
THE UNIVERSITY OF CHICAGO

DRAFT: DATA PARALLELISM IN MANTICORE

A PAPER SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

ADAM SHAW

CHICAGO, ILLINOIS

JULY 2007

ABSTRACT

Parallel hardware is becoming increasingly widespread. Modern game consoles are

multicore vector machines, and a growing percentage of desktop computers are parallel

machines as well. These machines support parallelism at multiple granularities, from

SIMD to multiple processors.

At the same time, parallel abstractions are already a common desideratum in software.

In individual systems we have had to make do with concurrency in place of parallelism,

so we could at least simulate simultaneous computations in a given program. But

with the recent rise of parallel hardware, applications are now in a position to exploit

multiple granularities of true parallelism.

As an example, consider a parallel ray tracer consisting of a GUI for user interaction

sitting on top of an ray-tracing layer that does as much of its work in parallel as

possible. Such an application would be conveniently expressed with threads at the

user interface layer and data parallelism at the image processing layer.

The Manticore programming language is designed to support applications of this gen-

eral shape. That is, it is designed to bring together the various parallel abstractions

of software and the heterogeneous parallel elements of hardware.

Manticore is a strict, type-safe, mostly pure functional programming language built

around a pared-down core of SML ’97 that omits stateful computations. Explicit

nested data parallel constructs in the style of NESL and its successors are layered

on top of this substrate for high-level parallel programs. We also include parallel

concurrency abstractions inspired by CML for explicit management of parallel com-

putations.

We address implementational issues, focusing on how parallel constructs are compiled

with the flattening transformation to realize parallel performance benefits. We also

ii

iii

formalize a sequential semantics of the language and consider some subtleties related

to respecting it in a parallel implementation.

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF FIGURES . vii

Chapter

1 INTRODUCTION . 1

2 LANGUAGE FEATURES . 3

2.1 Parallel Arrays . 4

2.2 Parallel Comprehensions . 6

2.3 Parallel Ranges . 7

2.4 Parallel Tuples . 8

2.5 Parallel Bindings . 10

2.5.1 Futures . 10

2.5.2 Parallel Evaluation Semantics 12

2.5.3 Sequential Semantics . 13

2.5.4 Remarks . 13

2.6 Parallel Choice . 16

2.7 Exceptions . 18

2.8 Remarks . 19

3 APPLICATIONS OF MANTICORE . 22

3.1 Parallel Tuples for Parallel Searches 22

3.2 Some Operations on Matrices . 23

iv

v

3.2.1 Dense Matrix Transposition 23

3.2.2 Sparse Vector Matrix Multiplication 24

3.3 Quicksort . 24

3.4 Selecting the Distinct Elements of an Array 25

3.5 Image Transformations . 27

3.5.1 Minification . 27

3.5.2 Image Compression . 29

3.5.3 The Mandelbrot Set . 31

3.6 The Barnes-Hut force calculation algorithm 32

3.7 Google’s MapReduce . 34

4 COMPILING MANTICORE BY PROGRAM TRANSFORMATION . . . 36

4.1 The Flattening Transformation: An Overview 36

4.2 Ropes . 41

4.3 Exceptions . 43

4.3.1 Raising the Leftmost Exception 43

4.3.2 Handling Flattened Structures 45

4.3.3 Inadvertently Introducing Nontermination 48

4.4 Flattening Tuples . 49

4.4.1 Flattening Tuples, Formally 50

4.5 Fusion . 52

4.6 The Compiler as a Formal System . 53

4.6.1 M . 54

4.6.2 FM . 54

4.6.3 DM . 56

4.6.4 TM . 56

5 RELATED WORK . 64

vi

5.1 StreamIt . 64

5.2 Cilk . 67

5.3 Other Contemporary Parallel Languages 74

5.3.1 pH . 74

5.3.2 Eden . 76

5.3.3 The DARPA HPCS Languages 76

Appendix

A IMPLEMENTATION SKETCHES . 78

REFERENCES . 83

LIST OF FIGURES

2.1 Parallel arrays. 5

2.2 Parallel comprehensions. 7

2.3 Parallel ranges. 8

2.4 Parallel tuples. 9

2.5 Canceling substitution. Canceling substitution is distinguished from
normal substitution by a subscript c on the right bracket of the map-
ping. 13

2.6 Parallel bindings. In the dynamic semantics, the superscript annota-
tion on the substitution means “for all variables x that appear in the
pattern p.” . 14

2.7 The interactions of parallel and sequential bindings and tuples. . . . 15

2.8 Small-step evaluation rules for amb. 17

2.9 Parallel choice. 18

2.10 Raising exceptions. 18

2.11 Handling exceptions. 19

3.1 The slice of the complex plane extending two units from 0 on both
axes. All points in the shaded regions have modulus > 2. 31

4.1 A New Yorker cartoon. 37

4.2 The cartoon from Figure 4.1, partitioned. 39

4.3 The grammar of M. 55

4.4 The grammar of FM. 57

4.5 The
F−→ transformation, which proceeds in three stages. The first

stage flattens nested parallel tuples; the operator T is defined in
Section 4.4. The second stage desugars parallel tuples and parallel
assignments, and the third stage flattens nested parallel comprehen-
sions. 58

vii

viii

4.6 The grammar of DM. 59

4.7 Syntactic sugar for DM. 60

4.8 The
D−→ transformation. The functions joinN and splitN create the

“rumpled” structures discussed in Subsection 4.3.2. 60

4.9 Ropes in TM. See Appendix A for more details. 61

4.10 The grammar of TM. 62

4.11
T−→ . 63

A.1 Ropes in TM. 78

A.2 Rope construction functions in TM. 79

A.3 Distributed map and filter in TM. 80

A.4 The trap abstraction in TM. 81

A.5 Distributed reduction in TM. 81

A.6 Futuristic traversals in TM. 82

CHAPTER 1

INTRODUCTION

Parallel hardware is becoming increasingly widespread. Modern game consoles are

multicore vector machines, and a growing percentage of desktop computers are parallel

machines as well. These machines support parallelism at multiple granularities, from

SIMD to multiple processors.

At the same time, parallel abstractions are already a common desideratum in software.

In individual systems we have had to make do with concurrency in place of parallelism,

so we could at least simulate simultaneous computations in a given program. But

with the recent rise of parallel hardware, applications are now in a position to exploit

multiple granularities of true parallelism.

As an example, consider a parallel ray tracer consisting of a GUI for user interaction

sitting on top of an ray-tracing layer that does as much of its work in parallel as

possible. Such an application would be conveniently expressed with threads at the

user interface layer and data parallelism at the image processing layer.

The Manticore programming language is designed to support applications of this gen-

eral shape. That is, it is designed to bring together the various parallel abstractions

of software and the heterogeneous parallel elements of hardware.

Manticore is a strict, type-safe, mostly pure functional programming language built

around a pared-down core of SML ’97 that omits stateful computations. Explicit

nested data parallel constructs in the style of NESL and its successors are layered

on top of this substrate for high-level parallel programs. We also include parallel

concurrency abstractions inspired by CML for explicit management of parallel com-

putations.

1

2

We address implementational issues, focusing on how parallel constructs are compiled

with the flattening transformation to realize parallel performance benefits. We also

formalize a sequential semantics of the language and consider some subtleties related

to respecting it in a parallel implementation.

This paper is organized as follows.

• We present Manticore the programming language and an overview of its seman-

tics. We discuss its type system and formulate a sequential semantics for the

language.

• We develop sample applications in Manticore.

• We discuss compilation of Manticore, devoting particular attention to compi-

lation of nested data parallel constructs. Under the hood, parallel arrays are

represented by a rope data structure similar to Boehm et al.’s ropes [6]; this

representation is favorable from a variety of standpoints. We describe how our

implementation respects our sequential semantics in certain sensitive cases.

• We consider Manticore in the context of related work. In particular, we contrast

Manticore with StreamIt [31], a modern stream-based programming language,

Cilk [5], a version of C augmented with explicit parallel annotations, NESL and

Nepal/DPH, functional parallel languages and our closest predecessors, and

other related languages and technologies.

The work here is complemented by the simultaneous building of a prototype imple-

mentation.

CHAPTER 2

LANGUAGE FEATURES

Manticore can be loosely described as core ML plus parallel CML plus nested data par-

allelism. By “core ML” we mean a subset of Standard ML [22] that includes higher-

order functions, algebraic datatypes, parametric polymorphism, pattern matching,

and type inference, while excluding stateful features such as ref cells. CML [26] pro-

vides support for threads and synchronous message passing; in Manticore (as opposed

to the original CML) we run concurrent computations in parallel: hence, “parallel

CML.” The incorporation of data parallel features into a functional language was

pioneered in NESL [4] and has been explored further by Nepal [9], since renamed to

Data Parallel Haskell [17, 8, 19]. Manticore’s CML features can be considered stan-

dard CML, and the present work does not treat them. Data parallelism in Manticore

is the main subject of the present work and is described in detail below.

Manticore’s basic data parallel constructs are parallel arrays, parallel comprehensions,

parallel tuples, parallel bindings and parallel choices. (Throughout this paper we will

use the terms array and comprehension freely for parallel constructs when there is

no ambiguity.) Parallel ranges are a special case of parallel arrays. We address

each of these features in turn in the following sections. Each feature is presented in

terms of its syntax, static semantics, and dynamic semantics. Manticore also includes

facilities for raising and handling exceptions. The inclusion of exceptions introduces

some potentially troublesome semantic issues, which we address.

In the following exposition, the metavariable e stands in for expressions, p for SML-

style patterns, and pb for bindings of the form p in e, which appear in comprehensions.

The static semantics of each parallel expression form is presented in the style of the

Definition of Standard ML [22]. The dynamic semantics is given as a rewriting of each

3

4

term into SML extended with McCarthy’s amb [21] (see Section 2.6), whose strict,

sequential evaluation semantics then apply.

We place a hat on an expression (as in ê) to indicate the translation of that expres-

sion into its sequential counterpart. Our presentation of the sequential semantics is

inexhaustive in that we omit rules that do not pertain to the parallel features of the

language; it stands to reason that sequentializing non-parallel features of the lan-

guage is not complicated, consisting only of pushing the sequentialization into the

term structure, as in, for example, ê1 :: e2 = ê1 :: ê2.

There are brief discussions of execution time of the evaluation of parallel expressions

in the sections that follow. Please assume, unless otherwise noted, that the evaluation

takes place on a machine with a finitely many but unbounded number of processors, so

that we may execute as many separate computations in parallel as we need, provided

they are free of interdependencies.

[[notation for substitution; other notation]]

2.1 Parallel Arrays

The parallel array is an array-like structure whose components may be computed in

parallel. Dynamically, the computation of the subexpressions of a parallel array may

occur in parallel on arbitrarily many processing elements, to be joined on mutual

completion. The parallel array delimiters are [| and |] in ASCII, or [| and |] in the

typesetting of this paper. The syntax and semantics of parallel arrays are given in

Figure 2.1. An example parallel array is

[| 1, 2, 4, 8, 16 |]

This constant expression has the type int parray. Contrast it with the following

dynamically-computed array:

[| pow(2,0), pow(2,1), pow(2,2), pow(2,3), pow(2,4) |]

5

syntax
[|e1, . . . , en|]

static semantics
C ` e1 ⇒ τ . . . C ` en ⇒ τ

C ` [|e1, . . . en|] ⇒ τ parray

dynamic semantics
[ê1, . . . , ên]

Figure 2.1: Parallel arrays.

In this case, the elements of the array can be computed in parallel, and, ignoring for

the moment the time needed to launch the individual computations and join them

when done, the amount of time needed to compute the whole parallel array is only

the maximum time needed to compute any of its individual elements.

Unlike, for example, sequential linked lists, parallel arrays are implemented such that

they may be consumed and produced in parallel by multiple processing elements

working simultaneously. We expect the ML program

List.map (fn x => x + 1) [1, 2, 3, 4, 5, 6, 7, 8]

to perform eight incrementing operations in some time 8t, where t is the time it takes

to increment an integer, even though there are no interdependencies between any of

those operations. In theory, we expect the corresponding Manticore program

[| x+1 | x in [| 1, 2, 3, 4, 5, 6, 7, 8 |] |]

to take time 8t/n where n is the number of processing elements in the given idealized

(i.e., one that manages parallel computations without incurring overhead) machine.

In practice, we have designed a system for efficient parallel maps (and other compu-

tations) over arrays, the details of which appear in Chapter 4.

6

2.2 Parallel Comprehensions

Parallel comprehensions provide a high-level expression form for what are essentially

iterative computations over parallel arrays. The syntax of comprehensions is inspired

by definitional set notation and has been present in programming languages since at

least the advent of SETL [29]. Consider the following parallel comprehension:

[| x * 2 | x in [| 1, 2, 4, 8 |] where x < 5 |]

This particular comprehension will evaluate to the following int parray:

[| 2, 4, 8 |]

The formal description of parallel comprehensions appears in Figure 2.2. Compre-

hensions are the central expression form of the flattening transformation, which is set

forth in detail in Chapter 4.

Parallel comprehensions can draw values from multiple parallel arrays as in the fol-

lowing:

[| (i, f) | i in [| 0, 1, 2 |], f in [| 3.0, 3.1, 3.14 |] |]

This expression evaluates to an array of three pairs, [|(0, 3.0), (1, 3.1), (2,

3.14)|]. In comprehensions the comma-delimited binding expressions to the right of

the bar (|) obey “zip semantics,” as in NESL’s parallel comprehensions, rather than

“product semantics,” as in Haskell’s list comprehensions. That is to say, the elements

from the various arrays to the right of the bar are processed in lockstep. This lockstep

processing terminates when we reach the end of the shortest array. Under product

semantics (currently those of Data Parallel Haskell’s comprehensions), the expression

above would evaluate to an array of nine pairs.

