TOWARD OPTIMIZATION OF CONCURRENT ML

YINGQI XIAO
THE UNIVERSITY OF CHICAGO

ADVISOR: JOHN REPPY

DECEMBER 2005



Abstract

Concurrent ML (CML) is a statically-typed higher-order concurrent language that is embedded
in Standard ML. Its most notable feature dirst-class synchronous operatignshich allow pro-
grammers to encapsulate complicated communication and synchronization protocols as first-class
abstractions. This feature encourages a modular style of programming, where the actual underlying
channels used to communicate with a given thread are hidden behind data and type abstraction.

While CML has been in active use for well over a decade, little attention has been paid to
optimizing CML programs. In this paper, we present a new program analysis for statically-typed
higher-order concurrent languages that is a significant step toward optimization of CML. Our tech-
nigue is modulari(e., it analyses and optimizes a single unit of abstraction at a time), which plays to
the modular style of many CML programs. The analysis consists of two major components: the first
is a type-sensitive control-flow analysis that uses the program'’s type-abstractions to compute more
precise results. We then construct a control-flow graph from the results of the CFA and analyze the
flow of known channel values using the graph. Our analysis is designed to detect special patterns of
use, such as one-shot channels, fan-in channels, and fan-out channels. These special patterns can be
exploited by using more efficient implementations of channel primitives. We show that our analysis
is correct.



1 Introduction

Concurrent ML (CML) [Rep91, Rep99] is a statically-typed higher-order concurrent language that
is embedded in Standard ML [MTHM97]. CML extends SML with synchronous message pass-
ing over typed channels and a novel abstraction mechanism, daédlass synchronous op-
erations for building synchronization and communication abstractions. This mechanism allows
programmers to encapsulate complicated communication and synchronization protocols as first-
class abstractions, which encourages a modular style of programming, where the actual underly-
ing channels used to communicate with a given thread are hidden behind data and type abstrac-
tion. CML has been used successfully in a number of systems, including a multithreaded GUI
toolkit [GR93], a distributed tuple-space implementation [Rep99], and a system for implementing
partitioned applications in a distributed setting [Y¥Y®L]. The design of CML has inspired many
implementations of CML-style concurrency primitives in other languages. These include other im-
plementations of SML [MLt], other dialects of ML [Ler00], other functional languages, such as
HASKELL [Rus01], HEME [FF04], our own MdoBY language [FR99], and other high-level lan-
guages, such ag\iA [Dem97].

While CML has been in active use for well over a decade, little attention has been paid to opti-
mizing CML programs. In this paper, we present a new program analysis for statically-typed higher-
order concurrent languages that is a significant step toward optimization of CML. Our technique is
modular {.e., it analyses and optimizes a single unit of abstraction at a time), which plays to the
modular style of many CML programs. The analysis consists of two major components. The firstis
a new twist on traditional control-flow analysis (CFA) that we tgtle-sensitiv€FA [Rep05]. This
analysis is a modular 0-CFA that tracks values of abstract iypetypes defined in the module that
are abstract outside the module) that escape “into the wild.” Because of type abstraction, we known
that any value of an abstract type that comes in from the wild must have previously escaped from
the module. The second component is a data-flow analysis that uses an extended control-flow graph
(CFG) constructed from the result of the CFA. This extended CFG has extra edges to represent pro-
cess creation, values communicated by message-passing, and values communicated via the outside
world (a.k.a. the wild). Our analysis computes an approximation of the number of processes that
send or receive messages on the channel, as well as an approximation of the number of messages
sent on the channel. This information allows us to detect special patterns of use (or topologies),
such as one-shot channels, fan-in channels, and fan-out channels. These special patterns can then
be exploited by using more efficient implementations of channel primitives.

The paper has the following organization. In the next section, we discuss various specialized
versions of channel operations. We also present an example of a prototypical server as is found in
many CML applications and use it to illustrate the opportunities for specialized communication. In
Section 3, we define the small concurrent language that we use to present our analysis and we give
a dynamic semantics for it. This semantics has the property that it explicitly tracks the execution
history of individual processes; we use these execution histories to characterize the dynamic prop-



erties of channels that must be guaranteed to safely use the specialized forms. The main technical
content of the paper is the presentation of our analysis, which we break up into five sections. In
Section 4, we present the type-sensitive CFA for our language. The full details of our algorithm
is presented in Section A. This analysis is defined for a single unit of abstraction (e.g., module)
and its result allows us to characterize a subset of the defined chanreisvas channelsi.e.,
channels whose send and receive sites are all statically known. We then present the construction of
the extended CFG in Section 5. The edges in this graph are labeled with the set of known channels
that are live across the edge. In Section 6, we describe the analysis of the CFG that results in an
approximation of the module’s communication topology and the static properties that allow safe
specialization of communication primitives. The correctness of our analysis is proved In Section 7.
The full details of proof is presented in Section B. We then revisit the example from Section 2 and
present the extended CFG for the example and its analysis. We discuss related work in Section 9
and the implementation status and future work in Section 10. Finally we conclude in Section 11.

2 Specialization of communication primitives

The underlying protocols used to implement CML’s communication and synchronization primitives
(e.g, channels) are necessarily general, since they must function correctly and fairly in arbitrary
contexts. In practice, most uses of these primitives fall into one of a number of common patterns
that may be amenable to more efficient implementation. As is often the case, the hard part of this
optimization technique is developing an effective, but efficient, analysis that identifies when it is
safe to specialize.

CML’s design emphasizes a modular programming style based on user-defined concurrency
abstractions. While the motivation for this programming style is to promote more robust software,
it also allows modular analysis algorithms to compute high-quality information which can enable
useful optimizations. In particular, the abstraction provided by user-defined communication mech-
anisms allows our modular analysis to effectively determine the communication topology which
describes how threads communicate with each other on channels. In this section, we explain how
specific communication topologies can lead to more efficient implementation and discuss the prob-
lem of determining such topologies via static program analysis.

2.1 Specialized channel operations

In general, a CML channel must support communication involving multiple sending and receiving
processes transmitting multiple messages in arbitrary contexts. This generality requires a compli-



cated protocol to implement with commiserate overhed&kcause of this generality, the protocol
used to implement channel communication involves locking overhead. In practice, however, many
(if not most) channels are used in restricted ways, such as for point-to-point and single message
communication. Assuming that the basic communication primitive is a buffered channel, then we
consider the following possible communication topologies:

number of
senders receivers messagestopology
<1 <1 <1 one-shot
<1 <1 >1 point-to-point
<1 >1 >1 one-to-many (fan-out)
>1 <1 >1 many-to-one (fan-in)
>1 >1 >1 many-to-many

In this table, the notation-1 denotes the possibility that more than one thread or message may be
involved and the notatiod 1 denotes that at most one thread or message is involved. For example, a
point-to-point topology involves arbitrary numbers of messages, but at most one sender and receiver.
An analysis issafeif whenever it approximates the number of messages of thread$,aken that
property holds for all possible executions. It is always safe to return an approximatien of

We believe that specialized implementations of channel operations (and possibly channel repre-
sentations) can have a significant impact on communication overhead. For example, CML provides
I-variables which are a form of synchronous memory that supports write-once semantics [ANP89].
Using I-variables in place of channels for one-shot communications can reduce synchronization and
communication costs by 35% [Rep99]. Demaine [Dem98] proposes a dead-lock free protocol for
the efficient implementation of a generalized alternative construct, where fan-out and fan-in chan-
nel operations can be implemented with fewer message cycles per user-level communication than
many-to-many channel operations. Thus, we expect these specialized channel operations can be
implemented more efficiently for distributed or multithreaded implementations.

