ĝc.
When |Partition(π)| = n, there must beπi ∈ Partition(π), s.t. ApproxPath(πi) = ε. And
from assumption, for pathπ1...πi−1 andπi+1...πn, ∃ApproxPath(π1)...ApproxPath(πi−1) ∈
Ĝc, ∃ApproxPath (πi+1)...ApproxPath(πn) ∈ Ĝc. SinceApproxPath(πi) = ε, we have
that channel c escapes fromπi−1 to the wild and come from the wild intoπi+1. According to
our CFG construction, we have wild edge betweenApproxPath(π1)... ApproxPath(πi−1) and
ApproxPath(πi+1)...ApproxPath(πn), hence∃π̂ ∈ Ĝc

Lemma 2 For any tracet ∈ Trace(p), channel instancek, and control pathπ ∈ Sendst(k) ∪
Recvst(k), ∃ π̂ = π̂1π̂2...π̂m ∈ Ĝc, wherePathHtk(π) =< π1, ..., πm >.
Proof: Prove by induction of the number of elements inPathHtk(π).
Basis:|PathHtk(π)| = 1. This is showed by Lemma 1.
Induction step: Assume for any control pathπ s.t. |PathHtk(π)| = n− 1, ∃ π̂ = π̂1.π̂2... π̂n−1 ∈
Ĝc, wherePathHtk(π) =< π1, ..., πn−1 >. Now consider any control pathπ s.t. |PathHtk(π)| =
n. Let PathHtk(π) =< π1, π2, ..., πn−1, πn >. From Lemma 1, we know that for eachπi ∈
PathHtk(π), ∃π̂i ∈ Ĝc. FromPathHtk definition, we haveπ(−1)

n−1 : send(kn, v), π(1)
n : recv kn,

for some channel instancekn and valuev. According to our CFG construction, there ismsg or
wild edge connectinĝπ(n−1) and π̂n. By induction, we havêπ1.π̂2...π̂n−1 ∈ Ĝc. So we have

∃ π̂ = π̂1.π̂2...π̂m ∈ Ĝc.
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Lemma 6 For any tracet ∈ Trace(p), channel instancek in t, and any control pathπ1, π2 ∈
Sendst(k) ∪ Recvst(k), if π1 6= π2 thenPathHtk(π1) 6= PathHtk(π2).

Proof: This is obvious from dynamic semantics on Section 3.1.

Theorem 3 ONE-SHOT SOUNDNESS

If ∃t ∈ Trace(p) s.t. for any channel instancec@π in t, |Sendst(c@π)| ≥ 2, then∃π̂1, π̂2 ∈ Ŝc and
π̂1 6= π̂2, or ̂NumProcs(Ŝc) ≥ 2.
Proof: Let π1, π2 ∈ Sendst(c@π), π1 6= π2 and
PathHtk(π1)=< π

′
1, π

′
2, ..., π

′
m > PathHtk(π2)=< π

′′
1 , π

′′
2 , ..., π

′′
n >

We’ll prove in the following cases.

a) Consider̂π′
1...π̂

′
m 6= π̂

′′
1 ...π̂′′

n

From Lemma2, we havêπ′
1...π̂

′
m ∈ P̂ATHTO(π(−1)

1 ), π̂
′′
1 ...π̂′′

m ∈ P̂ATHTO(π(−1)
2 ). So π̂

′
1...π̂

′
m,

π̂
′′
1 ...π̂′′

m ∈ Ŝc

b) Condiser̂π′
1...π̂

′
m = π̂

′′
1 ...π̂′′

n

From Lemma 6, we haveπ
′
1...π

′
m 6= π

′′
1 ...π

′′
n. So there must be some program point inπ

′
i or π

′′
i that

is in the wild. According to our algorithm, there must be someπ3 and∗ : π3 ∈ Ŝc. So we have
̂NumProcs(Ŝc) ≥ 2

Theorem 4 SINGLE -SENDER SOUNDNESS

If ∃t ∈ Trace(p) and for any channel instancec@π in t, ∃π1, π2 ∈ Sendst(c@π),
P roc(π1) 6= Proc(π2), then ̂NumProcs(Ŝc) ≥ 2.
Proof: Let
PathHtk(π1)=< π

′
1, π

′
2, ..., π

′
m > PathHtk(π2)=< π

′′
1 , π

′′
2 , ..., π

′′
n >

We’ll prove in the following cases.
a) Considerπ

′
m = π

′′
n

Fromπ
′
m = π

′′
n, We have thatπ

′(1)
m , π

′′(1)
n must be receive sites for some channel instance.

If there is program point inπ
′
m or π

′′
n is in the wild, then according to our algorithm, there must be

∗ : π3 ∈ Ŝc. So ̂NumProcs(Ŝc) ≥ 2.
So we only need to consider all program points inπ

′
m andπ

′′
n are in the module.

If π̂
′
1...π̂

′
m 6= π̂

′′
1 ...π̂′′

n, then we havêπ′
1...π̂

′
m−1 6= π̂

′′
1 ...π̂

′′
n−1. According to our algorithm,̂π′

1...π̂
′
m−1

∈ P̂ roc(P̂ATHTO(π
′(1)
m )), π̂

′′
1 ...π̂

′′
n−1 ∈ P̂ roc(P̂ATHTO(π

′′(1)
n )). π̂′

m = π̂′′
n, so ̂NumProcs(Ŝc) ≥ 2

If π̂
′
1...π̂

′
m = π̂

′′
1 ...π̂′′

n, then as proved above, there must be∗ ∈ P̂ roc(P̂ATHTO(π(−1)
1 )) or ∗ ∈

P̂ roc(P̂ATHTO(π(−1)
2 )). So we have ̂NumProcs(Ŝc) ≥ 2

b) Considerπ
′
m 6= π

′′
n

If there is program point inπ
′
i or π

′′
j is in the wild, then according to our algorithm, there must be
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someπ3 and∗ : π3 ∈ Ŝc. So ̂NumProcs(Ŝc) ≥ 2.

1)If π
′(1)
m , π

′′(1)
n are both receive sites.

From Lemma 6, we know thatπ
′
1...π

′
m−1 6= π

′′
1 ...π

′′
n−1. And because there is no program point in

the wild, soπ̂
′
1...π̂

′
m−1 6= π̂

′′
1 ...π̂

′′
n−1. So we have ̂NumProcs(Ŝc) ≥ 2.

2)If π
′(1)
m = π

′′(1)
n = π(−1).

Then |PathHtk(π1)| = |PathHtk(π2)| = 1(reaching from channel instance creation site). Sup-
poseProc(π1) = ππ

′
, P roc(π2) = ππ

′′
, thenP̂ roc(π̂1) = π

′
, P̂ roc(π̂2) = π

′′
. Becauseπ

′ 6= π
′′
,

we have ̂NumProcs(Ŝc) ≥ 2.

3)If π
′(1)
m = π(−1), while π

′′(1)
n is a receive site.

Supposeπ
′′
1 = π0a. Then there exists someπ1, π2 such thatπ0āπ1 : π2 ∈ P̂ATHTO(π(−1)

2 ). Be-

causea is a not spawn site,π0āπ1 /∈ P̂ roc(P̂ATHTO(π(−1)
1 )). So ̂NumProcs(Ŝc) ≥ 2.

Theorem 5 SINGLE -RECEIVER SOUNDNESS

If ∃t ∈ Trace(p) and for any channel instancec@π in t, ∃π1, π2 ∈ Recvst(c@π),
P roc(π1) 6= Proc(π2), then ̂NumProcs(R̂c) ≥ 2.
Proof: This is similar to the proof of Theorem 4.
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