7

syntax
[|e0 | p1 in e1, . . . , pn in en 〈where ec〉 |]

static semantics
C ` e ⇒ τ parray C ` p ⇒ (VE , τ)

C ` p in e ⇒ VE

C ` pb ⇒ VE C + VE ` e ⇒ τ 〈C + VE ` e′ ⇒ bool〉
C ` [| e | pb 〈where e′ 〉 |] ⇒ τ parray

dynamic semantics

let fun f (x1::r1, ..., xn::rn, acc) =
(case (x1, ..., xn)

of (p1, ..., pn) =>
if êc then f (r1, ..., rn, ê::acc)
else f (r1, ..., rn, acc)

| _ => f (r1, ..., rn, acc)
(* end case *))

| f (_, ..., _, acc) = rev acc
in

f (ê1, ..., ên, [])
end

Figure 2.2: Parallel comprehensions.

2.3 Parallel Ranges

Manticore includes parallel range expressions, an expression form that is present in

both NESL and the various parallel Haskell languages. Ranges are determined by

two (inclusive) endpoint expressions and an expression giving the size of the gaps

between elements. Consider the following example:

[| 1 to 31 by 10 |]

This constant range expression happens to evaluate to [|1, 11, 21, 31|] and has type

int parray. If a range appears with no “by clause”, as in [|1 to 20|], it is assumed

that the step size is 1.

8

syntax
[|e1 to e2 by e3|]

static semantics

C ` e1, e2, e3 ⇒ int

C ` [|e1 to e2 by e3|] ⇒ int parray

dynamic semantics

let fun build (lo,hi,s) =
if (lo > hi) then nil
else lo :: build (lo+s,hi,s)

in
build (ê1, ê2, ê3)

end

Figure 2.3: Parallel ranges.

Ranges are more than a notational convenience, as, in some contexts, they are rela-

tively easy for the compiler to optimize or fuse away. The general idea with regards to

fusion of ranges is that the compiler will avoid building intermediate data structures

when doing so is unnecessary. To be more specific, in the expression

sumP [| sin(real(x)) | x in [| 1 to 100000 |] |]

where sumP is a sum operator over parallel arrays, we would prefer not to build the

100,000 element parallel array in the binding part of the comprehension only to feed

it to the aggregating context in which it appears. In such a case, fusion may allow us

to avoid building the array. Fusion is briefly discussed further in Section 4.5.

2.4 Parallel Tuples

Parallel tuples are like ML tuples, but delimited by (| and |) in ASCII and (| and |)
in the present paper. The subexpressions of a parallel tuple are evaluated in parallel.

9

syntax
(|e1, . . . , en|)

static semantics
C ` e1 ⇒ τ1, . . . , en ⇒ τn

C ` (|e1, . . . , en|) ⇒ τ1 ∗ . . . ∗ τn

dynamic semantics
(ê1, . . . , ên)

Figure 2.4: Parallel tuples.

Unlike parallel arrays, parallel tuples may include values of heterogeneous types.

Consider the following parallel tuple:

(| 1, 2.2, true |)

The type of this value is simply int * real * bool; there is no type distinction

between tuples and parallel tuples. Parallel tuples can go wherever sequential tuples

can go, and as such we can express programs with a high degree of parallelism in a

very concise way. Consider the following example:

fun choose (n, k) =

if (n = k) then 1

else if (k = 1) then n

else op+ (| choose (n-1, k), choose (n-1, k-1) |)

Here the use of parallel tuple delimiters induces, or has the potential to induce,

factorially many parallel recursive calls to choose.

A parallel tuple is essentially a fork/join form; each of its components is evaluated in

parallel, and the computation of the whole value blocks until all its subcomputations

are complete. In this way, there is a deliberate similarity between the evaluation

behavior of Manticore with respect to parallel arrays and parallel tuples. Since tuples

10

can include values of different types, this gives us a form of heterogeneous parallelism

which is not immediately available to us by means of simple parallel arrays.1

val nums = (| thousandthRoot 3.14159, ack (4,2), allPerms "sandwich" |)

2.5 Parallel Bindings

The parallel binding form allows the program to launch the evaluation of an expression

and continue with program execution in parallel. Parallel bindings use pval in place

of val, as in the following expression:

let pval x = f 10 in (x * 10) end

As is the case with parallel tuples, there is no type distinction between the parallel

binding form and the sequential binding form. In the expression above, for example,

if f 10 and thus x and x * 10 are of type int, then the expression as a whole has

type int just like its sequential analogue.

Parallel bindings enable speculative computation because expressions in parallel bind-

ings whose values are not needed in a given computation may be dynamically can-

celled. In order to explain this behavior more precisely, we first need to consider the

concept of a future.

2.5.1 Futures

The notion of a future comes from the Multilisp programming language [27]. In

Multilisp, the expression (future e) begins concurrent evaluation of e and returns

a token value. When the concurrent evaluation of e is is finished, the resulting value

replaces the token. When the value of e is needed by some other operation, that

1. One could of course encode similar expressions by means of algebraic datatypes.

11

operation either takes place immediately if e is done evaluating, or suspends until e

is ready. Expressions that require the value of any such future are said to touch it.

In Manticore, constructs relating to futures are not available in the surface language.

The intermediate languages of the Manticore compiler, however, do contain expres-

sions for computing with futures. Those languages include one introduction form and

two elimination forms for futures.2 Chapter 4 formalizes the languages in questions

are gives corresponding expression forms.

The future introduction form future consumes a suspended computation, that is, a

function of type unit → α, and returns a value of type α future. The behavior

of such future expressions is essentially the same as the Multilisp behavior sketched

above.

The first future elimination form touch consumes a value of type α future and pro-

duces a value of type α. If a given future expression is done evaluating, applying

touch to it yields the resulting value. If the expression is not done evaluating, the

application of touch will suspend control until the value is ready. Note that if a par-

ticular future is touched several times in sequence, control will only ever be suspended

on the first touch; the value will necessarily be ready on all subsequent touches.

The second future elimination form cancel halts evaluation of a given future. In

the expression cancel e1 in e2, e1 is a value of type α future. (e2 has some type

β which is irrelevant to the cancellation.) When a future is cancelled, whatever

resources are devoted to the computation of its value are liberated from their duties

as close to instantaneously as possible. A future can be cancelled only when it has

been determined that its value will definitely not be needed at any later point in the

program.

We do not describe the implementation of Manticore’s future constructs in the present

work; we assume they are correctly implemented and available wherever needed.

2. The syntax of these forms in Chapter 4 differs insubstantially from the current pre-
sentation.

12

Next we describe two semantics for expressions including parallel bindings: the “paral-

lel semantics,” which defines the evaluation of parallel bindings in a running program,

and the sequential semantics similar to those given above.

2.5.2 Parallel Evaluation Semantics

The parallel evaluation semantics of parallel binding forms makes use of futures and

a form of substitution that we call canceling substitution. Canceling substitution is

defined in Figure 2.5. The essence of canceling substitution is to cancel those futures

whose values are known not to be needed in a given expression. We identify candidates

for cancellation as variables that are bound but not live in a given expression.

The following example gives the intuition of the parallel semantics of these forms.

Consider the expression

let pval y = f x

in

if p z then y else 0

end

Note that if the predicate p is true for z, then the conditional expression will evaluate

to 0; y will not be needed. If possible, we would like to cancel the superfluous

evaluation of y. Therefore we rewrite the expression into one with explicit future,

touch and cancel forms as follows.

let val yf = future (fn () => f x)

in

if p z then (touch yf) else (cancel yf in 0)

end

This rewriting can be generalized to give the parallel evaluation semantics of single-

variable parallel bindings as follows:

let pval p = e in e’ end

13

[x 7→ e1]c e2 → cancel x in e2 when x is uncancelled and not live in e2

→ [x 7→ e1] e2 otherwise

Figure 2.5: Canceling substitution. Canceling substitution is distinguished from nor-
mal substitution by a subscript c on the right bracket of the mapping.

−→
let val f = future (case e of p => xs | _ => raise Bind)

(* where xs is V(p) *)

in

[x 7→ #x (touch f)] e’ for x ∈ xs

end

2.5.3 Sequential Semantics

In order to define the sequential semantics for the parallel binding form, we first

introduce the notion of an α trap for the proper treatment of exceptions. The

constructors Value and Exn are introduction forms for traps, and release is the

corresponding elimination form.

datatype α trap = Value of α | Exn of exn

fun release t = case t of Value v => v | Exn e => raise e

We use traps to sequentialize parallel bindings such that exceptions occurring in

speculative computations are only raised in the event that the result of the specula-

tive computation is demanded. Figure 2.6 includes the definition of the sequential

semantics.

2.5.4 Remarks

The difference between val and pval can be characterized as follows. In the case of

val, control “lingers” at the right hand side of the binding site until computation has

14

syntax
let pval p = e1 in e2

static semantics

C ` p ⇒ (VE , τ1) C ` e1 ⇒ τ1 C + VE ` e2 ⇒ τ2
C ` let pval p = e1 in e2 ⇒ τ2

dynamic semantics

let val t = Value ê1 (* t a fresh id *)
handle ex => Exn ex

in
[let p = release t in x / x]x∈V (p) ê2

end

Figure 2.6: Parallel bindings. In the dynamic semantics, the superscript annotation
on the substitution means “for all variables x that appear in the pattern p.”

completed. By contrast, with a parallel binding, the right hand side’s computation

is spawned, and control immediately flows past it. If and when the result of that

computation is needed at a later point, control will wait for the result before moving

on.

The combination of parallel bindings and parallel tuples introduces a variety of similar

but slightly different patterns of parallism, as depicted in Figure 2.7.

In the expressions in the bottom row of the table in Figure 2.7, we do not expect to

observe any non-trivial difference in execution time. On the lower left, we wait for

the evaluations of f 1 and g 1 to complete at at the binding site before moving on in

the program, while on the lower right we move past the binding site and wait around

the application of + for the two operands to finish their evaluations. In either case,

we initiate two parallel evaluations and wait for both to complete, albeit at different

points in the code.

The story is different when an expression is such that not sure how to say this

parallel computations are effectively speculative and their results are sometimes can-

15

control lingers at binding control flows past binding
sequen-
tial

let val (x,y) = (f 1, g 1)
in

foo x + bar y
end

let pval (x,y) = (f 1, g 1)
in

foo x + bar y
end

paral-
lel

let val (x,y) = (|f 1, g 1|)
in

foo x + bar y
end

let pval (x,y) = (|f 1, g 1|)
in

foo x + bar y
end

Figure 2.7: The interactions of parallel and sequential bindings and tuples.

celled. This is the case with expressions where parallel bindings appear in sequence.

Let us consider

let pval x = f 1

pval y = g 2

pval z = h 3

in

if (x > 0) then y else z

end

In this expression, the evaluations of x, y and z are launched, and control flows to

the if expression. At the if, control waits for the value x in order to evaluate the

condition x > 0 can be evaluated. If the condition is true, z is cancelled and y is

synchronized on and returned; the converse occurs if the condition is false.

We can characterize the time required to compute this expression as follows. If the

evaluation of x, y and z takes time tx, ty and tz, then the execution time can be

bounded above by

max(tx, ty, tz) + ω + k

16

where ω is some bound on the overhead incurred by parallelism and k is the sequential

overhead associated with let, if, etc. Compare this quantity to the bound on the

sequential counterpart to the expression above (with vals in place of pvals), which

requires time

tx + ty + tz + k

We now consider under what constraints the parallel expression executes in less time

that its sequential counterpart. The inequality

max(tx, ty, tz) + ω + k < tx + ty + tz + k

holds when

ω < tx + ty + tz − max(tx, ty, tz)

which we expect to be true in many cases, especially when the ti are expensive.

2.6 Parallel Choice

Parallel choice gives us a way to express nondeterminism in our programs. The

parallel choice operator is denoted by infix <?>, as in e <?> e′. There are a variety of

contexts in which this construct is useful. In certain situations, either of two possible

results will do equally well:

val solution = solve thisWay <?> solve thatWay

The n-queens problem, for example, has this property. In such cases, having multiple

possible solutions evaluating together in parallel might lead to significant performance

gains.

Consider the expression let x = e <?> e’. The variable x is bound to either e or

e’; the semantics says nothing about which. The dynamic behavior of this expression,

on the other hand, can be characterized as follows: x is bound to whichever of e or e’

finishes first, assuming one of them does. Furthermore, once one of the expressions

17

amb(v, e) 7→ v amb(e, v) 7→ v

amb(raise Undef, e) 7→ e amb(e, raise Undef) 7→ e

e1 7→ e′1
amb(e1, e2) 7→ amb(e′1, e2)

e2 7→ e′2
amb(e1, e2) 7→ amb(e1, e

′
2)

Figure 2.8: Small-step evaluation rules for amb.

completes, the other is canceled so as not consume any more resources. As these are

characterizations of parallel dynamic behavior, they do not manifest themselves in

the static and sequential semantics given in Figure 2.9.

The sequential semantics of <?> are given by the primitive amb, which we assume

to be present in our extended-SML target language. McCarthy defines an ambiguity

operator [21] as “a basic ambiguity operator amb(x, y) whose possible values are

x and y when both are defined: otherwise, whichever is defined.” We borrow the

essence of this definition for amb, for which we give dynamic semantics in Figure 2.8.

There is no order of evaluation imposed on the last pair of rules, so a parallel choice

expression under evaluation takes a step on either of its subexpressions. Our semantics

makes no assumption about the scheme used to determine which evaluation step is

taken; it might or might not be random, or “fair.” In a sequential implementation,

however, stepping would likely alternate between the left and right subexpressions to

simulate equal probability. In a parallel implementation, the two subexpressions are

evaluated in parallel and must know about one another’s progress such that they may

be cancelled at appropriate moment. We defer the discussion of the implementation

of this behavior in Maticore to future work.

18

syntax
e1 <?> e2

static semantics
C ` e1 ⇒ τ C ` e2 ⇒ τ

C ` e1 <?> e2 ⇒ τ

dynamic semantics
amb(ê1, ê2)

Figure 2.9: Parallel choice.

syntax
raise Undef

static semantics

C ` raise Undef⇒ α

dynamic semantics
raise Undef

Figure 2.10: Raising exceptions.

2.7 Exceptions

We present simple raise and handle forms in Figures 2.10 and 2.11. Exceptions

and exception handlers are absent from NESL, Data Parallel Haskell, and pH. It is

straightforward to imagine uses of these forms in parallel functional programs, but

they have thus far been left out of the formalisms in the literature. In our inclusion

of exceptions in Manticore, we have encountered some subtleties in their interaction

with the flattening transformation (see Chapter 4); the relevant points are addressed

in detail in Section 4.3.