While programmers could apply these optimizations by hand, doing so would complicate the
programming model and lead to less reliable software. Furthermore, correctness of the protocol
depends on the properties of the chosen primitives. Changes to the protocol may require changes in
the choice of primitives, which makes the protocol harder to maintain. For these reasons, we believe
that an automatic optimization technigue based on program analysis and compiler transformations
iS necessary.

!Chapter 10 ofConcurrent Programming in Midescribes CML’s implementation, while Knabe has described a
similar protocol in a distributed setting [Kna92].



2.2 Anexample

To illustrate how the analysis and optimization might proceed, consider the simple service imple-
mented in Figure 2.

Thenew function creates a new instance of the service by allocating a new channel and spawn-
ing a new server thread to handle requests on the channel. The representation of the service is the
request channel, but it is presented as an abstract typecdalhe function sends a request to a
given instance of the service. The request message consists of the request and a fresh channel for
the reply. Because the connection to the service is represented as an abstract type, we know that
even though it escapes out of tBeEnpleServ  module, it cannot be directly accessed by unknown
code. Figure 2 illustrates the data-flow of the service’s request channel. Specifically, we observe the
following facts:

e For a given instance of the service, the request channel has a many-to-one (or fan-in) com-
munication pattern.

e For a given client request, the reply channel is used at most once and has a one-to-one (or
one-shot) communication pattern.

We can exploit these facts to specialize the communication operations, which results in the opti-
mized version of the service shown in Figure 3. We have highlighted the specialized code and have
assumed the existence of a modiBlnin that implements channels specialized for the many-to-
one pattern and a modu@neShot that is specialized for one-shot channels.

Because of the signature ascription, we know all of the send and receive sites ¢br el
replCh channels, but if we added the function

fun reveal (S ch) = ch

to the service’s interface, then the above transformation would no longer be safe, since clients could
use theeveal function to gain direct access to the server’s request channel and use it to send and
receive messages in ways not supported by the specialized channels.

The technical challenge is to develop program analyses that can detect the patterns described in
Section 2.1 automatically when they are present, but also recognize the situation where access to the
channel is not limited (as with threveal function). Other issues that the analysis must address is
distinguishing between multiple threads that are created at the same spawn point. For example, say
we have

2To keep the example concise, we use direct operations on channels instead of CML’s event operations, but the
analysis handles event values without difficulty.



signature SIMPLE_SERV =
sig
type serv
val new : unit -> serv

val call : (serv * int) -> int
end

structure
struct

datatype serv =

SimpleServ :> SIMPLE_SERV =

S of (int * int chan) chan

fun new () = let

val ch = channel()
fun server v = et
val (req, replCh) = recv ch
in
send(replCh, v);
server req
end
in
spawn (server 0);
S ch
end

fun call (S ch, v)

val replCh
in

let
channel()

send (ch, (v, replCh));
recv replCh
end
end

Figure 1: A simple service with an abstract client-server protocol



val (req, replCh) = rec¥®
in
send(replCh, v);
server req
end

N /

/
\ Unknown

clients fun call ((S ch), v) = let

al replCh = channel()

in

send ( , (v, replCh));
recv replCh

end

,
\

Figure 2: Data-flow of the server’s request channel

fun twice f = (f(); f()
and we create two servers sharing a common request channel using the code
twice ( fn () => spawn(server 0));

Then our analysis should detect that the request chatinil not a fan-in channel. Note, however,
thatreplCh is still a one-shot channel.

3 A concurrent language

We present our algorithm in the context of a small statically-typed concurrent language. This lan-
guage is a monomorphic subset of Core SML [MTHM97] with explicit types and concurrency
primitives. Standard ML and other ML-like languages use modules to organize code and signature
ascription to define abstraction. For this paper, we usalisg/pedeclaration to define abstractions

in lieu of modules. We further simplify this declaration form to only have a single data constructor.
Figure 4 gives the abstract syntax for this simple language. A progrisna sequence of zero or



structure SimpleServ :> SIMPLE_SERV =
struct
datatype  serv
= S of (int * int OneShot.chan) Fanin.chan

fun new () = let
val ch = |Fanin.channel() ‘
fun server v = et
val (req, replCh) = [Fanin.recv ch |
in

] OneShot.send(repICh, v); \
Server req
end

in
spawn (server 0);
S ch

end

fun call (S ch, v)
val replCh
in

let
| OneShot.channel() |

Fanin.send (ch, (v, replCh)); |

OneShotrecv replCh |
end

end

Figure 3: A version of Figure 1 with specialized communication operations

moreabstypedeclarations followed by an expression. The analysis that we present below is modu-
lar and works on eacibstypedeclaration {) independently. Eachbstypedefinition defines a new
abstract type®’) and corresponding data constructof) @nd a collection of functionsfg;). Out-

side theabstypedeclaration, the typ& is abstracti(e., the data constructdr' is not in scope). The
sequential expression forms include let-bindings, nested function bindings, function application,
data-constructor application and deconstrucfiamd pair construction and projection. In addition,

there are four concurrent expression forms: channel definition, process spawning, message sending,
and message receiving. Types include abstract typgsfiinction types, pair types, and channel
types. Abstract types are either predefined typag, Unit , int , bool , etc) or are defined by an
abstypedeclaration.

This language does not include CML'’s event types or the corresponding event combinators, but
based on experience with our prototype implementation, we believe that it is fairly straightforward

%In a language with sum types, deconstruction would be replaced by a case expression.



p u= e

| dp
d == abstypeTl = D of r with fb; --- fb, end
fb == fun f(x) = e
e x

| o

| letx = e; ineg

|  fun f(x) = e;in e
’ €1 €9

| De

| let Dz = ejiney

| (e1, e2)

|  #ie  wherei € {1,2}
| chancine

| spawne

| send(ey, e2)

| recve

=T

| T — T2

’ T1 X T2

| chant

Figure 4: A simple concurrent language

to add these to the analysis framework, so we omit them to keep the presentation more compact.

We assume that variables, abstract-type names, and data-constructor names are globally unique.
We also assume that variables and constructors are annotated with their type. We omit this type
information most of the time for the sake of brevity, but, when necessary, we write it as a superscript
(e.g, 7). One should think of this language as a compiler’s intermediate representation following
typechecking.

We use L\AR to denote the set of variables defined in the programasid denote variables
defined elsewhere, anda¥ = LVAR U GVAR for all variables defined or mentioned in the pro-
gram. We denote the known function identifiers byN¥D C LVAR (i.e,, those variables that are
defined by function bindings) and the known channel identifiers By\dD C LVAR (i.e, those
variables that are defined by channel bindings). The settA is the set of abstract type names and
DATACON is the set of data constructors.



3.1 Dynamic semantics

Following Colby [Col95], the semantics for our language tracks execution history on a per-process
basis. This information is necessary to characterize the dynamic usage of channelabSippe
declarations do not play ®&le in the dynamic semantics of the language, we think of a program as
a sequence of nested function bindings. For example,

abstype T' = D of T with

fun f (z) = &1
fun g (y) = e
end
€3

is treated as
fun f(z) = eginfun g (y) = ez ineg

In the dynamic semantics for our language, we represent the state of a computation as a tree,
where nodes are process states and edges represent transition from the parent to the child. Branches
in the tree represent process creations. For a given programe assume that each expression
in p is labeled with a unique program poiatc PROGPT. We writea : e to denote that is
the expression at program poimt Furthermore, we assume that for eacle PROGPT, there is
aa € PROGPT. Thea labels are not used to label expressions, but serve to distinguish between
parent and child threads in control paths.céntrol pathis a finite sequence of program points:
CTLPATH = PROGPT*. We user to denote an arbitrary control path and juxtaposition to denote
concatenation. We say that=< =’ if 7 is a prefix ofr’. Control paths are used to uniquely label
dynamic instances of channels, which we writer, wherec € CHANID. We also usé to denote
dynamic channel values, ard to denote all the dynaic channel values.

