THE UNIVERSITY OF CHICAGO

EFFECTIVE SCHEDULING TECHNIQUES FOR HIGH-LEVEL PARALLEL
PROGRAMMING LANGUAGES

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY
MICHAEL ALAN RAINEY

CHICAGO, ILLINOIS
AUGUST 2010

Copyrightlc 2010 by Michael Alan Rainey

All rights reserved

To Beth, my friends and colleagues, my family, and most of all, my parents, without whom this

dissertation would not have been possible.

TABLE OF CONTENTS

LISTOFFIGURES e e e e e e e Vi

LISTOF TABLES e e e e e e viii

ACKNOWLEDGEMENTS e e e e e e 1

ABSTRACT o e 2

CHAPTER

1 INTRODUCTION e e e e e e e e e 4
1.1 NestedData Parallelism. 5
1.2 Taskscheduling 6
1.3 Workstealing e 8
1.4 OVEIVIEBW o e e e 9
1.5 LazyPromotion e 9
1.6 LazyTreeSplitting e 12
1.7 Outline e e 13

2 CONTEXT . . . e e e e e 15
21 PML . . e 15
2.2 PML benchmarkprograms 18
2.3 Testmachine 21
2.4 Manticore e e 22
2.5 The Manticore schedulingsystem 32
26 Workstealing 39

3 LAZY PROMOTION e e e e e e e 43
3.1 Motivation e 43
3.2 TheWSLPpolicy e 45
3.3 Implementing WS LP inManticore 50
3.4 Empirical evaluation 61
3.5 Relatedwork 72
3.6 Summary e e e e 76

4 LAZY TREE SPLITTING e e e e e e e 77
4.1 Lazytreesplittingforropes. 82
4.2 Evaluation e 92
4.3 Relatedwork e 99
4.4 DISCUSSION o v v e e e e e 103
45 SUMMANY e e e e e e e 104

5 IMPLEMENTING WORK STEALING IN MANTICORE 106
5.1 Taskcancellation 106
52 TheWSLPschedulerloop 114
5.3 Thevprocinterruptmechanism 116
54 Summaryandrelatedwork 119

6 CONCLUSION e e e e e 123
6.1 Lazy Promotion e e 124
6.2 LazyTree Splitting e 125
6.3 Implementing work stealing in Manticore 126
6.4 Futuredirections 126

REFERENCES e 130

LIST OF FIGURES

2.1 Parallel tree-productfunction Lo 16
2.2 Parallelarrays. 17
2.3 Quicksortin PML 21
24 SMVMINPML e 21
25 NestedSumsinPML 21
26 FibinPML e 22
27 TheManticoreheap e 25
2.8 Atomicoperations. 31
2.9 Therun operation e 35
2.10 Theforward operation e 36
2.11 VProcpreemption e e e e 36
2.12 Fiber-localstate 37
2.13 The basic round-robin thread scheduler 38.
3.1 Breakdown of work-stealingoverheads 44,
3.2 WS LP per-processor schedulingloop. 47.
3.3 The structure of the parallel executiongraph 48.
3.4 WSLPinitialization. 48
3.5 WSLPthiefsubroutine. 49
3.6 WS LPvictimsubroutine.. 50
3.7 Threedequeoperations. 52.
3.8 Parallel tree-product function after clone compilation. 56.
3.9 The full clone translation for parallel tuples. 59
3.10 Parallel speedup of our lazy-promotion work-stealing system over sequential Nston
3.11 Comparative speedup plots for the three versions of our system. 64. .
3.12 Comparative speedup plots for the three versions of our system. 65. .
3.13 Comparative speedup plots for the three versions of our system. 66. .
4.1 Two fragile implementations of the rope-map operation. 78.
4.2 The ETS implementation of the rope-map operation. 79.
4.3 Parallel efbciency is sensitive$&T (16 processors). 80
4.4 The LTS implementation of the rope-map operation.. 84.
4.5 Operationsoncontexts e e e 87
4.6 Operationsoncontexts e e 88
4.7 ThemapUntil operation. 89
4.8 Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.94.
4.9 Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.95.
4.10 Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.96.
4.11 Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.97.
4.12 The effect of varying max leaf sidé (16 processors) 100
5.1 Thetypeotancelable 107

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Operationsovercancelables. 108.