19

syntax
e1 handle e2

static semantics
C ` e1 ⇒ τ, e2 ⇒ τ

C ` e1 handle e2 ⇒ τ

dynamic semantics
ê1 handle => ê2

Figure 2.11: Handling exceptions.

2.8 Remarks

List-based functional languages traditionally include the combinators map and

filter, which build new lists in left-to-right order (in a strict language) while travers-

ing the lists to which they are applied. Both map and filter have natural parallel

analogues. MapP applies a function to each member of an array in parallel, whereas

filterP discards those elements of an array that do not satisfy a given predicate.

Both functions are succinctly defined in terms of comprehensions:

(* mapP : (α -> β) -> α parray -> β parray *)

fun mapP f xs = [| f x | x in xs |]

(* filterP : (α -> bool) -> α parray -> α parray *)

fun filterP pred xs = [| x | x in xs where pred x |]

Manticore also includes a variety of primitives on its parallel constructs, some of

whose meanings are given informally here:

• The operators ##, @@, and ! are length, concatenation and subscript operators

for parallel arrays.

• The function flatten consumes a parallel array of parallel arrays and produces

the concatenation of the nested parallel arrays.

20

• The function indices produces the range of integers matching the indices of a

given array; the related function withIndices produces a list of index, value

pairs.

(* indices : α parray -> int parray *)

fun indices xs = [| 0 to (##xs - 1) |]

(* withIndices : α parray -> (int * α) parray *)

fun withIndices xs = [| (i, x) | i in indices xs, x in xs |]

Many utility functions can be conveniently expressed in terms of comprehensions and

ranges. The function that produces a parallel array of n copies of some constant k

(known in the literature as dist) can be written as follows:

(* dist : α * int -> α parray *)

fun dist (k, n) = [| k | i in [| 1 to n |] |]

Along similar lines, the function that produces a parallel array of some function

applied to successive integers (a similar function is called tabulate in SML) can be

written

(* tabulateP : int * (int -> α) -> α parray *)

fun tabulateP (n, f) = [| f i | i in [| 0 to (n-1) |] |]

We can also write a two-dimensional tabulation function to build matrix-like struc-

tures. Note the use of a nested comprehension.

(* tab2P : int * int * (int * int -> α) -> α parray parray *)

fun tab2P (m, n, f) =

[| [| f (i,j) | i in [| 0 to m-1 |] |] | j in [| 0 to n-1 |] |]

Functions for grabbing chunks of arrays are conveniently built out of the same parts.

(* slice : α parray * int * int -> α parray *)

21

(* produces the slice of an array on the interval [start, start+len) *)

fun slice (a, start, len) = [| a ! i | i in [| start to (start+len-1) |] |]

(* take, drop : int * α parray -> α parray *)

fun take (n, a) = slice (a, 0, n)

fun drop (n, a) = slice (a, n, ##a)

We will refer to these building-block level functions in the examples that follow.

CHAPTER 3

APPLICATIONS OF MANTICORE

This chapter develops a selection of applications in Manticore as a demonstration of

its use in various familiar computational settings. These examples should give the

reader a sense of the language from a programmer’s point of view.

3.1 Parallel Tuples for Parallel Searches

As an example of the use of the parallel let form, consider the following application.

We assume we are writing an engine for an I/O-bound MapQuest-like application

that can search for road maps for routes. We assume the existence of abstractions

roadmap, loc, and route, which we employ freely in the following. The task at hand

is to determine a scenic route or a fast route for a given driver, who may or may not

have a taste for scenery. The driver has been asked to indicate her “scenery tolerance”

as the time in minutes she is willing to sacrifice in the interest of scenery.

(* fastest, prettiest : roadmap -> loc * loc -> route *)

fun fastest m (a, b) = (* implementation omitted *)

fun prettiest m (a, b) = (* implementation omitted *)

(* chooseRoute : int * route * route -> route *)

fun chooseRoute (t, fr, sr) = if time(fr) - time(sr) <= t then sr else fr

val r = let pval fr = fastest USA (Bos, Phil)

pval sr = prettiest USA (Bos, Phil)

val st (* scenery tolerance *) = getInt ()

22

23

in

if st > 0 then chooseRoute (st, fr, sr)

else fr

end

While the program is waiting for user to provide this number, the program begins

computing both fast and scenic routes (fr and sr below) in parallel. In the event

that the driver has no taste for scenery, that is, when her scenery tolerance is 0,

the program need not expend any further resources on computation of the scenic

route. As such, the scenic route computation is cancelled if it is still in progress (see

Section 2.5 for the details of this mechanism). If, on the other hand, the driver has a

positive scenery tolerance, that is, the driver is willing to consider the scenic route,

the program completes computation of both the fast and scenic routes in order to

choose the appropriate one.

3.2 Some Operations on Matrices

3.2.1 Dense Matrix Transposition

For this example, we assume a dense representation of matrices. The transposition

AT of an m × n matrix A is an n × m matrix where AT
j,i = Ai,j for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. The Manticore program to compute the transposition of a matrix is

a straightforward transcription of its mathematical definition.

type mat = real parray parray (* we assume mats are not "jagged" *)

(* transpose : mat -> mat *)

fun transpose A =

let val is = indices A (* row indices *)

val js = indices (A!0) (* col indices *)

in

24

[| [| A!j!i | j in js |] | i in is |]
end

3.2.2 Sparse Vector Matrix Multiplication

Sparse vector matrix multiplication is a classic motivating example for nested data

parallel programming. The following formulation of the algorithm was originally

presented in Blelloch [3] and was recently formulated in Data Parallel Haskell in

Chakravarty et al. [10].

type vec = real parray

type sparse_vec = (int * real) parray

type sparse_mat = sparse_vec parray

(* dotp: sparse_vec * vec -> real *)

fun dotp (sv, v) = sumP [| x * (v!i) | (i,x) in sv |]

(* smvm : sparse_mat * vec -> vec *)

fun smvm (sm, v) = [| dotp (row, x) | row in sm |]

3.3 Quicksort

Quicksort is a common example in the nested data parallelism literature. We im-

plement quicksort in Manticore as the function qs. In qs, the argument array ns

is partitioned into elements less than, equal to, and greater than some given pivot

element in parallel comprehensions. Each comprehension is in effect a filter running

in parallel on the input data. Those comprehensions are in turn evaluated—and

quicksorted—in parallel inside a parallel tuple.

This parallel formulation of quicksort differs from its sequential formulation only by

a few parallel delimiters. The example is therefore a demonstration of the principle

25

that divide-and-conquer algorithms are in general well-suited to parallelization.

(* qs : int parray -> int parray *)

fun qs ns =

if ## ns < 2 then ns

else

let val piv = ns ! 0

fun f relop = [| n | n in ns where relop (n, piv) |]
val (slt, eq, sgt) = (| qs (f op<), f op=, qs (f op>) |)

in

slt @@ eq @@ sgt

end

3.4 Selecting the Distinct Elements of an Array

In solving any number of interesting problems, it is useful to eliminate duplicates

from a collection of elements. The Haskell Prelude provides the function nub for

this purpose, and the Unix command uniq eliminates adjacent duplicates from an

already-sorted collection. We follow the latter example in sorting a list, then filtering

out the duplicates.

We assume the existence of a built-in function reduceByP to reduce parallel arrays

with a given associative operator and a given identity element.

val reduceByP : (α * α -> α) -> α -> α parray -> α

One can think of reduceByP as an abstract parallel sum operator, and furthermore

can be thought of as using a parallel tree-like reduction strategy to run in logarithmic

time. There is more detail on logarithmic parallel sums in Section 4.6.

We (implicitly) define a polymorphic higher-order function sortByP, which consumes

an abstract less-than-or-equal-to relation along with a parallel array of elements to

be sorted. We omit the definition of sortByP but the reader can infer it to be qs

26

from Section 3.3 with appropriate modifications. The function uniqP is subsequently

defined as an abstract parallel sum on lists of sorted distinct elements. As a final

necessary step we appeal to a function PArray.fromList which we assume to be part

of the language’s basis.

(* sortByP : (α * α -> bool) -> α parray -> α parray *)

fun sortByP ... (* implementation omitted *)

(* last : α list -> α *)

fun last [] = raise Undef

| last xs = hd (rev xs)

(* liaison : (α * α -> bool) -> α list * α list -> α list *)

(* pre: both arguments are sorted and free of duplicates *)

(* pre: the last element of the first argument is not greater than

the first element of the second argument *)

(* ex: liaison op= ([1,2], [2,3]) = [1,2,3] *)

fun liaison ([], ys) = ys

| liaison (xs, []) = xs

| liaison eq (xs, y::ys) = if eq (last x, y) then xs @ ys else xs @ y::ys

(* uniqP : (α * α -> bool) -> α parray -> α parray *)

fun uniqP le xs =

let fun eq (a,b) = le(a,b) andalso le(b,a)

val sortedSingletons = [| [x] | x in (sortByP ls xs) |]
in

PArray.fromList (reduceByP (liaison eq) [] sortedSingletons)

end

27

3.5 Image Transformations

In the following examples, we assume images are represented as dense matrices of

colors, where each color is a triple of integers.

type rgb = int * int * int

type img = rgb parray parray

Many interesting transformations of images can be done in parallel. An RGB-wise

negation or an image can be computed fully in parallel, as each pixel may be negated

independently of all others:

(* negImg : img -> img *)

fun negImg img = [| [| (255-r,255-g,255-b) | (r,g,b) in row |] | row in img |]

A function to extract only the red values of an image has the same shape:

(* reds : img -> img *)

fun reds img = [| [| r | (r, ,) in row |] | row in img |]

We can express the entire family of such element-by-element transformations with

the following higher-order function:

(* trImg : (α -> β) -> α parray parray -> β parray parray *)

fun trImg tr img = [| [| tr pix | pix in row |] | row in img |]

Note the function’s principal type is sufficiently general to apply to any array-of-arrays

structure; it is in fact a parallel map combinator for two-dimensional arrays.

3.5.1 Minification

We now consider an algorithm for minification. To minify (as opposed to “magnify”)

an image is to shrink the image to a smaller dimension. By inspection, in reducing one

28

img = rgb parray parray to another, some information about the original pixels

must be lost, since there are strictly fewer pixels in a smaller image than a larger one,

and the encoding of colors is no more terse in the former than the latter.

Näıvely, one could simply discard pixels in the process of minification, but such meth-

ods leave blatant artifacts in many cases. We can improve minification as follows. We

consider the smaller or target image as a map from its pixels (“target pixels”) to a set

of weighted pixels from the source image (“source pixels”). The weights represent,

loosely speaking, how much each source pixel should contribute to the color of the

target pixel; it is based simply on the geometry of the images in question. We color

each target pixel with the weighted average color of those source pixels in the set onto

which it maps.

The definition of minify follows, along with the definition of a few necessary auxiliary

functions. Any auxiliary functions whose definitions are not explicitly given should

be clear from their names.

(* rbgPlus : rgb * rgb -> rgb *)

fun rgbPlus ((r1,g1,b1),(r2,g2,b2)) = (r1+r2,g1+g2,b1+b2)

(* scaleRGB : real * rgb -> rgb *)

fun scaleRGB (x,(r,g,b)) = (int(x*r),int(x*g),int(x*b))

(* minify : img * int * int -> img *)

fun minify (img, w’, h’) =

let val rgbSumP = reduceByP rgbPlus (0,0,0)

val (w, h) = (width img, height img)

fun newpix (s, t) =

let val i = max (0, floor ((w*s) - 0.5))

val j = max (0, floor ((h*t) - 0.5))

val α = fracPart ((w*s) - 0.5)

val β = fracPart ((h*t) - 0.5)

in

29

rgbSumP [| scaleRGB ((1.0-α)*(1.0-β), img!i!j),

scaleRGB (α*(1.0-β), img!i+1!j),

scaleRGB ((1.0-α)*β, img!i!j+1),

scaleRGB (α*β, img!i+1!j+1) |]
end

in

[| [| newpix (real(x) / real(w’), real(y) / real(h’))

| x in [| 0 to w’-1 |] |] | y in [| 0 to h’-1 |] |]
end

3.5.2 Image Compression

An img as described above is a literal enumeration of pixels. A GIF, by contrast,

consists of a pair of structures, a color palette mapping indices to rgb values, and a

two-dimensional map of indices into that palette. Because each element in the “index

matrix” (as opposed to the “color matrix”) is a small value (perhaps one byte instead

of three), and because images tend to consist of thousands or millions of pixels, this

representation can be significantly smaller than its raw counterpart, especially if the

image has low color diversity. A real GIF will restrict the size of its palette so as to

guarantee a reduction in size; for simplicity’s sake we will ignore this restriction and

call our representation a gif’. The following types encode the necessary structures:

type palette = (int * rgb) parray (* a bijection *)

type gif’ = palette * int parray parray

We will write a program to convert an img to its corresponding gif’. We first

gather the unique colors in an image, build a palette out of them, and construct an

image matrix by mapping each color in the color matrix to its palette index. From

Section 3.4 we use reduceByP and uniqP in our implementation.

(* rgbLE : rgb * rgb -> bool *)

fun rgbLE ((r,g,b), (r’,g’,b’)) =

let fun num (r,g,b) = (r*pow(2,16)) + (g*pow(2,8)) + b

30

in

(num (r,g,b)) <= (num (r’,g’,b’))

end

(* rgbEQ : rgb * rgb -> bool *)

fun rgbEQ ((r,g,b), (r’,g’,b’)) = (r=r’) andalso (g=g’) andalso (b=b’)

(* distinctColors : img -> rgb parray *)

fun distinctColors img = uniqP rgbLE (flatten img)

(* mkGIF’ : img -> gif’ *)

fun mkGIF’ img =

let val pal = withIndices (distinctColors img)

fun findIdx c = [| i | (i, c’) in pal where rgbEQ (c, c’) |] ! 0

in

(pal, trImg findIdx img)

end

The corresponding decompression function is encoded as follows:

(* unGIF’ : gif’ -> img *)

fun unGIF’ (pal, idxs) =

let fun findRGB i = [| c | (i’, c) in pal where i = i’ |] ! 0

in

trImg findRGB idxs

end

Note that both findIdx and findRGB depend on the fact that a palettes is a bijection.