Evaluation of the sequential features of the language follows a standard small-step presentation
based on evaluation contexts [FF86]. We modify the syntax of expression terms to distinguish
valuesas follows:

| (fun () = o)
ok
| (v1, vo)

The unit value ¢) was already part of the syntax, but we add function values, dynamic channel
values, and pairs of values. With these definitions, we can define the sequential evaluation relation
e ~ €' by the rules in Figure 5. Evaluation contexts are defined in the standard call-by-value way:



letx =vine ~ elr— v
let Do = Dvine ~ e[z — v
fun f (z) = e;iney ~ eo[f — (fun f(z) = e1)]
(fun f(z) = e)v ~ e[f — (fun f(z) =€),z — ]
#i(v1, v2) ~

Figure 5: Sequential evaluation

E == []
| letx = Eine|let Dz = Eine
| FEe|l|vE|DE
| send(E, e) | send(v, E) | recv E
| (E,e)| (v, E) | #IE

We use these below in the definition of concurrent evaluation.

For the semantics of concurrent evaluation, we represent the state of a computation as a tree,
where the nodes of the tree are labeled with expressions representing process states and edges are
labeled with the program point corresponding to the evaluation step taken from the parent to the
child. The leaves of the tree represent the current states of the processes in the computation. Because
a tree captures the history of the computation as well as its current state, we dedicé aNodes
in a trace are uniquely named by control paths that describe the path from the root to the node.
In defining traces, it is useful to view them as prefix-closed finite functions from control paths to
expressions. If is a trace, then we writer to denote the node one reaches by followinffom
the root, and ift.7 is a leaf oft, a is a program point, and an expression, thehU {ra — e} is
the trace with a child added tot.7 with the new edge labeled by, For a progranp, the initial
trace will be the mage — p}, wheree is the empty control path. Letbe a program and letbe
a channel identifier ip. For any tracg € Trace(p) andk = cQm occurring int, we define the
dynamic send and receive siteskods follows:

Sends¢(k) = {n|t.w = E[send(k, v)|}
Recvsi (k) = {n|t.m = Elrecv k|}

To record the communication history between the dynamic send and receive sites, we define the
communication history sl as follows:

H C {(m,k,m2) | m,m € CTLPATH, k € K}

where(ry, k, m9) € H if there is communication between the dynamic receiversitend send site
79 on channel instance.

10



We define concurrent evaluation as the smallest relationgatisfying the following four rules.
The first rule lifts sequential evaluation to traces.

tt=FEla:e|isaleaf e~ ¢
(t,H) = (tU{ma — E[¢'|}, H)

The second rule deals with channel creation.

t.m = Efa : chan c in €] is a leaf
(t,H) = (t U{ma — Ele[c — cQmal|}, H)

The third rule deals with process creation.

t.m = Fla : spawn €] is a leaf
(t,H) = (t U{ma+— Ele|,ma — e}, H)

The last rule deals with communication.
t.m = Eqfa; : recv k] is a leaf
t.my = Eslas : send(k, v)] is a leaf
(t,H) = (t U {71'1@1 — El[v],ﬂ'gag — EQ[O]},H U {(71'1,]{,71'2)})

The set of traces of a program represents all possible executions of the program. It is defined as

Trace(p) = {t | ({e = p},€) =" (t, H)}

3.2 Properties of traces

We say that has thesingle-sendeproperty if for anyt € Trace(p), k = c@Qn occurring int, and

m1,m2 € Sends;(k), eitherm; < mp or me < ;. The intuition here is that ifr; < 79 thenm is
beforemr, and the sends can not be concurrent. On the other handafd, are not related by

<, then they may be concurrehtNote that the single-sender property allows multiple processes
to send messages on a given channel, they are just not allowed to do it concurrently. Likewise, we
say thatc has thesingle-receivemproperty if for anyt € Trace(p), k = ¢Qn occurring int, and

71, T2 € Recvsy(k), eithermy < my or my < 1.

We can now state the special channel topologies from Section 2.1 as properties of the set of
traces of a program. For a channel identifiein a programp, we can classify its topology as
follows:

e The channet is aone-shotchannel if for anyt € Trace(p) andk = cQn occurring int,
|Sends; (k)| < 1.

“There may be other causal dependencies, such as synchronizations, that wouid arttérs, but our model does
not take these into account.

11



e The channet is point-to-pointif it has both the single-sender and single-receiver properties.

e The channet is afan-outchannel if it has the single-sender property, but not the single-
receiver.

e The channet is afan-in channel if it has the single-receiver property, but not the single-
sender.

Our analysis computes safe approximations of these properties, which we describe in Section 6.1.

4 Type-sensitive control-flow analysis for CML

The first step in our analysis istgpe-sensitiveontrol-flow analysis (CFA) [Rep05]. This analysis

is based on Serrano’s 0-CFA algorithm [Ser95], but has the additional property that it exploits type
abstraction, such as provided by ML signature ascriptioabstypedefinitions, to track escaping
values. The full details of our algorithm can be found in the appendix A; here we cover main ideas
of 0-CFA and those aspects of the analysis that are unique to our situation.

4.1 Introduction of 0-CFA

Traditional compiler optimization techniques require a knowledge of the control flow of programs.
Control flow analysis serves to construct such control flow graph for programs. Higher-order pro-
gramming languages (HOL) such as Scheme and ML, allow programs to take functions as first
class values, where functions can be passed as arguments to other functions and returned as results
from functions calls. Therefore, for HOL, control-flow and data-flow interdepend on each other; the
control-flow can not be be determined from the program text at compile time.

This fact makes optimization for higher-order languages harder than for first-order languages.
Shivers defines his control flow analysis for Scheme in [Shi88], called 0-CFA. Shivers’s algorithm
uses continuation passing style (CPS) as intermediate language. By CPS representation, all con-
trol transfers are represented by tail recursive function calls. Thus control-flow graph construction
reduces to determing the set of all functions that could be called from each call site. Note that in
Shivers’s analysis, a function is represented as a lambda/contour. His analysis computes a approx-
imation of that set by using a abstract interpretation. The analysis is called zeroth order control
flow analysis, because the approximation identifies all functions that have the same lambda expres-
sions. Although this approximation may introduce more control-flow edges than exist at runtime,
it is safe; that is, any control-flow edge at runtime is included in the control-flow graph. Serrano’s
0-CFA adapts Shivers’ analysis to deal with the full Scheme language, which is direct style instead
of CPS. The analysis also statically computes an approximation of the set of functions that could be
called from each call site. Our analysis described below is based on Serrano’s algorithm.

12



4.2 Abstract values

Our analysis computes a mapping from variables to approximate values, which are given by the
following grammar:
v

v | e | (vg, ve)
| —_—

| chant | 71 — 7

49+

whereD € DATACON, F € 2FUNID (' ¢ 9CHANID ‘andT € ABSTY. We usel to denote undefined

or not yet computed value®) v for an approximate value constructed by applyindo v, (v1, ve)

for an approximate paitt’ for a set of known functions, and for a set of known channels. Our
analysis will only compute sets of functioésand sets of channels where all the members have the
same type (see [Rep05] for a proof of this property) and so we extend our type annotation syntax to
include such sets. In addition to the singe value found in most presentations of CFA, we have a
family of top valuest) indexed by type. The valu@represents an unknown value of typéwhere

7 is either a function or abstract type). The auxiliary funciién TYPE — VALUE maps types to

their corresponding top value:

U(unit) = .
UT) = T
UT — 1) = T =
U(r X 2) = U(T1), U(Tn))

Lastly, theT value is used to cutoff expansion of recursive types as described below.