Cancelwrapper. e 109
por cells 111
Thepor function.. 112
Ratio of cancellation overhea@() to work-stealing overhead(,s). 113
Cancellation time for n-Queens benchmark. 114.
Time percanceled bber. 114
WS LP loop implemented inBOM 117

Vil

3.1
3.2
3.3
3.4
3.5

4.1

LIST OF TABLES

Execution-time breakdown (inseconds) G8.
Execution-time breakdown (inseconds) 69.
Garbage collection time statistics (inseconds) 70.
Garbage collection time statistics (inseconds). 71.
L3 Read+Write Cache Misses (inmillions). 73

The performance of LTS for seven benchmarks. 98.

viii

ACKNOWLEDGEMENTS

| would like to thank my parents, Christine and John, the rest of my family, and Beth for their
constant love and support. | want to give special recognition to my parents, who are the most
dedicated and loving parents a son could hope for.

My advisor, John Reppy, was instrumental in my success as a graduate student, going well
beyond the call of duty to give me useful criticism, technical insights, and steadfast support. Thank
you John.

Thanks to my other committee members, Matthew Fluet and Anne Rogers, for their insightful
feedback and help in proofreading this dissertation.

My thanks go out to the members of the Manticore project who helped me immensely during
my time as graduate student. Adam Shaw and Lars Bergstrom were always willing to listen to
my ideas and ready to help me sharpen them. Matthew Fluet provided me with many insights and
thoughtful criticism of my work.

To my classmates over the years, Lars Bergstrom, Matthew Hammer, Casey Klein, Jacob
Matthews, Matthew Rocklin, Adam Shaw, Borja Sotomayor, and Andy Terrel: you have enriched
my time in graduate school beyond measure.

| would like to thank David S. Wise for mentoring me while | was an undergraduate. His
guidance gave me the conbdence to continue to graduate school.

The research presented in this dissertation was supported by the NSF, under the NSF Grants

CCF-0811389 and CCF-0937561.

ABSTRACT

In the not-so-distant past, parallel programming was mostly the concern of programmers special-
izing in high-performance computing. Nowadays, on the other hand, many of todayOs desktop and
laptop computers come equipped with a species of shared-memory multiprocessor called a multi-
core processor, making parallel programming a concern for a much broader range of programmers.
High-level parallel languages, such as Parallel ML (PML) and Haskell, seek to reduce the com-
plexity of programming multicore processors by giving programmers abstract execution models,
such as implicit threading, where programmers annotate their programs to suggest the parallel de-
composition. Implicitly-threaded programs, however, do not specify the actual decomposition of
computations or mapping from computations to processors. The annotations act simply as hints
that can be ignored and safely replaced with sequential counterparts. The parallel decomposition
itself is the responsibility of the language implementation and, more specibcally, of the scheduling
system.

Threads can take arbitrarily different amounts of time to execute, and these times are difpcult to
predict. Implicit threading encourages the programmer to divide the program into threads that are
as small as possible because doing so increases the Rexibility the scheduler in its duty to distribute
work evenly across processors. The downside of such Pne-grain parallelism is that if the total
scheduling cost is too large, then parallelism is not worthwhile. This problem is the focus of this
dissertation.

The starting point of this dissertation is work stealing, a scheduling policy well known for its
scalable parallel performance, and the work-prst principle, which serves as a guide for building
efpcient implementations of work stealing. In this dissertation, | present two techniques, Lazy
Promotion and Lazy Tree Splitting, for implementing work stealing. Both techniques derive their
efbciency from adhering to the work-brst principle. Lazy Promotion is a strategy that improves
the performance, in terms of execution time, of a work-stealing scheduler by reducing the amount
of load the scheduler places on the garbage collector. Lazy Tree Splitting is a technique for auto-

2

matically scheduling the execution of parallel operations over trees to yield scalable performance
and eliminate the need for per-application tuning. | use Manticore, PMLOs compiler and runtime
system, and a sixteen-core NUMA machine as a testbed for these techniques.

In addition, | present two empirical studies. In the prst study, | evaluate Lazy Promotion over
six PML benchmarks. The results demonstrate that Lazy Promotion either outperforms or performs
the same as an alternative scheme based on Eager Promotion. This study also evaluates the design
of the Manticore runtime system, in particular, the split-heap memory manager, by comparing the
system to an alternative system based on a unibed-heap memory manager, and showing that the
unibPed version has limited scalability due to poor locality. In the second study, | evaluate Lazy
Tree Splitting over seven PML benchmarks by comparing Lazy Tree Splitting to its alternative,
Eager Tree Splitting. The results show that, although the two techniques offer similar scalability,

only Lazy Tree Splitting is suitable for building an effective language implementation.

CHAPTER 1
INTRODUCTION

For many years, chip manufacturers were able to regularly produce faster and faster chips by taking
advantage of increases in chip clock frequency. This approach reached its limit because increasing
clock frequency required extremely high levels of power and, consequently, unacceptable amounts
of heat. Chip manufacturers have since turned to multicore processors in an effort to continue
offering performance increases across successive generations of chips. A multicore processor
is a kind of shared-memory multiprocessor in which there are multiple processorgres)
contained on a single chip. Multicore processors are now commodity machines, found in laptops,
desktops, and embedded computers.