We could check this property in the code (with, for example, dynamic checks), but

here we trust the correctness of the behavior of uniqP to ensure it.

31

2

2-2

2i

-2i

Figure 3.1: The slice of the complex plane extending two units from 0 on both axes.
All points in the shaded regions have modulus > 2.

3.5.3 The Mandelbrot Set

Parallel comprehensions allow us to build images derived from application of functions

very concisely. The Mandelbrot set is an especially interesting image, and it can be

constructed in embarrasingly parallel fashion.

We assume the existence of a function color : int * real * real -> rgb to

compute the color of a pixel in a given location in the complex plane. Its integer

parameter is an upper bound on the number of iterations the function is to compute;

the reals are the two components of a complex number. The implementation of

color is omitted for simplicity, but we assume it exploits the following property of the

Mandelbrot set: for any z ∈ C where |z| > 2, z is not in the Mandelbrot set. Note that

all points in the shaded region in Figure 3.1 have modulus > 2. Values with sufficiently

large moduli can be immediately designated not in the set; this corresponds to a short-

circuit in any implementation. We note that some computations of color will take

much longer than others, since many inputs will short-circuit the number of iterations.

For the purposes of this example we will compute on the slice of the complex plane

centered on the origin and bounded by −2 and 2 in both directions, where each pixel

will represent a square of side length .02; these choices are of course arbitrary and

easily modified.

32

(* color : int * real * real -> rgb *) (* implementation omitted *)

(* axis : real parray *)

val axis = [| real(n) * 0.02 | n in [| ~100 to 100 |] |]

(* mset : int -> img *)

fun mset i = [| [| color(i,re,im) | re in axis |] | im in axis |]

This application is an important example since the amount of time required to com-

pute color will vary significantly according to its argument. Therefore a näıve equal

distribution of work—that is, one where each processing element is given the same

number of points for which to compute color—may result in suboptimal performance.

This program will benefit from both flattening and fusion (Chapter 4) in the compiler.

3.6 The Barnes-Hut force calculation algorithm

The Barnes-Hut force calculation algorithm [2] is an O(n log n) method of calculating

the force enacted on one another by n bodies in space. The algorithm constructs a

hierarchical tree of cells, each of which contains one massive body. This tree manifests

itself as an “oct tree” in three dimensions or a ”quad tree” in two dimensions; the

latter is presented here for simplicity. Once the tree is constructed, the force on a

given body is calculated individually for “near” bodies (where nearness is determined

by a constant threshold) or from clusters of bodies if the cluster is sufficiently distant.

The following implementation is based on the similar implementation in Keller’s dis-

sertation [16]. The construction of the spatial tree—a divide-and-conquer process

reminiscent of quicksort—is highly amenable to parallelization: parallel comprehen-

sions are freely employed in bhTree and its auxiliary splitCs below.

type area = {llx:real, lly:real, urx:real, ury:real}
type vec = {x:real, y:real}
type cen = {x:real, y:real, m:real}

33

datatype tree = T of cen * tree list

(* center : area -> vec *) (* impl. omitted *)

(* cut : area -> area parray *) (* impl. omitted *)

(* splitCs : vec * cen parray -> cen parray *)

fun splitCs ({x=fx,y=fy}, cs) =

let val (le,gt) = (op<=,op>)

fun filt (xop, yop) =

[| c | c as {m,x,y} in cs

where xop(x,fx) andalso yop(y,fy) |]
in

[| filt(le,le), filt(gt,le), filt(le,gt), filt(gt,gt) |]
end

(* bhTree : area * cen parray -> tree *)

fun bhTree (a, cs) =

if ## cs = 1 then

T (hd cs, [])

else

let val (a1, a2, a3, a4) = cut a

val (cs1, cs2, cs3, cs4) = splitCs(center a, cs)

val areaCens = [| (a,cs) | a in cut(a),

cs in splitCs(center(a), cs)

where ## cs > 0 |]
val subtrees = [| bhTree(a,cs) | (a,cs) in areaCens |]
val cd = centroid [| cs | Tree(cs, ts) in subtrees |]

in

T (cd, subtrees)

end

(* accels : tree * real * cen parray -> vec parray *)

fun accels (tree as T (crd, subtrees), len, cs) =

34

if ## cs = 0 then

[| {x=0.0, y=0.0} |]
else

let val (farC, closeC, direct) = splitFarClose (cs, len, crd)

val farAcs = [| accel(crd,mp) | mp in farC |]
val closeAcss =

[| accels(t, len/2.0, closeC | t in subtrees |]
val closeAcs = [| superimp a | a in transpose(closeAcss) |]

in

combine (farAcs, closeAcs, direct)

end

3.7 Google’s MapReduce

Google’s MapReduce [12] is an abstract functional program design for parallel dis-

tributed data processing. MapReduce programs operate on collections of key, value

pairs. A particular program specifies two functions, a “map” and a “reduce.” The

former function transforms a given pair (k, v) to some (k′, v′); the latter function

aggregates batches of values v′ whose keys k′ are equal. Google uses this pattern on

its own distributed system to map keywords to web pages, count the frequency of

accesses of website, and compute various other interesting results.

Although MapReduce is used in a distributed setting, the design could just as well

be utilized on an individual shared-memory machine. The following program demon-

strates a realization of the pattern in Manticore.

Note the higher-order function sortByP is borrowed from Section 3.4.

type ’a ord = ’a * ’a -> bool

type ’a eq = ’a * ’a -> bool

(* groupBy : ’k eq -> (’k * ’v) parray -> (’k * ’v list) parray *)

fun groupBy keyEq sorted =

35

let fun build ([], acc) = acc

| build ((k,v)::more, []) = build (more, [(k,[v])])

| build ((k,v)::more, (k’,vs)::acc) =

if keyEq (k, k’) then

build (more, (k’,v::vs) :: acc)

else

build (more, (k,[v]) :: (k’,vs) :: acc)

in

PArray.fromList (build (rev (List.fromPArray sorted), []))

end

type map = ’k0 * ’v0 -> ’k1 * ’v1

type reduce = ’k1 * ’v1 parray -> ’k1 * ’v2

(* MapReduce : map * reduce * (’k1 ord)

-> (’k0 * ’v0) parray -> (’k1 * ’v2) parray *)

fun MapReduce (m,r,lt) input =

let fun lt’((k,_),(k’,_)) = lt(k,k’)

fun eq (p,p’) = not(lt’(p,p’)) andalso not(lt’(p’,p))

val intermed = [| m (k,v) | (k,v) in input |]
val sorted = sortByP lt’ intermed

val grouped = groupBy eq sorted

in

[| r (k1, v1s) | (k1, v1s) in grouped |]
end

CHAPTER 4

COMPILING MANTICORE BY PROGRAM

TRANSFORMATION

The compilation of Manticore is comprised of many stages. This paper describes

the first few stages near the front end of the compiler; later stages are described

in other work. These “early compilation” stages are given as a set of translations

from one language to another: the source language M is a pared-down version of

the source language as described in the foregoing chapters; the language FM, for

Flat Manticore, is a flattened version of M, such that nested data parallel constructs

have been rewritten away; DM, for Distributed Manticore, introduces an abstract

encoding of the distribution of computation among multiple processing elements into

the language; and TM, the target language, encodes parallel arrays explicity as ropes

and manages the distribution of computation directly.

4.1 The Flattening Transformation: An Overview

What is the flattening transformation, and why do it? The flattening transformation

is, in short, a means of adjusting the representation of aggregate data such that it is

easily amenable to fast parallel computation. In Manticore, we follow the precedent

of NESL and its descendants by flattening nested arrays in the process of compilation.

We also “flatten” nested parallel tuples in the compiler, although the flattening in

question is of a different stripe; we discuss it in the Section 4.4.

To motivate the flattening transformation, consider the following example. New

Yorker cartoons are generally simple line drawings, printed in grayscale. See the

example appearing in Figure 4.1. Dot for dot, they are mostly their background

36

37

Figure 4.1: A New Yorker cartoon.

color: a glance will reveal they consist of many more background-color pixels than

non-background-color-pixels. As such, let us assume a New Yorker cartoon is advan-

tageously represented as a background color plus a sparse matrix of those pixels that

deviate from that background color. Each row in such a representation will consist

of an array of column, color pairs. The type nyc represents a New Yorker cartoon.

type rgb = int * int * int

type nycRow = (int * rgb) parray

type nyc = rgb * (nycRow parray)

Note the second component of a value of type nyc is a nested data parallel value, a

parallel array of parallel arrays of int * rgb pairs.

Observe that if an image is truly grayscale, it is unnecessary to represent each shade

of gray with an rgb triple, since gray values are precisely those whose red, green, and

blue values are equal. Therefore we should be able to represent New Yorker cartoons

in the following representation, which is more concise.

type gray = int

38

type nycRow’ = (int * gray) parray

type nyc’ = gray * (nycRow’ parray)

Assume that we are now interested in writing a function to convert values of type nyc

to values of type nyc’. We can express this as a nested comprehension as follows:

(* gr : rgb -> gray *)

fun gr (r,g,b) = (r+g+b) div 3

(* convertCartoon : nyc -> nyc’ *)

fun convertCartoon (bg, sm) =

(gr bg, [| [| (col, gr c) | (col, c)) in row |] | row in sm |])

This is an idiomatic Manticore program and we should expect it to exhibit good

performance.

Now imagine this computation executing in parallel on a machine with four proces-

sors. We must formulate a strategy for dividing the work among them. As a first

approximation, we will consider dividing the sparse matrix row-wise into four equal

chunks, and delegating a chunk to each processor for transformation in parallel. The

resulting horizontal partition is illustrated and labeled in Figure 4.2. This simple

strategy has an obvious flaw. Given our sparse representation of these images, some

rows will have more entries than others. Operationally this means that in a row-wise

division of an image, some processors might end up with much less work to do than

others. In Figure 4.2, it is visually apparent that chunk 2 would contain more data

than chunk 4 in a sparse representation, as it contains many more pixels that deviate

from the background color. Whichever processor is assigned chunk 4 has too little

to do; chunk 2’s processor is correspondingly too busy. Thus in this case using equal

spatial regions is not a reliable way to divide computation equitably. If we can, we

would prefer to divide the work into four equal parts, and, as we have seen in this

example, the shape of the data structure may or may not help us do that in the most

obvious way.

39

1

4

3

2

Figure 4.2: The cartoon from Figure 4.1, partitioned.

The flattening transformation provides a simple solution to this and similar problems.

Under this transformation, we rearrange a nested structure into a pair of flat struc-

tures, one that contains the original data and one that encodes the original nesting

structure. For example,

[| [| a, b |], [| c |],[| d,e,f |] |]

is transformed into

([| a,b,c,d,e,f |], [| 2,1,3 |])

where the first element of the pair contains the data a through f, and the second ele-

ment of the pair contains the lengths of the segments of the original nested structure.

The flattening transformation helps in the cartoon example as follows. The cartoon’s

sparse matrix appears in the source program as an array of arrays of pairs. We

transform the sparse matrix into an array of pairs1 and an array of segment lengths.

1. In the interest of clarity, we are ignoring here and in the subsequent discussion the
standard transformation of arrays of pairs into pairs of arrays.

40

We call this flat array of pairs ps. We then divide ps into n arrays of equal length

and delegate each to one of n processors for computation. Each processor has, within

some small margin, the same amount of work to do: if w is the amount of work

required to process one pair, each processor’s work is approximately w × (|ps|/n).

An execution of convertCartoon can be illustrated as follows. A sparse matrix might

appear as follows, where each pn is a column, color pair:

[| [| p1, p2 |], [| p3 |], [| p4, p5, p6, p7 |], [| p8 |] |]

After transforming the sparse matrix into an array of pairs and an array of segment

lengths, we have

([| p1, p2, p3, p4, p5, p6, p7, p8 |], [| 2, 1, 4, 1 |])

The first component of this pair can easily be divided evenly among processing el-

ements. This simple transformation, scaled up to realistic size, can be reasonably

expected to improve performance significantly.

If we say that a flat array such as [|1,2|] has nesting depth 1, a nested array such

as [|[|1|],[|2|]|] has nesting depth 2, and so on, we claim that the application of the

flattening transformation removes one level of nesting depth, that is, transforms a

nested structure of depth d > 1 into a pair of structures of depth d − 1 and 1

respectively. As such we will apply the flattening transformation as many times as

we need to produce a depth 1 structure.

We may wish to compute not just with individual cartoons, but collections of car-

toons, collections of collections of cartoons, and so on to any nesting depth. The

flattening transformation will help make all such computations fast, even when there

are multiple layers of nesting:

type mag = nyc parray

type vol = mag parray

fun convertMag m = [| convertCartoon c | c in m |]
fun convertVol v = [| convertMag m | m in v |]

41

The flattening transformation is formalized in Section 4.6 below.

4.2 Ropes

Under the hood, Manticore’s parallel arrays are represented as ropes [6]. Ropes were

originally proposed as an immutable alternative to strings supporting fast concate-

nation, among other things. In their original form, ropes are balanced binary trees

with an array of characters at each leaf. The string encoded in such a structure is

the sequence of characters at the leaves of the tree, read from left to right. Via this

representation, concatenation of strings s1 and s2 is the construction, with balancing,

of a fresh tree whose left and right subtrees are s1 and s2.

For Manticore, we modify the original rope structure in two ways. First we define

a polymorphic rope structure, whose data is not restricted to type char. Second,

we include a special rope form to represent a caught exception; this is a technical

necessity which will be discussed in Section 4.3. This data structure can be specified

in Standard ML as follows:

datatype α rope

= Cat of α rope * α rope

| Leaf of α vector

| Raise of exn

(In practice this structure will be more complicated; it might, for example, be im-

plemented as a red-black tree to support fast balancing.) Exactly how many items

to store in each leaf vector may vary from system to system, and we expect experi-

ence to help us learn to tune this parameter. For the purposes of presentation in the

present work, we will assume the size of the vector at each leaf is four. This is an

unrealistically small number, but it makes for tractable illustrations. For example,

we can depict the parallel array of the first twelve prime numbers as a rope with three

leaves:

42

2 3 5 7 11 13 17 19

23 29 31 37

Representing parallel arrays as ropes confers a variety of advantages. Appending ar-

rays is fast; it is simply the generalization of string concatenation as described above.