We define thgoin of two approximate values as follows:

1Lvw = v

vV L =

oVe = °

DvyVDve = D(v;Vug)
(v1, v2) V (v, vh) = (v1 V v}, va V vh)

FVvF = FUF
cvc’ = cuc’
TVwv = T
vVT = T
TV = T
vVT = T

Note that this operation is not total, but it is defined for any two approximate values of the same

13



type and we show in [Rep05] that it preserves types. One technical complication is that we need to
keep our approximate values finite; we discuss this issue in the appendix.

4.3 Type-sensitive CFA

Our analysis algorithm computes a 4-tuple of approximatiohs: (V,C, R, 7T ), where

VAR — VALUE variable approximation

CHANID — VALUE channel message approximation

FUNID — VALUE  function-result approximation

ABSTY — VALUE  escaping abstract-value
approximation

NIax
M M M M

OurV approximation corresponds to Serrand'sTheC approximation is an approximation of the
messages sent on a given known channelRla@proximation records an approximation of function
results for each known function; this approximation is used in lieu of analyzing a function’s body
when the function is already being analysed and is needed to guarantee termination. WeZuse the
approximation to interpret abstract values of the fa@rm

Our algorithm follows the same basic structure as that of Serrano[Ser95], so we only cover
the major differences here. The appendix has the complete algorithm. One major difference is
the treatment of escaping values. In Serrano’s analysis (and any other modular CFA that we are
aware of), escaping values are treated conservatively. For example, the analysis assumes that any
escaping function can be called on any value, so the functions parameters are approximated as
T. For escaping channels, this would mean assuming arbitrary senders and receivers and arbitrary
messages, which would make modular analysis of typical CML modules, such as our example,
useless. To avoid this problem, our analysis tracks escaping values of abstract type by recording
them in the7 approximation. In turny is used to approximate values of abstract type that come in
from the wild.

The other major difference from Serrano’s algorithm is that our language has channels. Send
operations on channels are treated much the same way as function calls. If the approximation of
the first argument to a senddsand the second argumentisthen we add to the approximation
of message values sent on each chanrelC. We useC to track this information. The message
receive operation is treated much like a function entry, the possible values are taken frém the
approximation.

4.4 Properties

The analysis presented in the previous section allows one to compute certain static approximations
of the dynamic properties described in Section 3.2. Figure 6 gives the approximation of the send

14



Sen/dﬁes(c) _ { il'a | a:send(er, e2) €EpAce Aler)} :; Eis((;()C)
Rm%@) _ { g_a |a:recveepAce Ale)} :I Eflcs(cc()c)

Figure 6: Approximation of channel send and receive sites

and receive sites for a given channel. If the channel escapes (ddixated), then we user to
denote the set. A channel for which we know all of the send and receive sites is calhedva
channel

5 The extended CFG

With the information from the CFA in hand, the next step of our analysis is to construct an extended
control-flow graph (CFG) for the module that we are analyzing. We then use this extended CFG to
compute approximate trace fragments that can be used to analyse the topology of the program.

There is a node in the graph for each program point; in addition, there are is an entry and exit
node for each function definition. A node with a laletorresponds to the point in the program’s
execution where the next redux is labeled withThe graph has four kinds of edges. The first two
of these represent control flow, while the other two are used to trace the flow of channel values.

1. Control edgesepresent normal sequential control-flow.

2. Spawn edgeepresent process creation. If there is an expressiogpawn e andas is the
label of the first redux i, then there will be a spawn edge framto as.

3. Message edgeme added from send sites to known receiver sites.

4. Wild edgesare added to represent the potential flow of abstract values from functions in the
module to another.

The graph is constructed such that following a control edge @ a> corresponds to an edge

labeled witha; in a trace that leads to the trace node labeledbySimilarly, following a spawn
edge froma; to as corresponds ta; in a trace. More formally, the sets of nodes and edges are
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defined to be

n € NODE = PROGPTU (FUNID x {entry, exit})
EGLABEL = {ctl, spawn, msg, wild}
EDGE = NODE x EGLABEL x NODE
G € GRAPH = 2NODE , 9EpCE

The successors of a nodén a graphz are defined to b8ucci(n) = {n’ | (n,l,n’) is an edge irG}.

Constructing the CFG is done in three steps. First we create the basic graph with control and
spawn edges in the obvious way. One important point is that we use the results of the CFA to
determine the edges from call sites to known functions. Note that because we are only interested in
tracking known channels, which by definition cannot have escaped the module, we can ignore calls
to unknown functions when constructing the graph. Message edges are added in much the same
way as control edges for known function calls. ketsend(e;, e2) be a send in the program and
assume that the CFA computétlas the approximation af;. Then for each channel€ C and
a € Recv/S\ites(c), we add a send edge fromto o’ to the graph. We add wild edges from any site
where an abstract value escapes the module to any site where such a value can return from the wild.
And we add wild edges from any site where an abstract value escapes the module to any receive site
of unknown channels. Once we have constructed the graph, we use a liveness analysis to label the
edges with the set of known channels that are live across the edge. As described in the next section,
we use these edge labels to limit the scope of the analysis on a per-channel basis.

6 Analyzing the CFG

The final stage of our analysis involves using the CFG to determine the communication topology.
We do this analysis independently for each channel starting at the CFG node that corresponds to the
site where the channel is created. Because the analysis is concerned with only a single«cétannel

a time, we can ignore those parts of the graph whesenot live (essentially remove any edge that
does not contain in its label set). The analysis computes a finite nfaghat maps program points

to an approximation of the control paths that one follows to get to the program point.

P € PATHTO — PROGPT 1 oCTLPATH
where the set of abstract control paths is defined by the syntax
T = T
| miime
For an approximate control patfs we split the path into a process ID part before theahd a

path. The process ID can either be, ‘which is used to represent an unknown set of processes, or
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a path that uniquely identifies the process. We define an ordering abstract control paths as
follows: 71:m] C mo:mh if m = me @andny < «h. In other wordsy; C 7, if they are in the same
process and; is a prefix ofry. The following notation is used to project the process ID part from
an approximate control path:

—_—
Proc(x:mg) =
—_—
Proc(myma) = m

We lift Proc to sets of control paths in the standard wayAlis a set of approximate control paths,
then we define the number of distinct processed s follows:

NuEP\rocs(A) = 00 if*eﬁ&:(A)
NumProcs(A) = |[Proc(A4)| otherwise

The analysis of the CFG is defined by a pair of mutually recursive functions:

N§& @ NODE — CTLPATH — PATHTO — PATHTO
& : EDGE — CTLPATH — PATHTO — PATHTO

The definition of these functions can be found in Figure 7, wii@;g,?y ={a— 0| aec PROGPT}
is the finite map that assigns the empty path set to every program point. If a known chasnel
defined at : chan c in e, then we comput®, = N¢&[a]e:€ Pempty-

The V¢ function is defined based on the kind of graph node. For a function entry it follows
the unique control edge to the first program point of the function, for a function exit it computes
the union of the analysis for all outgoing edges. These edges will either be control edigesat
sites, whenf is a known function, or wild edges, whehis an escaping function. For program-
point nodes, we have three subcases. If the approximﬁiaﬁready contains a pathid:m ams
that precedeg and pid:m; € 13(a), then we have looped (the loop ds—m2—a) and can stop.