Furthermore, the gathering of data into vectors at rope leaves naturally encodes a

favorable parallel execution of certain programs. For example, a computation that

maps a function over each element of a parallel array can do so in parallel for all leaves,

and in sequence at each individual leaf. This delegation of work is described formally

in Section 4.6, but the intuition is as follows. Consider the following example, which

uses the same parallel array of twelve primes pictured above.

let val primes = [| 2,3,5,7,11,13,15,17,23,29,31,37 |]
fun sub1 n = n - 1

in

[| sub1 p | p in primes |]
end

Let us assume it is inefficient to compute all twelve function applications in parallel

with one another, that is, that such a parallel execution would be so fine-grained as

to be inefficient [23]. The shape of the rope representation of primes itself suggests a

simple solution: assign one processing element to each leaf, and map sub1 in sequence

over the values at each leaf. In this setting, adjusting the size of the vectors at leaves

becomes a means of adjusting the granularity of the parallelism in a given execution.2

2. This implementation of parallel mapping bears a relationship to the parmap-interval
in Mohr et al.’s lazy task creation paper [23]. Our solution encodes a hard decomposition
of the computational work in the data structure itself, whereas their parmap-interval

43

4.3 Exceptions

In order to preserve Manticore’s sequential semantics, we need to give special con-

sideration to exceptions. In the presence of parallelism, it might be the case that

multiple exceptions are raised concurrently in a given parallel array, comprehension

or tuple. To be faithful to our sequential semantics, we need to ensure that the

“leftmost” exception—that is, the one that would be raised first in strict sequential

evaluation—is in fact the one raised in Manticore. With respect to the handling of ex-

ceptions, certain troublesome cases can arise when working with flattened structures.

It might also be the case that under fusion, what is semantically a nonterminating

computation could terminate with an exception. Each of these scenarios is considered

in turn.

4.3.1 Raising the Leftmost Exception

For the following examples, we assume we have Ackermann’s function, which takes

a very long time to compute even on small inputs, and a function that raises an

exception quickly.

fun ack(m,n) = if m = 0 then n+1

else if m>0 andalso n=0 then ack(m-1, 1)

else ack(m-1, ack(m,n-1))

fun ack’(m,n) = let val a = ack(m,n)

in if a > 12 then raise TooBig

else a

end

fun intsqrt n = if n<0 then raise Negative

operates on a traditional array, saturating n processing elements with roughly 1-nth of the
work each by computing with array indices.

44

else (* implementation *)

Both elements of the following parallel array will raise exceptions on evaluation.

[| ack’(4,3), intsqrt(~3) |]

The value of ack(4,3) is roughly a twenty thousand digit number, so it’s certainly

bigger than 12 and will trigger the exception TooBig. In a sequential implementation,

these expressions would evaluate left to right, and TooBig would be raised after a long

computation. In a parallel setting, Negative will be raised much sooner than TooBig,

but the computation as a whole must wait for the completion of the evaluation on

the left to respect the sequential semantics.

Our compiler’s representation of ropes includes a special form Raise that exists to

address this issue. Recall the simple rope datatype from Section 4.2, whose variants

are Cat, Leaf and Raise. We define a smart constructor mkCat for ropes as follows:

fun mkCat (Raise e, _) = Raise e

| mkCat (_, Raise e) = Raise e

| mkCat (r1, r2) = compactAndBalance (r1, r2)

(* implementation unspecified *)

(This definition appears in context in Figure A.1 below.) This function encodes the

semantic preference for “left exceptions” via pattern matching.

This approach has the advantage of being simple to implement and easy to reason

about. On the other hand, it is necessary for all functions that operate on ropes to

consider the Raise form. One of many effects of this design is that mkCat must always

be used in favor of direct injection into the rope type with Cat. It is inefficient to

account for exceptions in contexts where they will never be raised. We may design

our type system to distinguish those computations that might raise exceptions from

those that definitely will not, in which case we could construct lighter-weight rope

structures—ropes with no Raise form—when possible. (The present work does not

45

include a design of such a type system.) For the time being, by including a Raise

form in our ropes and using ropes to represent parallel arrays, we are able to compute

with exceptions as specified by our semantics in a straightforward way.

4.3.2 Handling Flattened Structures

Consider the following expression.

let f(n) = if (n<0) then f(n) else (6 div n)

nss = [| [| 1, 2, 3 |], [| 0, ~1, 1 |], [| 1, 6 |] |]
in [| [| f(n) | n in ns |] handle [| |] | ns in nss |]

We assume any expression n div 0 raises the exception Undef. Therefore the function

f returns an integer on positive inputs, raises Undef on zero, and loops forever on

negative inputs.

By inspection, we expect this expression to evaluate to

[| [| 6, 3, 2 |], [| |], [| 6, 1 |] |]

The point of interest here is that f will raise an exception when applied to 0, thereby

preventing the computation from disappearing into an infinite loop. Thus the whole

parallel comprehension containing 0 should defer to its handler and evaluate to [||]as

defined by the sequential semantics.

This expression illustrates a sensitive point in the interaction between exception han-

dling and flattening. Our flattening transformation produces pairs of arrays, with

the first pair a flat array of data represented as a rope (discussed above briefly in

Section 4.2). The nested array nss above will flatten into a pair consisting of the

rope illustrated here and the segment descriptor [|3, 3, 2|]:

46

1 2 3 0 ~1 1 1 6

The illustration shows segment boundaries as a visual aid only: these boundaries

are not directly present in the rope structure. In other circumstances—namely when

exceptions were not involved in the computation—we would simply map f over the

leaves in parallel and over the leaf vectors in sequence, as outlined above. Let us

consider what would happen at each leaf in the present case. On the left, an exception

is raised upon encountering 0. On the right, the computation disappears into an

infinite loop at −1. On the left, we are tempted to annihilate the whole leaf-level

computation, but then we lose the results of computations we still care about, namely

6 div 1, 2 and 3 respectively. On the right, we have a dual problem in that we never

reach the computations to the right of the -1.

These problems arise because in flattening nss we have taken away information that

is essential to the proper behavior of the handler. We still possess the segment

information in the rope’s concomitant segment descriptor, but it is not available

locally.

To describe our solution to this problem, let us first identify the set of parallel com-

prehensions that potentially exhibit this problematic behavior. Define hard-to-handle

expressions to be those expressions

[| e handle e’ | xs in xss |]

where e has type τ array for some τ . Our solution is based on an alternative repre-

sentation of arrays hard-to-handle comprehensions. We can represent hard-to-handle

arrays as ropes of ropes, which is to say not-fully-flattened structures. Such a repre-

47

sentation of nss is as follows:

1 2 3 0 ~1 1 1 6

We will call these structures rumpled as they have not been entirely flattened. These

ropes of ropes are not susceptible to the problems above; whatever handling needs to

take place can take place at the interior nodes (marked with asterisks in the picture).

Our strategy for evaluating hard-to-handle expressions is this. Attempt to perform

the computation, without any exception handling, on the flattened structure. If no

exceptions are raised, then we are finished. If an exception is raised, cancel the eval-

uation of the expression, build a rumpled structure with handlers at the appropriate

interior nodes, and evaluate the expression again. We are guaranteed to handle ex-

ceptions properly under the rumpled representation, so when the second evaluation

finishes we are done.

It is only when we already know that an exception is raised in an expression that

we change over to a rumpled representation. This strategy is based on the assump-

tion that the pattern captured in a hard-to-handle expression is infrequently, if ever,

employed in practice, coupled with the observation that exceptions are raised less

often than not in computations that might raise them. In other words, troublesome

situations like the one presented here are both statically and dynamically rare. There-

fore we are willing to employ an optimistic strategy that favors computations during

which no exceptions are raised. As a result, we accept that the degree of parallelism

offered by our implementation is sometimes compromised, relative to the rest of the

language, in the case of hard-to-handle expressions.

Note that handlers that operate on atomic elements, as in

[| 10 div n handle 1 | n in [| 1, 0, 9, 10, 12 |] |]

48

do not require any special consideration. Handlers in such cases can simply work

at the level of individual function applications at the elements at the leaves. The

strategy we have outlined here is incorporated into the transformation defined in

Figure 4.8 below.

4.3.3 Inadvertently Introducing Nontermination

The following example illustrates how a common fusion transformation might cause

a terminating computation not to terminate.

fun divergeNeg n = if n < 0 then (divergeNeg n) else n

fun valOf (SOME x) = x

| valOf NONE = raise Option

val c =

let val ys = [| SOME ~1, NONE |]
in

[| divergeNeg x | x in [| valOf y | y in ys |] |]
end

The function divergeNeg is the identity function on nonnegative inputs and diverges

on negative inputs. The function valOf returns the value of an option if there is one

to be had, and raises the exception Option otherwise. As it stands, c will terminate

with a raise Option when the inner valOf encounters NONE.

The compiler will be tempted to apply a common fusion transformation to simplify

c by function composition.

val c’ = [|(divergeNeg o valOf) x | x in [| SOME ~1, NONE|]|]

This is an apparent improvement, as two array traversals have been fused into one.

The two programs, however, are observationally different. The subtlety in this case is

49

that c’ will loop forever on (divergeNeg o valOf) (SOME ~1). Therefore we have

demonstrated that function composition has the potential to transform a terminating

computation into a nontermination one. We will need to be mindful of this problem in

designing our fusion mechanism. Tracking exceptions in our type system (a possibility

mentioned above in Subsection 4.3.1) may help us avoid this particular issue. The

details of fusion in Manticore are beyond the scope of the present work, but they will

be addressed in future work.

4.4 Flattening Tuples

In the following discussion we sometimes use “tuple” to mean “parallel tuple” where

the meaning is clear. It must be understood, however, that the only subjects of the

tuple flattening transformation are parallel tuples.

The nesting of parallel tuples has the potential to introduce unwanted barriers in the

parallel execution of a progam. Consider the parallel tuple

(| f x, (| g x, f (g x) |) |)

for some values f, g and x. Each parallel tuple corresponds to a multi-way fork/join

in execution. Consequently, nested tuples—tuples that themselves contain tuples—

induce multiple forks and joins. In this example, we must join twice: once for the

inner tuple, and once for the outer tuple. For efficiency’s sake we would rather have

a single fork spawning the evaluation of each tuple component (in this case three)

followed by a single join. We realize this in Manticore by extending the flattening

transformation to include parallel tuples.

A flat tuple is, roughly speaking, a tuple whose only parentheses are the outermost

ones. (|1, 2.0, "3"|) is a flat tuple; (| (|1, 2.0|), "3"|) is not. More precisely, a

tuple of type τ1 ∗ τ2 ∗ . . . ∗ τn is flat if for all 1 ≤ i ≤ n, τi is not a product type.

Tuples that are not flat are nested.

In the formalism that follows we define a relation T that consumes a parallel tuple

50

and produces a nester, which is a function to build an appropriately-shaped nested

tuple from a flat one, applied to a flat tuple of the subexpressions of the original tuple

in their original left-to-right order.

4.4.1 Flattening Tuples, Formally

To formalize the flattening transformation on parallel tuples, we first define a minimal

term language on which to operate. Terms in this language are ranged over by the

metavariable t. This language consists only of non-empty parallel tuples, which may

be nested, and a generic expression form that is not a parallel tuple, represented by

the term e.

t ::= (| t̄ |) | e

t̄ ::= t, t̄ | t

Correspondingly, we define a language of shapes, ranged over by σ, whose grammar

is isomorphic to the term grammar just defined.

σ ::= (σ̄) | •
σ̄ ::= σ, σ̄ | σ

The s : t → σ and s̄ : t̄ → σ̄ relations calculate shapes from terms. Informally, a

shape is produced from a term by replacing all its expressions e with bullets (•) and

all parallel parentheses with regular parentheses.

s[(|t̄|)] = (s̄[t̄])

s[e] = •
s̄[t, t̄] = s[t] , s̄[t̄]

s̄[t] = s[t]

We now define an operator f[·] that has the effect of removing all the “inner paren-

theses” from a parallel tuple. Here is an example of its application:

f[(|(|1, 2|), (|3, 4, 5|)|)] = (|1, 2, 3, 4, 5|)

51

We must first define a concatenation operator on t̄ terms, which we represent with

the symbol ⊕.

t⊕ t̄ = t, t̄

(t, t̄1)⊕ t̄2 = t, (t̄1 ⊕ t̄2)

The definition of f : t → t necessitates the definition of two auxiliary operations

p : t → t̄ and p̄ : t̄ → t̄. f and p are mnemonics for “flattener” and “parenthesis

remover” respectively.

f[(|t̄|)] = (|p̄[t̄]|)
f[e] = e

p̄[t, t̄] = p[t]⊕ p̄[t̄]

p̄[t] = p[t]

p[(|t̄|)] = p̄[t̄]

p[e] = e

We define a family of shape-indexed operators ∧σ(·) that impose nesting structure

on input tuples according to the indexing shapes. These operators can be written as

simple polymorphic lambda terms, as in the following example:

∧(•,(•,•)) ≡ λ(x1, x2, x3).(x1, (x2, x3))

We will call these operators tuple nesters or simply nesters.

The formal definition of nesters is as follows. We first introduce a language of terms

ν to represent nested tuples of variables. Each variable in a ν term is xi where i is a

positive integer; this simplifies the bookkeeping of variable names.

ν ::= (ν̄) | xi (i ∈ Z+)

ν̄ ::= ν, ν̄ | ν

Then we define nesters as follows by means of auxiliary relations pν : ν → ν and

v : Z+×σ → ν. pν is a no-inner-parentheses relation on ν terms exactly analagous to

52

the similar relation p on terms above and whose formal definition is not given here.

The measure | · | : σ → Z+ gives the number of bullets in a shape; its simple inductive

definition is also omitted. We also employ a concatenation operator ⊕ν for terms of

type ν; its definition is omitted as well. The relations v and v̄ replace every bullet in

a shape with a fresh variable. Semicolons are used to separate the parameters of v to

avoid confusion with commas, which have syntactic significance.

∧σ = λ pν [x] . x where x = v[1, σ]

v[n; (σ̄)] = (v̄[n; σ̄])

v[n; •] = xn

v̄[n; σ, σ̄] = v[n; σ]⊕ν v̄[n + |σ|; σ̄]

v̄[n; σ] = v[n; σ]

We define the tuple flattening transformation operator T as follows:

T [t] → ∧s[t] f[t]

where t is a parallel tuple. The following example shows an application of T .

T [(|e1, (|e2, e3|), (|e4, e5|)|)] = ∧(•,(•,•),(•,•))(|e1, e2, e3, e4, e5|)

In Subsection 4.6.1 we define a language M, which is a simple model of the full

Manticore language. M includes a set of realistic programming constructs such as

conditional expressions, let bindings, and so on. The extension of the formalization

of T to cover M is straightforward, entailing definitions that are longer but not

essentially different than those given here, and as such the extension is left to the

interested reader.

4.5 Fusion

We defer a proper discussion of fusion to future work. In the present work, assume

the fusion rules from Keller’s dissertation apply to Manticore.

53

4.6 The Compiler as a Formal System

We present the semantics of the front end of a Manticore compiler as a series of

program transformations from one language to another. Specifically, we define four

languages: M, which consists of core Manticore constructs, FM, which is flattened

Manticore, that is, Manticore without nested parallel constructs, DM, distributed

Manticore, and finally TM, which is our target language. M, FM and DM are inspired

by Nkl, Fkl and Dkl from Keller’s dissertation [16], which she defined in order to

present transformations on which those in the present work are based. The final step

in our transformation describes implementations of Manticore’s parallel constructs in

TM.

In previous chapters, our Manticore examples freely made use of a variety of standard

functional programming language features, including SML-style records, algebraic

datatypes, and higher-order functions. In this chapter’s formalization, we treat only a

subset of those features that will be present in any realistic Manticore implementation.

Our core language M includes only function definition and application, tuples, let

bindings and conditionals, along with an expression form for each of the languages

features discussed in Chapter 2. The formalization in Keller’s thesis treats a similarly

spare feature set, roughly corresponding to what we present here. Her thesis work,

and specifically her flattening transformation, were extended in later work to cover

datatypes [8] and higher-order functions [19].

The transformation from M to FM is denoted
F−→; the transformation from FM

to DM is denoted
D−→; the transformation from DM to TM is denoted

T−→. Each

transformation is a set of rules that describes how expressions in a source language

L can be rewritten as expressions in a target language L′. These rules fall into three

broad categories:

• identity transformations on values and simple expressions (for example,

n
F−→ n for all integer constants n),

• preexisting rules from Keller’s tranformations, and

54

• new rules addressing constructs in our languages that are not present in Keller’s

languages.

In the present paper, we present rules of the third kind, leaving the other rules im-

plicit. Specifically, we present rules pertaining to exceptions, parallel arrays, parallel

comprehensions, parallel tuples, and parallel bindings.

4.6.1 M

The M language consists of a small core of computational elements, namely function

definition, tuples, let bindings, conditionals, raising and handling exceptions, and

each of the parallel features from Chapter 2. We also include integer and boolean

constants, as well as a small base of necessary basis functions like zips of all arities,

projection operators, and so on. The implicit type system is standard Hindley-Milner

polymorphic typing extended with the typing rules presented with each expression

form in Chapter 2. The grammar of M is given in Figure 4.3.

4.6.2 FM

FM is similar to M but differs in the following respects:

• There is no parallel comprehension form. Parallel comprehensions are rewritten

away in the transformation
F−→.

• There is an anonymous function (λ term) form.

• FM includes forms for the introduction and elimination of futures (see Subsec-

tion 2.5.1).

• Some expression forms have a corresponding lifted form (see below) designated

by a superscript arrow (·↑).

55

D → letrec F1 . . . Fn in E (program)

F → fun V (V1, . . . , Vn) = E (function definitions)

E → C (constants)
| V (variables)
| (E1, . . . , En) (tuples)
| (|E1, . . . , En|) (parallel tuples)
| E1 E2 (function application)
| let P = E1 in E2 (let bindings)
| plet P = E1 in E2 (parallel bindings)
| if E1 then E2 else E3 (conditionals)
| [|E1, . . . , En|] (parallel arrays)
| [|E | V1 in E1, . . . , Vn in En where Et|] (parallel comprehensions)
| [|E1 to E2 by E3|] (ranges)
| E1 <?> E2 (parallel choice)
| raise Undef (raising exceptions)
| E1 handle E2 (handling exceptions)

P → V (variable patterns)
| (P1, . . . , Pn) (tuple patterns)

C → 0 | 1 | − 1 | . . . (integers)
| true | false (booleans)
| () (unit)
| π1 | π2 | . . . (projection functions)
| zip1 | zip2 | . . . (zip functions)
| nil | cons | hd | tl (list functions)

V → variable (variables)

Figure 4.3: The grammar of M.

56

The rules for rewriting M terms into FM terms are given in Figure 4.5. The grammar

of FM is given in Figure 4.4.

4.6.3 DM

The language DM introduces a layer of abstraction to distinguish local sequential

computations from computations that might be executed across processors in par-

allel. Its Loop and Gen forms correspond roughly to foldr and build from the

deforestation literature [13], and they are amenable to similar optimizations. Keller’s

thesis gives a wealth of fusion rewriting rules on various juxtapositions of Loop and

Gen forms; we assume these fusion rules apply to DM as well.

We assume the translation of those FM expressions that correspond to Fkl

expressions—namely, those involving only parallel arrays and function applications—

are translated in DM just as they are translated into Dkl. Thus we present in
D−→

only those rules pertaining to expression forms in FM that have no counterpart in

Fkl. The grammar of DM is given in Figure 4.6. The rules for transforming FM
expressions into DM expressions are presented in Figure 4.8.

4.6.4 TM

Our target language TM is Standard ML extended with amb (see Section 2.8 for its

definition) and the future-related forms introduced in FM. In TM we give concrete

implementations of heretofore abstract parallel operations. Parallel arrays are rep-

resented with ropes (see Section 4.2) and parallel map, parallel filter, et cetera are

defined as operations on those ropes. We have taken care to preserve the sequential

semantics with respect to exceptions; see Section 4.3 for a lengthier discussion.

The grammar of TM is given in Figure 4.10, and the transformation
T−→ is given in

Figure 4.11.

We present a prototype implementation of the compiler in TM in Appendix A. A sim-

57

D → letrec F1 . . . Fn in E (program)

F → fun V (V1, . . . , Vn) = E (function definitions)

E → C (constants)
| V (variables)
| V ↑ (“lifted” variables)
| (E1, . . . , En) (tuples)
| (|E1, . . . , En|) (parallel tuples)
| λV.E (anonymous functions)
| E1 E2 (function application)
| let P = E1 in E2 (let bindings)
| plet P = E1 in E2 (parallel bindings)
| if E1 then E2 else E3 (conditionals)
| [|E1, . . . , En|] (parallel arrays)
| [|E1 to E2 by E3|] (ranges)
| E1 <?> E2 (parallel choice)
| raise Undef (raising exceptions)
| E1 handle E2 (handling exceptions)
| E1 handle↑ E2 (handling exceptions)
| fut E (future introduction)
| touch E (future touching)
| cancel E1 in E2 (future cancellation)
| fut↑ E (lifted future introduction)
| touch↑ E (lifted future touching)
| cancel↑ E1 in E2 (lifted future cancellation)

P → V (variable patterns)
| (P1, . . . , Pn) (tuple patterns)

C → as in M above

V → variable (variables)

Figure 4.4: The grammar of FM.

58

E where E is a nested parallel tuple of type τ (FM-ptup-flat)
F−→0 T (E)

(|E1, . . . , En|) (FM-ptup)
F−→1 let f1 = fut (λ().E1) . . . fn = fut (λ().En)

in (touch f1, . . . , touch fn)

FIXME let ||V1, . . . , Vn|| = ||E1, . . . , En|| in E (FM-plet)
F−→1 let V f

1 = fut (λ().E1) . . . V f
n = fut (λ().En

in [V1 7→ touch V f
1 , . . . , Vn 7→ touch V f

n]tcs E

[|fut e | x in xs |] (FM-fut)
F−→2 fut↑(e, xs)

[|touch e | x in xs |] (FM-touch)
F−→2 let es = [|e | x in xs|] in touch↑ es

[|cancel e1 in e2 | x in xs |] (FM-cancel)
F−→2 let es1 = [|e1 | x in xs |], es2 = [|e2 | x in xs|] in

cancel↑(es1, es2)

[|raise Undef | x in xs |] (FM-r)
F−→2 if xs = [||] then [||] else raise Undef

[|e1 handle e2 | x in xs |] (FM-h)
F−→2 (λx.e1 handle↑ λx.e2) xs′

Figure 4.5: The
F−→ transformation, which proceeds in three stages. The first stage

flattens nested parallel tuples; the operator T is defined in Section 4.4. The second
stage desugars parallel tuples and parallel assignments, and the third stage flattens
nested parallel comprehensions.

59

D → letrec F1 . . . Fn in E (program)

F → fun V (V1, . . . , Vn) = E (function definitions)

E → C (constants)
| V (variables)
| V ↑ (“lifted” variables)
| (E1, . . . , En) (tuples)
| (|E1, . . . , En|) (parallel tuples)
| [|E1, . . . , En|] (parallel arrays)
| E1 <?> E2 (parallel choice)
| λV.E (anonymous functions)
| A (E1, . . . , En) (function application)
| let P = E1 in E2 (let bindings)
| plet P = E1 in E2 (parallel bindings)
| if E1 then E2 else E3 (conditionals)
| raise Undef (raising exceptions)
| E1 handle E2 (handling exceptions)
| E1 handle↑ E2 (handling exceptions)

P → V (variable patterns)
| (P1, . . . , Pn) (tuple patterns)

C → as in M above

A → V
| G

G → Loop(G1, G2, G3)
| Loop↑(G1, G2, G3)
| Gen(G1, G2, G3)
| Gen↑(G1, G2, G3)
| Fut↑(G)
| Touch↑

| Cancel↑

| G1 ×G2

| G1 M G2

| G1 ◦G2

| G1 / G2 . G3

| 〈G〉
| V

V → variable (variables)

Figure 4.6: The grammar of DM.

60

Map f → π1 ◦ Loop(f ◦ π1, trivAcc, trueC)× id (simple maps)
Filter p → π1 ◦ Loop(id , trivAcc, p)× id (simple filters)
Dist → π1 ◦Gen(id , id , trueC 1) (value distribution)

Figure 4.7: Syntactic sugar for DM.

raise Undef (DM-r)
D−→ raise Undef

(λx.e1 handle↑ λx.e2) xs (DM-h-not-par)
D−→ join ◦ 〈Map(λx.(e1 handle e2))〉(split(xs), ())

(λx.e1 handle↑ λx.e2) xss (DM-h-par)
D−→ join ◦ 〈Map(λx.e1〉 (split(xss), ())

handle
joinN ◦ 〈Map(λx.(e1 handle e2)〉 (splitN (xss), ())

[|e1 ... e2 by e3|] (DM-range)
D−→ let (a, b, c) = (e1, e2, e3),n = ((b− a)/c) + 1

in join ◦ 〈π1 ◦Gen (id , λm.m + c, trueC 1)〉 (splitLen n, splitSc a)

fut↑(e, xs) (DM-fut)
D−→ Fut↑(λx.e) xs

touch↑ xs (DM-touch)
D−→ Touch↑ xs

cancel↑ (e1, e2) (DM-cancel)
D−→ Cancel↑ (e1, e2)

Figure 4.8: The
D−→ transformation. The functions joinN and splitN create the

“rumpled” structures discussed in Subsection 4.3.2.

61

datatype α rope
= Cat of α rope * α rope
| Leaf of α vector
| Raise of exn

type seg_desc = int list

datatype α flat_rope = FlatRope of α rope * seg_desc

val mkCat : α rope * α rope -> α rope (* smart constructor *)
val tabulateD : (int -> α) -> int * int -> α rope
val mapD : (α -> β) -> α rope -> β rope
val filterD : (α -> bool) -> α rope -> α rope
val reduceD : (α * α -> α) -> α -> α rope -> α

Figure 4.9: Ropes and rope operations in TM. See Appendix A for more details.

ple rope structure is encoded as a datatype in Figure A.1, along with some auxiliary

functions defining common operations on them (See Figure 4.9 for relevant types).

The functions that compute on these ropes in parallel do so in terms of futures. Rope

traversals are parallelized by computing on right subropes as futures and computing

on left subropes immediately. Recursive appeals to this strategy generate a high

degree of parallelism. The implementation of a parallel tabulating function—that is,

a function that builds a parallel array by applying a function of type int → α to a

given range of integers—is given in Figure A.2. Parallel implementations of map and

filter are presented in Figure A.3.

A trap datatype, for trapping exceptions, is defined in Figure A.4; Traps are used

in the implementation of reduceD (Figure A.5), an abstract parallel sum operator.

ReduceD comsumes an associative operator and an identity element for that operator,

and performs a parallel reduction with that operator on a given rope. A parallel

sum function, for example, is easily expressed as reduceD op+ 0. Finally, three

implementations of “lifted future” combinators are given in Figure A.6; these are

targets of rules in the
T−→ transformation given in Figure 4.11.

62

D → letrec F1 . . . Fn in E (program)

F → fun V (V1, . . . , Vn) = E (function definitions)

E → C (constants)
| V (variables)
| (E1, . . . , En) (tuples)
| fn P => E (anonymous functions)
| amb(E1,E2) (nondeterministic choice)
| E1 E2 (function application)
| let val P = E1 in E2 end (let bindings)
| if E1 then E2 else E3 (conditionals)
| raise Undef (raising exceptions)
| E1 handle E2 => E3 (handling exceptions)
| fut E (future introduction)
| touch E (future touching)
| cancel E1 in E2 (future cancellation)

P → V (variable patterns)
| (P1, ..., Pn) (tuple patterns)

C → as in M above

V → variable (variables)

Figure 4.10: The grammar of TM.