If the number of processes that can reach the program pasgreater than one, then we stop.
Otherwise, we record the visit toin P’ and compute the union over the outgoing edges.

The &G function is defined by cases on the edge kind. When the edge is a control edge, we
analyze the destination node passing the extendedmatiWhen the edge is a spawn edge, we
analyze the destination node passing a new process ID paired with the empty path. For message
edges, we analyze the receive site using the extended control path to send-site program point as a
new process ID. This choice of process ID distinguishes the send from other sends that target the
same receive sites, but in conflates multiple receive sites that are targets of the same send, which
is safe since only one receive site can actually receive the message. For wild edges, we analyze
the destination node using ‘as the process ID. This value represents the fact than any number of
threads might call the target of the wild edge with the same dynamic instance of the channel

SRecall that we are interested in channels that Isivglesenders or receivers.
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NE[(f entry)][7 P = N&[d]7 P whereSuceq(f, entry) = {a'}
NEI(f,exit)][g P = PuU U &z P
ecEdgeg(a)
N&[a]z P = P if 3pidimams € P(a) such that

pid:mame C 7 andpid:m € ﬁ(a).

= P if NumProcs(P(a)) > 2

= P'u U &lez P
ecEdgeg(a)

whereP’ = PU {a — P(a) U {7}}

E(a,ctln)]zP = N&[n]7a P
|7 P P

E&l(a, spawn, n) if 7=

58’[[(a? msg, n)]]%ﬁ — Né[[n *:GPj,-np\ty if % = X7

_ .
NEn]mimoa:e Pepyy  Otherwise andd = mry:mo

Eé[[(a,wild,n)]]%ﬁ = N&[n *:eP/emp\ty
Figure 7: Analyzing the CF@&/ for channelk

6.1 Static classification of channels

Once we have computel& for a known channet, we can statically classify the channel by exam-
ining P. First we define the approximate send and receive contextsa®follows:

S, = U P.(a)
aGSe@es(c)
R, = U Pua)

aERmes(c)

These are the static approximations of Se@ds andRecvs sets from Section 3.1. We say that a
known channet has thestatic single sendgresp static single receivgmproperty ifNumProcs(S,)
< 1 (resp. NumProcs(R.) < 1). The static classification of channels then follows the dynamic

classification from Section 3.1.
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If NumProcs(gc) < 1land Am,m € §C with 1 # 7 andm; C 7o, thenc is a one-shot
channel.

If ¢ has both the static single-sender and static single-receiver properties, then it is a point-to-
point channel.

If ¢ has the static single-sender property, but not the static single-receiver, therfiahigat
channel.

If ¢ has the static single-receiver property, but not the static single-sender, therfanisna
channel.

7 Algorithm Soundness

In this section, we show that the static classification of channels from Section 6 correctly follows
the dynamic classfication from Section 3.2, that is, Our analysis computes safe approximations of
the properties from Section 3.2. The full details about proof can be found in the appendix B; here
we cover the ideas underlying the proof. For our notation, wenf8eo denote the i-th program

point in from left, andx(~?) to denote the i-th program point infrom right. Letp be a program

and letc be a channel identifier ip.

Given any channel instandein tracet € Trace(p), the following definitions gives us the cir-

cumstance in which our analysis will be considered.

Definition 1 For any channel instanck in tracet € Trace(p), the live projection of trace on k
denoted by | is the forest created by removing all the nodes ftamwhich k£ dose not occur.

We sayr isint |y, if for any two adjacent nodes®, 7(i+1) occurring inx, there is a edge from
7@ to 7+ in ¢t |,. Note thate is in anyt |.

Definition 2 For any channel instancg in tracet € Trace(p), and control pathr in ¢, the live
projection ofr on k is denoted byr | s.t.

1)
w1 wherer = mam, aw(
= { 1 2071 1

m  otherwise

isnotint |z, andm isint |

Given any pathr in t € Trace(p), = may contain program points in the wild. However, our

CFG only consists of nodes with program points in the module. Then we use the following defini-
tions and lemma to relate paths in the CFG with paths in the trace.
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Given any pathr in t € T'race(p), the following definition ofPartition : PATH — PATH*
partitions ther into sub-paths which are in the module or in the wild.

Definition 3 For any pathr int € Trace(p), Partition(r) =< w1, T2, ..., T, >, Wherer;my...mp,
= = and for anyr; € Partition(rw), m; is the longest sub-path in s.t. the program points in;
are either all in the module or all in the wild.

Given any pathr in t € Trace(p) and Partition(r) =< 71,72, ..., Tm >, the following
definition of ApproxPath : PATH — PATH gives us the paths in our CFG corresponding to
m; € Partition ().

Definition 4

7 if all the program points inr are in the module

Approz Path(r) = { e if all the program points inr are in the wild

Given any trace of programp, channel instancg in ¢, and any pathr in ¢ |, the following
lemma shows that there is an approximation path in our CFG corresponding to the path.

Lemma 1 For any tracet € Trace(p), channel instance@x’, and any pathr in ¢ |.q,/, 37 =
ApproxPath (m1)...Approx Path(my,) € G., where< my, ..., m,, >=Partition(r)

Although Lemma 1 shows that there is a corresponding approximation path in our CFG, our
analysis algorithm starts from channel instance creation site. The following definition and lemma
show that there is an approximation path in our CFG starting from instance creation site and reaching
the corresponding approximation path; that is that our algorithm will traverse the corresponding
approximation path if needed.

Given any trace of program, channel instance in that trace, and any control path in that trace,
the following definition ofPath Hy, : PATH — PATH™ gives us the history in which channel in-
stancek goes through in trace For examplePathHy,(7) =< mp, mo >, this means from creation
site ofk the program follows path; reaching sendsite of some other channel, and over the channel
valuek is sent tory, andmy, is the live projection ofr on k.

Definition 5 For any tracet € Trace(p), channel instancé = cQz’, and control pathr €
Sends; (k) U Recvs,(k), letm = n"'7" wherer” = 7 |,

<> if 71_//(1) — 7.r/(—l)
PathHy,(n) = otherwise, wherer,, = "'z 7, =
LMLy Ty eeey Ty > , ’ , /(1)

(7TZ‘+17 ki—i—lyﬂ'i) €cHm= 5 lkﬂrl
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Given any trace of program, channel instance in that trace, and any control path in that trace,
the following lemma shows that there is an approximation path in our CFG corresponding to the
communication history of that control path, that is, our analysis algorithm will traverse the control
path if needed.

Lemma 2 For any tracet € Trace(p), channel instancé, and control pathr € Sends;(k) U
Recvs(k), 37 = mima...Tm € G, WherePathHy (1) =< 71, ooy T, >.

Although Lemma 2 shows that our analysis algorithm will traverse the approximation path
corresponding to the control path’'s communication history if needed, we still need to show that
our static classification of the channel holds the properties of all traces of the program. Theorem
OneShot Soundness shows that if there are more than one control path in some trace reaching to
the channel sendsite, then our analysis algorithm will not classify the channel as oneshot channel.
Theorem Single Sender (Receiver) Soundness shows that if there is more than one process which
sent(received) message over the channel instance, then our analysis algorithm will not classify the
channel as single sender(receiver) channel.

Theorem 3 ONE-SHOT SOUNDNESS R
If 3t € Trace(p) s.t. for any channel instane®r in ¢, |[Sends; (cQr)| > 2, thendmy, 73 € S s.t.

~

™ # Ty, Of Numcs(SC) > 2.