63

join ◦ 〈Map f〉 (split xs, ()) (TM-mapD)
T−→ (propX o mapD f) (mkFlatRope xs)

join ◦ 〈Filter p〉 (split xs, ()) (TM-filtD)
T−→ (propX o filterD p) (mkFlatRope xs)

(joinW ⊕) ◦ 〈π2 ◦ Loop (id ,⊕, falseC 2)〉 (split xs, splitSc 0⊕) (TM-red)
T−→ reduceD circlePlus zero (mkFlatRope xs)

join ◦ 〈Dist〉 (splitSc k, splitLen n) (TM-dist)
T−→ (propX o tabulateD (fn anything => k)) (1, n)

join ◦ 〈π1 ◦Gen (id , λm.m + c, trueC 1)〉 (splitLen n, splitSc a) (TM-range)
T−→ (propX o tabulateD (fn m => a+m*c)) (0, n)

Fut↑ f xs (TM-fut)
T−→ futureMapS f xs

Touch↑ xs (TM-touch)
T−→ touchS xs

Cancel↑ (xs, ys) (TM-cancel)
T−→ cancelS (xs, ys)

join ◦ 〈π1 ◦ Loop (f, g, b)〉 (split xs, a) (TM-loop-seq)
T−→ loopS (f, g, b) (xs, a)

join ◦ 〈π1 ◦Gen (f, g, b)〉 (ns, ks) (TM-gen-seq)
T−→ genS (f, g, b) (ns, ks)

Figure 4.11:
T−→

CHAPTER 5

RELATED WORK

Parallel programming languages are a hot topic. Many other parallel programming

languages are under active development both in industry and in academia. This

section surveys a selection of related projects contemporary with our own.

Our most direct sources of inspiration are the data-parallel functional languages

NESL, Nepal, and Data Parallel Haskell, with a focus on the relevant contributions

in Keller’s dissertation. The connections between these languages and Manticore are

numerous and have been detailed in the preceding chapters.

5.1 StreamIt

The StreamIt programming language [31] is built around the notion of composable

units called filters. A filter is an abstraction containing a function work of type

α → β that, when attached to an input stream of type α, yields a stream of type β

whose values are the resulting of applying work to the values of the input stream.

Filters can be aggregated into three different kinds of structures: pipelines,

splitjoins and feedbackloops. A pipeline is a linear composition of filters

such that the component filters are applied in sucession. A splitjoin splits the

values of its input stream into multiple values according to a specified means, pro-

cesses each of them, and feeds the results to its output stream according to another

specified means. A feedbackloop is a filter that both yields its outputs to a stream

and feeds them back into its input.

We show here an encoding of these StreamIt filters in Manticore using explicit thread-

ing. We thereby demonstrate to a coarse approximation that StreamIt programs can

64

65

encoded in Manticore.

type (α, β) filter = (α chan, β chan, α -> β, unit -> unit)

fun mkFilter (a: α chan, work: α -> β) : (α, β) filter =

let val b = channel ()

fun pop () = recv a

fun push(x) = send (b, x)

fun go () = (push (work (pop ())); go ())

in

(a, b, work, go)

end

fun mkPipeline (ab: (α, β) filter, bg: (β, γ) filter) : (α, γ) filter =

let val (a, _, work1, _) = ab

val (_, g, work2, _) = bg

fun pop () = recv a

fun push(x) = send (g, x)

fun work’ = work2 o work1

fun go () = (push (work’ (pop ())); go ())

in

(a, g, work’, go)

end

66

datatype sj = Duplicate | Roundrobin of int list

fun mkSplitjoin (a: α chan, ab1: (α, β) filter, ab2: (α, β) filter,

Duplicate, Roundrobin []) : (α, β) filter =

(* note: only one sj combination presented *)

let val b = channel ()

val (_, _, work1, _) = ab1

val (_, _, work2, _) = ab2

fun pop () = recv a

fun push x = send (b, x)

fun go () = let val x = pop ()

pval w2 = work2 x

in

push (work1 x); push w2; go ()

end

val switch = cell () (* assume CML implementation *)

fun work x = let val b = get switch

in put (switch, not b);

(if b then work1 else work2) x

end

in

put (switch, true);

(a, b, work, go)

end

fun mkFeedbackloop (body: (α, α) filter,

loop: (α, α) filter,

Duplicate, Roundrobin []) =

(* note: only one sj combination presented *)

let val (bIn, bOut, bWork, _) = body

val (lIn, lOut, lWork, _) = loop

fun pop () = recv lOut

fun push(x) = (send (bOut, x); send (lIn, x))

67

fun work = lWork o bWork

fun go () = (push (work (pop ())); go ())

in

(bIn, bOut, work, go)

end

val (intChan, floatChan) = (channel (), channel ())

val intToFloatFilter = mkFilter (intChan, intToFloat)

val negateFloatFilter = mkFilter (floatChan, neg)

val p = mkPipeline (intToFloatFilter, negateFloatFilter)

// StreamIt program

int->int filter RunningTotal {
int t;

init {t = 0;}
work {t += pop(); push(t);}

}

(* Manticore program *)

val runningTotal =

let val t = cell ()

fun rsum x = (put (t, t+x); t + x)

in

mkFilter (channel (), rsum)

end

5.2 Cilk

The Cilk programming language [5, 14] is an extension of C with additional constructs

for expressing parallelism. Cilk has demonstrated success in various domains. For

example, three world-class chess programs have been implemented in it: ?Tech [18],

68

?Socrates [15], and Cilkchess [1]. Cilk is an imperative language, and, as such, its

semantics is different from Manticore’s in some obvious ways.

Superficially, Cilk appears to be annotated C. Cilk extends C with the following

keywords: cilk, spawn, sync, inlet, abort, and SYNCHED. Each one is considered in

relation to Manicore in turn.

The keyword cilk is a modifier designating a Cilk procedure, that is, one that may

make use of parallelism. Any C procedure can be trivially preceded by this modifier

to be transformed into a Cilk procedure, as in

cilk int f(int x) {return x;}

Any given Cilk program consists of a collection of C procedures and Cilk procedures.

Cilk procedures can call C procedures and Cilk procedures, whereas C procedures

can only call C procedures. In Manticore, there is no distinction in the language

between those functions that might execute in parallel and those that will not, so we

have no mechanism analagous to cilk. Another obvious difference between Cilk and

Manticore is the presence of side effects in the former and their absence (except those

pertaining to exceptions and communication) in the latter.

Cilk procedures call other Cilk procedures with the use of the spawn. A spawned

procedure starts running in parallel, and its parent procedure continues execution. In

this way, spawned Cilk procedures are similar to Manticore expressions bound with

pval. For example, the following Cilk procedure computes
(n
k

)
by means of parallel

recursive calls.

cilk int choose(int n, int k) {

if (k == 1) {

return n;

} else if ((k == n) || (k == 0)) {

return 1;

} else {

int a, b;

69

a = spawn choose(n-1, k-1);

b = spawn choose(n-1, k);

return (a + b);

}

}

Spawned procedure statements are not expressions. Specifically, the return state-

ment in choose cannot be expressed in the following way:

return ((spawn choose(n-1, k-1)) + (spawn choose(n-1, k)));

This limitation is overcome by binding each sub-computation to its own variable,

then computing with those variables, as in choose above.

In Manticore, a similar function can be written using parallel bindings:

(* mchoose: int * int -> int *)

fun mchoose (n, k) =

if (k=1) then n

else if ((k=n) orelse (k=0)) then 1

else let pval a = mchoose (n-1, k-1)

pval b = mchoose (n-1, k)

in (a + b) end

The behavior of this Manticore function is essentially the same as that of the Cilk

function. Both are pure functions, and their control flow is identical.

One can employ parallel tuples in Maticore to express the same function. The fol-

lowing expression is the behavioral equivalent of the parallel bindings in mchoose

above:

op+ (| mchoose (n-1, k-1), mchoose (n-1, k) |)

This form happens to be more concise than the parallel binding form, but there is no

urgent reason to prefer one to the other. The behavioral differences between parallel

70

tuples and parallel bindings are only made manifest when the speculative aspect of

parallel bindings is in play (see Section 2.5).

The Cilk statement sync suspends execution until all pending parallel procedure calls

are complete. We can insert a sync statement into the return branch of the procedure

choose as follows:

a = spawn choose(n-1, k-1);

b = spawn choose(n-1, k);

sync;

return (a + b);

The presence of the sync statement guarantees that the two spawned procedures

are finished before their values are added together. We were able to omit a sync

statement in the definition of choose above because Cilk inserts a sync statement

before return statements if no sync is present. A similar synchronization occurs

in mchoose whether we use the parallel binding or the parallel tuple form, but that

synchronization is implicit in Manticore. In fact, it can only be implicit, as Manticore

provides no direct way to express what sync expresses.

Cilk provides a pseudo-variable SYNCHED to allow programs to test dynamically

whether or not all pending processes are complete in a given context. In the Cilk

manual [14], SYNCHED is presented as a means of conserving space, as in the following

example:

state1 = alloca(state_size);

spawn foo(state1);

if (SYNCHED) state2 = state1;

else state2 = alloca(state_size);

spawn bar(state2);

In this example memory is allocated for state2 only if the memory allocated for

state1 is still in use. Since Manticore has no shared state, this use of SYNCHED is not

applicable to the present work. One can imagine using SYNCHED to throttle parallelism

71

to keep live data under control. At present, Manticore provides no similar mechanism

for dynamic performance tuning.

A Cilk inlet is a nested procedure with special properties. Its first “argument”

must be a spawn statement, and all of its (zero or more) subsequent arguments

must be expressions. The execution of an inlet is guaranteed to be atomic with

respect to other inlets that are children of the same parent procedure. The following

implementation of fib presents an inlet in context.1

cilk int fib(int n) {

int x = 0;

inlet void add(int r) {

x += r;

return;

}

if (n<2) return n;

else {

add(spawn fib(n-1));

add(spawn fib(n-2));

return x;

}

}

Note the atomicity guarantee of inlets with respect to its siblings ensures the correct-

ness of x when it is returned; in other words, atomicity prevents races to increment x.

This particular inlet is essentially unrelated to Manticore, which has no assignment.

Functional inlets, that is, inlets free of side effects, are easily simulated in Manticore,

since pure Manticore functions can be defined in any scope.

The most interesting point of consideration about inlets has to do with their inter-

action with abort statements. Any inlet can include an abort. An abort cancels

all pending computations of a common parent process. It provides a straightforward

1. This is a paraphrase of an example in the Cilk manual [14].

72

means of expressing speculative computation, whose evaluation semantics are differ-

ent from any programs that can be written in Manticore. We explore these differences

below.

We claim that while a large set of parallel programs can be expressed in both Cilk

and Manticore, there are some programs which can be expressed in one but not the

other. That is, the languages are not merely imperative and functional versions of a

common essential language. Two examples demonstrate this claim.

First, we consider a Manticore program that cannot be written down (at least not in

any obvious way) in Cilk.

val a = let pval x = foo ()

pval y = bar ()

in

case e (* e does not use x or y *)

of true => x

| false => y

end

This Manticore program computes x, y, and e in parallel. When e has been fully

evaluated, the program follows the appropriate arm of the case expression, where one

of x or y is cancelled mid-flight.

We can attempt to write the same program in Cilk as follows:

int x, y, c;

x = spawn foo();

y = spawn bar();

c = e;

sync;

if (c) then return x;

else return y;

This program also evaluates x, y, and e in parallel, but the sync statement suspends

73

control until all three are finished evaluating, even though either the value of x or

the value of y is ultimately not needed. We cannot leave out the sync statement and

hope for the best: if we leave out sync, the behavior of the program is unspecified.

Note that while we (implicitly) cancel one arm of the conditional in the Manticore

program, we cannot cancel only one of x and y in the Cilk program. In summary, the

Manticore program has the potential to exhibit greater and finer-grained parallelism

than its Cilk counterpart.

On the other hand, Cilk’s abort statement makes it possible to control the can-

cellation of parallel computations according to any logic the programmer requires.

Consider the following Cilk inlet. We assume that some integer s is under considera-

tion as a possible solution to some unspecified problem. The program is charged with

gathering solutions until some quota is met. When the quota has been attained, the

program cancels all pending computations, having gathered the solutions found into

a stackOfSolutions.

inlet int f(int s) {
if (isASolution(s))

push(stackOfSolutions, s);

if (stackSize(stackOfSolutions) == quota)

abort;

}

We cannot easily write a similar program in Manticore. We can compute precisely one

of a number of possible solutions in parallel by means of the parallel choice operator:

val sol = e1 <?> e2 <?> . . . <?> en

When one of the expressions in this chain of parallel choices is done evaluating, all

others will be cancelled. There is, however, no obvious way to write the program that

computes two (or more) solutions such that all pending computations are cancelled.

One can construct an entirely unreasonable program to return two solutions as follows:

val sols = (e1, e2) <?> (e1, e3) <?> . . . <?> (e1, en) <?>

74

(e2, e3) <?> . . .

. . . <?> (enminus1, en)

This program evaluates quadratically more expressions than the original. In general,

this technique results in exponentially bigger code size, and terrible performance; it

is clearly not a realistic practice.

These examples demonstrate that neither Manticore nor Cilk provides finer-grained

control than the other in general: either language provides finer control depending

on the circumstances.