Theorem 4 SNGLE -SENDER SOUNDNESS
If 3t € T'race(p) and for any channel instane&r in ¢, 311, w3 € Sends;(cQ7r),

~

Proc(my) # Proc(ms), thenNuE-P\rocs(Sc) > 2.

Theorem 5 SNGLE -RECEIVER SOUNDNESS
If 3t € T'race(p) and for any channel instane&r in ¢, 37, T2 € Recvs,(cQr),

—

Proc(my) # Proc(ms), thenNuEP\rocs(Rc) > 2.

8 Analyzing the example

To understand the CFG construction and the intuition behind the analysis, we revisit the example
of Figure 1. We recast this example using the notation of our simple language (with a few syntactic

21



liberties) and include program-point labels.

a;: fun new () = (

as : chan ch in
as : fun server v = (
as : let (w', replCh") = recv ch in
as : send (replCh’, v);
ag : server w' )
in
ar: spawn ( ag: server 0);
ag : S Ch)
ajp: fun call (s, w) = (
ay : let S ch’ = s in
a1 : chan repICh in
a3 : send (ch, (w, replCh));
a4 : recv replCh)

The CFA for this example will produce the following information

Sen/dﬁes(ch) = {ais}
RecvSites(ch) = {a4}
SendSites(replCh ) = {as}
Rmes(replCh) = {aus}

Thus, bothch andreplCh are known channels. The CFG for this example is given in Figure 8.
We have labeled each edge with the set of known channels that are live across the edge.

There are three ways that a channel can be shared among multiple threads (and thus have mul-
tiple senders/receivers):

1. A process is spawned that has the channel in its closure. This is represented by the channel
being in the label of the spawn edge (ed,on the edge fronaz to ag).

2. The channel is sent in a message from one process to another. This is represented by the
channel being in the label of the message edge (epiCh on the edge fronas to a4).

3. The channel escapes into the wild and then returns as the argument to an exported function.
This is represented by the channel being in the label of a wild edge from the exit of one
function to the entry of another (e.gh on the edge from the exit afew to the entry of
call ).
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Figure 8: The CFG for the example
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{ch, replCh}

{ch, replCh}

D=0
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{ch, replCh}

Figure 9: The sub-CFG faeplCh

.

When analyzing the usage pattern of the channels created at a given site, we restrict ourselves to
the subset of the graph where the channel actually flows. For example, when analyzing the use of
repICh (created ati;5), we restrict the analysis to the subgraph in Figure 9. Notice that although
replCh is received by the server in its loop, the fact thgglCh is not live after noders means

that we do not analyze the loop in this case and thus we avoid confusing different instances of
replCh  with each other. ComputinGrepich = NP [aya]e:e Ponpry results in

Pepicn (a12) = {ee}
Pepich (a13) = {earn}
Prepich (a11) = {eaiaz)}
ﬁrepICh (a4) {a120a713:€}
Prepich (as5) = {ai2a1z:as}

From this information, we see thagplCh is a one-shot channel.
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Pen(ag) = {ee}
Pn(as) = {eas}
ﬁch (a7) = {eazas}
P (ag) = {me}
P (ag) = {masg, magasasag}
ﬁch (a5) = {magaq, magasazagas}
Pen (ag) = {magaqas, magasasasagas}
Pen(ag) = {easasar}
Pen(a11) = {xe€}
Pen(ai2) = {xan}
Pen(a13) = {*xa11012}

Figure 10: Analysis result fazh

The analysis forch is more interesting, since it involves spawning, loops, and wild edges.
Applying the analysis algorithm to the relevant subgraph produces the approximation shown in
Figure 10.

wherer = asazar. From this approximation, we see that

Sen = {*xanai}
Rch = {W:ag, 7r:a8a4a5a6}

and thusch is a fan-in channel.

9 Related work

There are a number of papers that describe various program analyses for message-passing languages
such as CSP [Hoa78] and CML. These analyses can be organized by the techniques used. A num-
ber of researchers have used effect-based type systems to analyse the communication behavior of
message-passing programs. Nielson and Nielson developed an effects-based analysis for detecting
when programs written in a subset of CML hdimite topologyand thus can be mapped onto a

finite processor network [NN94]. Debbadti al. developed a type-based control-flow analysis for a

CML subset [DFT96], but did not propose any applications for their analysis.

In addition to being used as the basis for analysis algorithms, type systems have been proposed
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that can be used to specify and verify properties of protocols. For example, Vascoetcealos

have proposed a small message-passing language thaessam typewm describe the sequence of
operations in complex protocols [VRGO04]. While this approach is not a program analysis, session
types may be a useful way to represent behaviors in an analysis. In particular, the might provide an
alternative to our sets of approximate control paths.

There have also been a number of abstract interpretation-style analyses of concurrent languages
that are closer in style to the analysis we described in Section 4. Mercouroff designed and imple-
mented an abstract-interpretation style analysis for CSP programs [Mer91] based on an approxi-
mation of the number of messages sent between processes. While this analysis is one of the ear-
liest for message-passing programs, it is of limited utility for our purposes, since it is limited to a
very static language. Jagannathan and Weeks proposed an analysis for parsiRlErograms
that distinguishes memory accesses/updates by thread [JW94]. Unfortunately, their analysis is not
fine-grained enough for our problem since it collapses multiple threads that have the same spawn
point to a single approximate thread. Marinescu and Goldberg have developed a partial evaluation
technique for CSP [MG97]. Their algorithm can eliminate redundant synchronization, like Mer-
couroff's work, it is limited to programs with static structure. Martel and Gengler have developed a
control-flow analysis that determines an approximation of a CML program’s communication topol-
ogy [MGO00]. The analysis uses finite automata to approximate the synchronization behavior of a
thread and then extracts the topology from the product automata.

The closest work to ours is probably Colby’s abstract-interpretation for a subset of CML [Col95],
which analyses the communication topology of CML programs. His analysis is based on a seman-
tics that uses control pathisg, an execution trace) to identify threads. Unlike using spawn points to
identify threads (as in [JW94]), control paths distinguish multiple threads created at the same spawn
point, which is a necessary condition to understand the topology of a program. The method used to
abstract control-paths is left as a “tunable” parameter in his presentation, so it is not immediately
obvious how to use his approach to provide the information that we need. His analysis is also a
whole-program analysis.

10 Status and future work

We have implemented the type-sensitive CFA for a language that is slightly larger than the one in
the paper (it has tuples, basic values, conditionals, and a subset of the CML event combinators).
We are extending this implementation to include the CFG construction and analysis. The next
stage will be to extend the analysis to the full set of CML primitives and SML features, such
as modules, datatypes, and polymorphism (see [Rep05] for a discussion of the latter). We are also
implementing multi-threaded communication protocols for CML. The next stage will be to measure
the performance benifit from specialized operations. Eventually, we plan to implement the analysis
and optimization as a source-to-source tool for optimizing CML modules.
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Another dimension of interest is whether a channel is used in choice contexts, since there is
additional overhead in the implementation of channels to support fairness and negative acknowl-
edgments in choice contexts. A channel that is not used in choice contexts can have a simpler, and
more efficient, implementation. In the future, we plan to extend our analysis to specialize this kind
of channel operations.

11 Conclusion

We have presented a new analysis technique for analyzing concurrent languages that use message
passing, such as CML. Our technique is designed to be applied on individual units of abstraction
(e.g, modules). For a given module it determines an approximation of the communication topology
for the channels defined in the module. We have shown how this information can be used to replace
general-purpose channel operations with more specialized ones.

The analysis consists of two major components. The first is a new variation of control-flow
analysis that we caliype-sensitiveCFA. The type sensitivity of the analysis is what allows us to
effectively analyze modules independently of their use. The second component of the analysis uses
a CFG constructed from the CFA results to approximate the numbers of messages and processes
involved in communicating with known channels.

We have presented the analysis for a simple concurrent language, but we expect that it will
be straightforward to extend to richer languages. The analysis may also be useful for statically
detecting other properties of concurrent programg,(deadlock), but we have not explored this
direction yet.
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A The type-sensitive CFA algorithm

In this appendix, we present the details of our type-sensitive CFA algorithm. For our notation, we
use SML syntax extended with mathematical notation such as set operations, andgération
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on approximate values. We use the notafjejhto denote an object-language syntactic foriend
V[x — v] to denote the functional update of an approximation (likewisé¥@nd7).

One technical complication is that we need to keep our approximate values finite. For example,
consider the following pathological example:
abstype T’ = D of T with fun f () = Dz end

If we are not careful, our analysis might diverge computing ever larger approximatia@rf¥ @f )
as the result off. To avoid this problem, we define a limit on the depth of approximations for
recursive types as follows:

[Llp = L
SN T ifDeD
[D=Tv], = {D(Mm{p}) if D¢ D
[(v1, v2)]p = ([vilp. [valp)
[Flp = F
Clp = C
7lp = 7

whereD C DATACON is a set of constructors. We wrife| for [v];. We useT to cutoff the ex-

pansion of approximate values instead tthe approximation of escaping values of typenay not

be an accurate approximation of the nested values. This definition does not allow nested applica-
tions of the same constructor. For example, the analysis will be forced to approximate the escaping
values of typel’ by D T in the above example.

Our unit of analysis is the abstype declaration. Our algorithm analyses the function definitions
in the declaration repeatedly until a fixed-point is reached. The initial approximation map local
variables, function results, and abstract types t@and map global variables and external types to
unknown values.
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fun cfa [abstypeT = D of 7 with fb; --- fb, end] = let

fun iterate Ay = let
val A; = cfaFB ( Aoy, [b;)
val An = cfaFB ( Anfll fbn)
in
if (A # Ay)

then iterate A,

else A
end

let V = {z — L| x € LVAR}
U {z — U(r) | 27 € GVAR}

let C = {c¢c — L] ce€ CHANID}
let R = {f— L] feFunNID}
let 7T ={Tw~—1}U{S— S|Se(ABsTY\{T})}
in
iterate ( V, C, R, T)
end

ThecfaFB function analyses a function binding in the abstype declaration by “applying” the
function to the top value of the function’s argument type. The result is then recorded as escaping.

fun cfaFB ( A, [fun f(z7) = ¢]) = let
val (A, v) = applyFun ( {}, A, f, U(1))
in
escape ( {}, A, v)
end

The applyFun function analyses the application of a known functiprio an approximate
valuev. The first argument tapplyFun is a sefM € 2FUN' of known functions that are currently
being analysed; if is in this set, then we use the approximat®nnstead of recursively analyzing
the f’s body. This mechanism is necessary to guarantee termination when analyzing recursive
functions. We assume the existence of the funchimingOf  that maps known function names
to their bindings in the source.
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fun applyFun ( M, A as (V, C, R, 7), f, v) =
if feM
then (A, R(f))
else let
val [fun f (z) = €] = bindingOf ()
val vV = V[z— [V(z)Vv]]
val (1 V, C, R, T), r) =
cfaExp ( MU{f}, (V, C, R, T), I[e])
val R = R[f — [R(f)Vr]
in
(v, ¢, R, T), 1)
end

The escape function records the fact that a value escapes into the wild. If the value has an
abstract type, then it is added to the approximation of wild values for the type; if it is a set of known
functions, then we apply them to the appropriate top value; and if it is a tuple, we record that its
subcomponents are escaping. Hseape function also takes the set of currently active functions
as its first argument.

fun escape (, ( V, C, R, 7), Dv) =
(V, R, T[T+~ [T(T)V Dvl))
| escape ( M, A, F) = let
fun esc ( f — ™2, A) = let
val ( A, v) = applyFun( M, A, f, U(n))
in A end
in
fold esc A F
end
| escape ( M, (V, C, R, 7), C) = let
fun esc ( ¢, C) = Clec— [C(c)VT]]
in
(V, fold esc cC R, T
end
| escape ( M, A, (v, vq)) = let
val A = escape ( M, A, 1)
val A = escape ( M, A, wv)
in A end
| escape (_, A v) = A

Expressions are analysed by #faExp function, whose code is given in Figure 11 and Fig-
ure 12.

This function takes the set of active functions, an approximation triple, and an syntactic expres-
sion as arguments and returns updated approximations and a value that approximates the result of
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fun cfaExp ( M, A as (V, C, R, T), [z]) =
if € FUNID orelse x € CHANID
then (A, {z})
else (A, V(x))
cfaExp ( M, A, [o]) = o
cfaExp ( M, A, [letz = e;ineg]) = let
val (( V, R, 7), v) =cfaExp ( M, A, [ei])
val V = V[z— [V(z)Vuv]]
in

cfaExp ( M, (V, R, T), [e2])
end
cfaExp ( M, A, [fun f(z) = e;ines]) =
cfaExp ( M, A, [ez2])

| cfaExp ( M, A, [e;es]) = let
val (A, v) =cfaBExp ( M, A, [ei])
val (A, w) = cfaBExp ( M, A, [ez2])
in
apply ( M, A, v, v2)
end
| cfaExp ( M, A, [De]) = let

val ( A, v) = cfaExpz M, A, [e])
in
(A, Dv)
end
| cfaExp ( M, A, [let Dz = e;ines]) = let
val (( V, R, 7T), v) =cfaExp ( M, A, [ei])
val V = decon (V, 7, [Dz], v)
in
cfaExp ( M, (V, R, T), [e2])
end

Figure 11: CFA for expressions Part |
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cfaExp ( M, A, [(e1, ed)]) =

val ( A, wv1) = cfaExp ( M A [ei])
val (A, wv) =cfaBxp ( M, A, [ez2])
in

(A, (v1, v2))
end

cfaExp ( M, A, [#ie]) = let
val (A, (vi,...,v,)) = cfaBxp ( M, A, [e])
in
(A w)
end
cfaExp ( M, A, [chancine]) =
cfaExp( M, A, [e])
cfaExp ( M, A, [spawne]) = (
cfaExp( M, A, [e]); o)

cfaExp ( M, A, [send(er, e2)]) = let

val ( A w) = claBxp ( M, A [e])
val (A, ) = cfaBExp ( M, A, [e2])
in

send ( M, A, vy, v9)
end

cfaExp ( M, A, [recve]) = let
val (A, v) = cfaExp ( M, A, [e])
in
receive (A, v)
end

Figure 12: CFA for expressions Part I
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the expression. For function applications, we usegiiy@ly helper function (discussed below) and
for value deconstruction, we use tbecon helper function, which handles the deconstruction of
approximate values and their binding to variables. When the value is unkrhewfﬂ, then we use
the7 approximation to determine the value being deconstructed.

fun decon ( V, 7, [Cz], Cv) = Vx> [V(z)V]]]
| decon ( Vv, T, [C™Tz], T) = (case T(T)
of T => Y[z [V(z)VU(T)]]
| v => decon( V, 7, [Cz], v)
(* end case *))

Theapply function records the fact that an approximate function value is being applied to a
approximate argument. When the approximation is a set of known functions, then we apply each
function in the set to the argument compute the join of the results. When the function is unknown
(i.e., a top value), then the argument is marked as escaping and the result is the top value for the
function’s range.

fun apply ( M, A, F, arg) = let
fun applyf ( f, (A, 7es)) = let
val ( A, v) = applyFun ( M, A, f, arg)
in
(A, resVw)
end
in
fold applyf ( Vv, 7) F
end
| apply ( M, A, 7 — 7, v) = let
val A = escape( M, A, v)
in
(A, )
end

Thesend function is used to analyse message-send operations.

funsend ( M, (V, C, R, T7), C, v) = let
fun esc (¢, C) = Cle— [C(c)Vv]]
in
(( v, fold esc CC, R, T), o
end
| send ( M, A, _, v) = (escape ( M, A, v), o)

Thereceive function is used to analyse message-receive operations. If the approximation of the
channel is a set of known channe(s)( then the approximation of the received message is the join
of the approximations of the messages sent on all the chann@ls in
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fun receive ((  V, C, R, T), C) = Veec Cle)
| receive ( A, v) = 7T

B Algorithm Soundness

In this appendix, we present the details of the correctness proof for our analysis.