5.3 Other Contemporary Parallel Languages

5.3.1 pH

pH [25], a descendant of Id [24], is an implicitly parallel functional language with

shared mutable state and an explicit sequencing operator (>>>). pH closely resem-

bles Haskell. In pH, the programmer has almost no say about how a computation

is divided into parallel subcomputations. pH ’s arrays are like Manticore’s parallel

arrays, its comprehensions are like Data Parallel Haskell’s parallel comprehensions,

and its tuples are like Manticore’s parallel tuples. The designers of pH believe ex-

plicitly managing control in a given program can be left to expert programmers in

those special circumstances where fine distinctions in performance are important, and

they have designed a language that essentially precludes the possibility of improving

performance by manipulating control explicitly. Our design allows the programmer

more control through its mixture of sequential, concurrent and parallel mechanisms.

pH provides mutable state in two forms, I-structures and M-structures. I-structures

are updateable memory cells that are initially empty and can be written to exactly

once in their lifetime; they can be read from arbitrarily many times. If a computation

tries to read the contents of a I-structure and that structure is empty, it suspends

computation until a value has been written to that structure. M-structures, by con-

75

trast, can not only be read from arbitrarily many times, they can also be written to

arbitrarily many times. Reading from an M-structure will suspend computation until

a value is present. There are two operations for reading M-structures, fetch and ex-

amine. Fetching from an M-structure empties its location; the M-structure will need

to be written to again to satisfy any subsequent attempts to read it. Examining an

M-structure yields its value, but leaves its value intact. I-structures and M-structures

can both be encoded in CML [26], so they can correspondingly be encoded in Manti-

core. We are currently considering more basic language support for pH -style shared

mutable data in Manticore, but we have yet to reach a conclusion about this aspect

of our design.

pH does include an explicit sequencing operator, written >>>. The presence of this

operator makes it possible to write sequential programs in pH, i.e., one can employ it

to write programs that blatantly violate the spirit pH altogether. Nevertheless, there

are situations where the use of this operator simplifies certain tasks considerably.

Programs with output effects, for example, might require their effects to occur in a

predictable order. Such programs can be written clearly and simply with judicious use

of explicit sequencing. The issue of having a separate operator for explicit sequencing

does not arise in Manticore, given the abundance of sequential constructs in our

language.

In a given pH program, every tuple is parallel tuple; in Manticore, we can write

similar programs by using parallel tuples only. The situation is similar with arrays,

comprehensions, and bindings. Where pH ’s sequencing operator >>> is used to sus-

pend evaluation until values x1, x2, ..., xn have finished evaluation, a Manticore

program can induce similar behavior by binding all pending values in an assignment

to a (sequential) tuple:

val >>> = (x1, x2, ..., xn)

In summary, we believe that pH programs can be written in Manticore by providing

the appropriate parallel annotations and using “synchronizing bindings” like the one

above where necessary.

76

5.3.2 Eden

Eden [20] is a parallel functional language closely related to Haskell. Eden inherits

many of Haskell’s distinguishing characteristics, including type classes and lazy eval-

uation. Unlike Manticore, Eden is specifically designed for use on distributed parallel

machines; thus the focus of their implementation is fundamentally different from ours.

Eden programs are based on skeletons. Skeletons are essentially higher-order functions

that capture common program structures: they are similar to map and filter but

there are more of them and (traditionally) there is a fixed set of them. The original

work on skeletons [11] focuses on the suitability of particular skeletons for certain

parallel systems; users make informed choices about which skeletons to employ based

on knowledge of their performance on a given target system. Eden is distinguished

from its predecessors in that it allows programmers to create and develop their own

skeletons in the surface language.

The higher-level concerns of the design of Eden are in many ways close to our own.

It appears that Eden programs can be translated into Manticore programs, appealing

to CML-style constructs where data parallel constructs are insufficient. Nevertheless,

Manticore’s single-machine focus will continue to differentiate it from Eden as both

projects move forward.

5.3.3 The DARPA HPCS Languages

The DARPA HPCS is the Defense Advanced Research Projects Agency’s High Pro-

ductivity Computing Systems project. Their initiatives include funding development

of three major parallel language projects: X10, Fortress, and Chapel. All three

are imperative languages designed for use on machines with very large numbers of

processing elements, thus, they differ from Manticore both in paradigm and target

architectures.

X10 [28], Chapel [7] and Fortress [30] are imperative languages with high-level parallel

77

constructs. X10 is, by design, close to Java, superficially and otherwise. Some of X10’s

features are similar to corresponding features in Manticore: X10 supports “parallel

collective operations” on arrays, provides (explicit) futures and has an exception-

catching feature that passes exceptions up tree structures. Chapel has forall loops

and forall expressions, and Fortress has aggregates and comprehensions, both of

which are similar to our parallel comprehensions. Arrays in Chapel and Fortress are

operated on in parallel by default, similar to our parallel arrays. The main differences

between these languages and ours seem to be their imperative nature and their focus

on supporting object-oriented programming. Because all three languages have shared

mutable state, their language designs are largely focused on notions of atomicity, a

topic our design does not currently address.

APPENDIX A

IMPLEMENTATION SKETCHES

This appendix contains outlines of our implementations of various Manticore con-

structs and combinators. These sketches are largely concerned with ropes (see Sec-

tion 4.2) and traversals on them.

datatype α rope
= Cat of α rope * α rope
| Leaf of α vector
| Raise of exn

type seg_desc = int list

datatype α flat_rope
= FlatRope of α rope * seg_desc

(* mkCat : α rope * α rope -> α rope *)
(* smart constructor for ropes *)
fun mkCat (Raise e, _) = Raise e
| mkCat (_, Raise e) = Raise e
| mkCat (r1, r2) = compactAndBalance (r1, r2)

(* implementation unspecified *)

(* propX : α rope -> α rope *)
(* propagate exceptions out of ropes *)
fun propX (Raise e) = raise e
| propX r = r

(* cancelOrCat : α rope * α rope future -> α rope *)
fun cancelOrCat (Raise e, f) = (cancel f in Raise e)
| cancelOrCat (r, f) = mkCat (r, touch f)

Figure A.1: Ropes in TM.

78

79

(* tabulateS : (int -> α) -> int * int -> α vector *)
(* sequential tabulation *)
fun tabulateS f (lo, hi) =

let fun build (n, acc) =
if n > hi then rev acc
else build (n+1, f(n)::acc)

in
Vector.fromList (build (lo, []))

end

(* tabulateD : (int -> α) -> int * int -> α rope *)
(* distributed tabulation *)
(* assumes the existence of the value "leafsize" *)
fun tabulateD f (lo, hi) =

let val tabS = tabulateS f
val nLeaves = ceil (real(hi - lo + 1) / real(leafsize))
fun tabD (loLeaf, hiLeaf) =

if (loLeaf = hiLeaf) then
let val l = lo + (loLeaf * leafsize)
in

Leaf (tabS (l, min(l+leafsize-1, hi)))
handle e => Raise e

end
else

let val piv = (loLeaf + hiLeaf) div 2
val f2 = fut (fn () => tabD (piv+1, hiLeaf))
val r1 = tabD (loLeaf, piv)

in
cancelOrCat (r1, f2)

end
in

tabD (0, nLeaves-1)
end

Figure A.2: Rope construction functions in TM.

80

(* mapD : (α -> β) -> α rope -> β rope *)
fun mapD f xs =

let fun m (Cat (r1, r2) =
let val f2 = fut (fn () => m r2)
in

cancelOrCat (m r1, f2)
end

| m (Leaf v) = (Leaf (Vector.map f v))
handle e => Raise e

| m (Raise e) = Raise e
in

m xs
end

(* vfilter : (α -> bool) -> α vector -> α vector *)
fun vfilter pred v =

let val vlist = Vector.foldr op:: [] v
in

Vector.fromList (List.filter pred vlist)
end

(* filterD : (α -> bool) -> α rope -> α rope *)
fun filterD p xs =

let fun f (Cat (r1, r2)) =
let val f2 = fut (fn () => f r2)
in

cancelOrCat (f r1, f2)
end

| f (Leaf v) = (Leaf (vfilter pred v))
handle e => Raise e

| f (Raise e) = Raise e
in

f xs
end

Figure A.3: Distributed map and filter in TM.

81

datatype α trap
= Value of α
| Exn of exn

(* release : α trap -> α *)
fun release (Value v) = v
| release (Exn e) = raise e

Figure A.4: The trap abstraction in TM.

(* reduceD : (α * α -> α) -> α -> α rope -> α *)
(* assumptions: oper is associative, zero is its identity *)
fun reduceD oper zero xs =

let fun r (Cat (r1, r2)) =
let val f2 = fut (fn () => r r2)

val r1’ = r r1
in

case r1’
of Exn e => (cancel f2; Exn e)
| _ => let val r2’ = touch f2

in
case r2’
of Exn e => Exn e
| _ => Value (oper (release r1’,

release r2’))
end

end
| r (Leaf v) = (Vector.foldr oper zero v)

handle e => Exn e
| r (Raise e) = Exn e

in
release (r xs)

end

Figure A.5: Distributed reduction in TM.

82

(* futureMapS : (α -> β) -> α list -> β future list *)
fun futureMapS f xs =

let fun m [] = []
| m (x::xs) =

let val ffx = fut (fn () => f x)
in

ffx::(m xs)
end

in
m xs

end

(* touchS : α future list -> α list *)
fun touchS fs = map (fn f => touch f) fs

(* cancelS : α future list * β list -> β list *)
fun cancelS (as, bs) =
ListPair.map (fn (a, b) => cancel a in b) (as, bs)

Figure A.6: Futuristic traversals in TM.

REFERENCES

[1] The cilkchess website (http://supertech.csail.mit.edu/chess/).

[2] Josh Barnes and Piet Hut. A hierarchical o(n log n) force calculation algorithm.
Nature, 324:446–449, December 1986.

[3] Guy E. Blelloch. Programming parallel algorithms. Communications of the
ACM, 39(3):85–97, March 1996.

[4] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein,
and Marco Zagha. Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 21(1):4–14, 1994.

[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded
runtime system. SIGPLAN Not., 30(8):207–216, 1995.

[6] Hans-J. Boehm, Russ Atkinson, and Michael Plass. Ropes: an alternative to
strings. Software—Practice & Experience, 25(12):1315–1330, 1995.

[7] David Callahan, Bradford L. Chamberlain, and Hans P. Zima. The Cascade High
Productivity Language. In Proceedings of the Ninth International Workshop on
High-Level Parallel Programming Models and Supportive Environments (HIPS
’04), pages 52–60, Los Alamitos, CA, April 2004. IEEE Computer Society Press.

[8] Manuel M. T. Chakravarty and Gabriele Keller. More types for nested data
parallel programming. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, pages 94–105, New York, NY, Septem-
ber 2000. ACM.

[9] Manuel M. T. Chakravarty, Gabriele Keller, Roman Leshchinskiy, and Wolf Pfan-
nenstiel. Nepal – Nested Data Parallelism in Haskell. In Proceedings of the 7th
International Euro-Par Conference on Parallel Computing, volume 2150 of Lec-
ture Notes in Computer Science, pages 524–534, New York, NY, August 2001.
Springer-Verlag.

[10] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data Parallel Haskell: a status report. New York,
NY, USA, 2007. ACM Press.

83

84

[11] John Darlington, A. J. Field, Peter G. Harrison, Paul H. J. Kelly, D. W. N. Sharp,
and Q. Wu. Parallel programming using skeleton functions. In PARLE ’93:
Proceedings of the 5th International PARLE Conference on Parallel Architectures
and Languages Europe, pages 146–160, London, UK, 1993. Springer-Verlag.

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. In Proceedings of the Sixth Symposium on Operating Systems
Design and Implementation, pages 137–150, December 2004.

[13] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In FPCA ’93: Proceedings of the conference on Functional pro-
gramming languages and computer architecture, pages 223–232, New York, NY,
USA, 1993. ACM Press.

[14] Supercomputing Technologies Group. Cilk 5.4.3 (rev 3379) Reference Manual.
2007.

[15] C. Joerg and B. Kuszmaul. Massively parallel chess. In Third DIMACS Parallel
Implementation Challenge Workshop, Rutgers University, 1994.

[16] Gabriele Keller. Transformation-based Implementation of Nested Data Paral-
lelism for Distributed Memory Machines. PhD thesis, Technische Universität
Berlin, 1999.

[17] Gabriele Keller and Manuel M. T. Chakravarty. On the distributed implemen-
tation of aggregate data structures by program transformation. In José Rolim
et al., editors, Parallel and Distributed Processing, Fourth International Work-
shop on High-Level Parallel Programming Models and Supportive Environments
(HIPS’99), number 1586 in Lecture Notes in Computer Science, pages 108–122,
Berlin, Germany, 1999. Springer-Verlag.

[18] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, May 1994.

[19] Roman Leshchinskiy, Manuel M. T. Chakravarty, and Gabriele Keller. Higher
order flattening. In V. Alexandrov, D. van Albada, P. Sloot, and J. Dongarra, ed-
itors, International Conference on Computational Science (ICCS 2006), number
3992 in LNCS, pages 920–928, New York, NY, May 2006. Springer-Verlag.

[20] Rita Loogen, Yolanda Ortega-mallén, and na-maŕı Ricardo Pe˙Parallel functional
programming in eden. Journal of Functional Programming, 15(3):431–475, 2005.

[21] John McCarthy. A Basis for a Mathematical Theory of Computation. In P. Braf-
fort and D. Hirschberg, editors, Computer Programming and Formal Systems,
pages 33–70. North-Holland, Amsterdam, 1963.

85

[22] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, Cambridge, MA, 1997.

[23] Eric Mohr, David A. Kranz, and Robert H. Halstead Jr. Lazy task creation:
a technique for increasing the granularity of parallel programs. In Conference
record of the 1990 ACM Conference on Lisp and Functional Programming, pages
185–197, New York, NY, June 1990. ACM.

[24] Rishiyur S. Nikhil. ID Language Reference Manual. Laboratory for Computer
Science, MIT, Cambridge, MA, July 1991.

[25] Rishiyur S. Nikhil and Arvind. Implicit Parallel Programming in pH. Morgan
Kaufmann Publishers, San Francisco, CA, 2001.

[26] John H. Reppy. Concurrent Programming in ML. Cambridge University Press,
Cambridge, England, 1999.

[27] Jr. Robert H. Halstead. Multilisp: a language for concurrent symbolic compu-
tation. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[28] Vijay Saraswat. Report on the experimental language x10. Technical report,
IBM, February 2006.

[29] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Programming with
sets; an introduction to SETL. Springer-Verlag New York, Inc., New York, NY,
USA, 1986.

[30] Guy L. Steele Jr. Parallel programming and code selection in Fortress. In
Proceedings of the 2006 ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming, page 1, New York, NY, March 2006. ACM.

[31] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A
language for streaming applications. In Computational Complexity, pages 179–
196, 2002.