Lemma 1 For any trace € Trace(p), channel instance@r’, and any pathr in ¢t | .a,/, I7 =
ApproxPath (m)...Approx Path(m,,) € G., Where< 1, ..., T >=Partition(m)

Proof: < 7y, ...,y >= Partition(n) = mme...Tpy =7

First we show that for each;, 37, = ApproxPath(w;) € é\c If ApproxzPath(m;) = ¢, then

all the program points are in the wild. And the 'wild’ edge in our CFG collapses all the pro-
gram points in the wild. So, ifApprozPath(m;) = €, 37; = ApproxPath(w;) € Ge. |If
ApproxPath(m;) = m;, then all the program points are in the module. And according to our
CFG construction, it is obviousim; = ApprozPath(m;) € C/}\c Then we need to show that
It = ApprozPath(m)...Approx Path(my,) € C/}\c We’'ll prove by induction of the number of the
elements inPartition(r)

Basis :| Partition(m)| = 1 showed above

Induction step:

Assume whenPartition(n)| = n — 1, 37 = ApproxPath(m) ... ApproxPath(m,—1) € G..
When |Partition(w)| = n, there must ber; € Partition(r), s.t. ApproxPath(m;) = €. And
from assumption, for path...m;—; andmy;...m,, JApproxPath(m)...ApproxPath(m—1) €

G., IApprozPath (mit1)...Approx Path(m,) € G.. Since ApproxzPath(m;) = €, we have
that channel ¢ escapes from_; to the wild and come from the wild inta;, ;. According to

our CFG construction, we have wild edge betweemproz Path(m)... ApproxPath(m;—1) and
ApproxPath(my1)...ApproxPath(my,), hencedr € G.

Lemma 2 For any trace € Trace(p), channel instancé, and control pathr € Sends:(k) U
Recvs(k), 37 = mima... T € (/}\C wherePathHy, () =< 71, ooy T, >.

Proof: Prove by induction of the number of elementsinth Hy ().

Basis:|PathHy,(m)| = 1. This is showed by Lemma 1.

Induction step: Assume for any control patts.t. | PathHy,(7)| =n — 1,37 = 7. 7m9... Th_1 €
C?C, wherePathHy, () =< 71, ..., Tn—1 >. Now consider any control paths.t. | Path Hy ()| =
n. Let PathHy,(w) =< m,m,...,Th—1,T, >. From Lemma 1, we know that for eaehy €
PathHy(m), 3m; € C/l\c From Path Hy. definition, we haver™Y . send(kn,v),ﬂ}(«}) : recv ky,

n—1

for some channel instande, and valuev. According to our CFG construction, thererissg or

wild edge connecting,, 1) and7,. By induction, we haveér;. m...1,—1 € G.. So we have

37 =TT € Ge.
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Lemma 6 For any tracet € Trace(p), channel instancé in ¢, and any control pathry, m €
Sends; (k) U Recvs(k), if m1 # mo thenPathHy,(m1) # PathHy ().

Proof: This is obvious from dynamic semantics on Section 3.1.

Theorem 3 ONE-SHOT SOUNDNESS R

If 3t € Trace(p) s.t. for any channel instane@r in ¢, [Sends;(c@Qn)| > 2, then3ry, 7 € S. and
T # T2, OrNumProcs(S ) > 2.

Proof: Letmy, m € Sendst(c@ﬂ') m # 7o and

PathHy,(m)=< 7r/1,7r/2,. m > PathHy,(ma)=< 7T/1/,7r/2/,. . ;;
We'll prove in in the foIIowing cases.

a) Consrdem1 T, 7r/1/ ”

From Lemma2, we havel... -

&
Ty T € Se

>

e PatHTo(xr\™ V), 7.7 e PaTHTO(x, V). Som... .,

m

b) Condiserr,...7,,, = 7} ...7
From Lemma 6, we have, ...r,, # T, ...m, . S0 there must be some program pointjror ; that
is in the wild. According to our algorithm, there must be someandx : w3 € S.. So we have

NuEP\rocs(S )>2

Theorem 4 SNGLE -SENDER SOUNDNESS

If 3t € Trace(p) and for any channel instane@r in ¢, 3mp, w9 € Sends;(cQ7),
Proc(m1) # Proc(ms), thenNu;P\rocs(S ) > 2.

Proof: Let

PathHy(m)=< 71'/1, 7r/2, ey Ty > PathHy,(m)=< 71'1,, 71'2, .
We'll prove in the foIIowing cases.

a) Considerr,, = 7,

Fromw;n = 7r,/;, We have thaﬁ;gl), m’;(l) must be receive sites for some channel instance.

If there is program point in,,, or 7, is in the wild, then according to our algorithm, there must be
«:m3 € S, SONUEP\rocs(S ) > 2.

So we onIy need to consrder all program porntsq,p andw are in the module.

//
7n

>

l/

If 7y, # .. then we have1 1 7r’1’ Accordlng to our aIgonthm;r'1 I
€ Proc(PATHTO( (1))) 7r1 "€ Proc(PATHTO(ﬂn( ))) T, = T SONumcs(g) > 2
If .. ,’n = 7} ..m, then as proved above, there must:be Proc(PATHTo(ﬂ 1))) or x €

%(Pﬁo(wé ))) So we havélumProcs(S,) > 2
b) Considerr,, #
If there is program point ir; or 7 is in the wild, then according to our algorithm, there must be
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somers and : 73 € S.. SONumProcs(S,) > 2.
1)If mfll), nn(l) are both receive sites.
From Lemma 6, we know that,...m, , # =, ...m, ,. And because there is no program point in

—
1"

the wild, sor,...1.._ # 7m,...x" ;. So we haveNumProcs(S,) > 2.

2)If ﬂ;,(bl) = 77;;(1) =71,

Then|PathHy(m )| = |PathHy(m2)| = 1(reaching from channel instance creation site). Sup-
poseProc(m) = nr, Proc(ms) = 7", thenProc(7) = 7, Proc(73) = «". Becauser # ",

we haveNumcs(SA’c) > 2.

I i = 71, while m, ! is a receive site.

Supposer; = r%. Then there exists some', 72 such thatr’ar! : 72 € PaTHTO(xS ). Be-
causen is a not spawn siter’ar! ¢ Proc(PATHTO(r\ ™ ")). SoNumProcs(S,) > 2.

Theorem 5 SNGLE -RECEIVER SOUNDNESS
If 3t € Trace(p) and for any channel instane@ in ¢, 3y, w2 € Recvs;(cQmr),

Proc(my) # Proc(ms), thenNuEP\rocs(Rc) > 2.
Proof: This is similar to the proof of Theorem 4.
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