One consequence of this shift is that programmers must use parallelism to take advantage of
future improvements in chip technology. In this dissertation, | am interested in high-level paral-
lel programming languages, which are languages that abstract away from the details of mapping
parallel computations onto parallel hardware. High-level parallel languages have the potential to
reduce the complexity of programming multiprocessors, much as garbage-collected languages re-
duced the complexity of application programming. They enable the programmer to focus on the
algorithms and data structures for solving a problem without having to worry about aspects like
task communication, which can be challenging to get right because of the potential for deadlocks
and race conditions.

My work focuses on supportingmplicitly-threaded parallelism, where the programmer pro-
vides hints about which computations might benebt from parallelism, but the details are left to the
implementation. In particular, my work is in the context of Parallel ML (PML) [31, 33, 34, 35],
which is a parallel functional language that supports implicit threading and nested data paral-
lelism, a well-known style of parallel programming that originated with tresNprogramming
language [8]. A large part of my work is about supporting nested data parallelism effectively.

High-level parallel languages rely on language implementations, as opposed to the program-
4

mer, to manage parallelism effectively. Despite major advances in language-implementation tech-
nology, there is still a major obstacle: a lack of techniques for building language implementations
that have predictably-good parallel performance across many programs. This dissertation repre-
sents my effort to address this issue.

The rest of this section is as follows. | give background on nested data parallelism, the problem
of scheduling tasks created by nested data-parallel programs, and the well-known work-stealing
policy for scheduling tasks. Then | describe the main contributions of my work, Lazy Promotion
and Lazy Tree Splitting, which are techniques for increasing the effectiveness of the implementa-

tions of high-level parallel languages.

1.1 Nested Data Parallelism

Nested Data Parallelism (NDP) is a declarative style for programming irregular parallel applica-
tions. NDP languages provide language features favoring the NDP style, efbcient compilation
of NDP programs, and various common NDP operations like parallel maps, Plters, and sum-like
reductions. NDP languages includeesL [8], Data-parallel Haskell [19], IntelOs Ct [38], and
PML [33, 34]. NDP originated as a generalization of the data-parallel programming style found
in languages such as High Performance Fortran and C*. Unlike these data-parallel forbears, NDP
languages can naturally express nesting of data-parallel operations. Such nesting enables NDP to
cover a wider range of algorithms, including irregular ones [7]. In NDP, irregular parallelism is
achieved by the property that nested arrays do not need to have regular, or rectangular, structure;
i.e., subarrays may have different lengths.

Programs written in NDP express parallel computation primarily through two idioms: recursion
and higher-order functions on collectioresg(, maps). NDP and the style of functional program-
ming are alike in this regard. So, it is not surprising that NDP bts naturally in functional pro-
gramming languages. Purely functional languages are an especially attractive framework for NDP
because these languages admit aggressive optimizations, such as fusion of NDP operations [17],

5

that are difbcult or impossible to apply in imperative languages.

PML [31, 33, 34, 35] is a purely-functional, parallel subset of Standard ML [59], that offers
a variety of features for expressing parallelism, including NDP. PML is supported by the system
called Manticore [31, 32, 35], which consists of a PML compiler, a scheduling system, and a
memory manager. | use Manticore as the test bed of my work.

Much past work has focused on developing efbcient NDP algorithms. There is now a large
body of NDP algorithms made available by the research community, and these algorithms are
known to express large amounts of parallelism [78]. In this dissertation, | focus on the imple-
mentation of NDP in a functional language and discuss how various designs affect performance.

Primarily, | conPne my interest to execution time as a measure of performance.

1.2 Task scheduling

NDP has two characteristics that are simultaneously useful for NDP programmers and challenging
for language implementers. First, NDP applications are divided into small pieces of parallel work.
This characteristic gives a scheduler the Rexibility it needs to distribute work evenly across proces-
sors. Second, NDP applications create large amounts of parallel work. This characteristic offers
portability in the sense that programmers can write NDP programs irrespective to the number of
processors, yet still be conbdent that applications will have sufpcient work to take advantage of
many or most processors.

A taskis a small, independent thread of control. In order to enable parallelism, the system
spawns off parallel tasks, each of which consist of one or more pieces of NDP work. These
two aforementioned NDP characteristics pose the following challenge for implementing efbcient
scheduling: since each task inevitably involves some scheduling cost, total scheduling cost can be
large. If the total scheduling costs are too large, parallelism is not worthwhile, and as such, this
problem is fundamental for NDP implementations. This dissertation work focuses on this problem.

Past work on task scheduling typically used an abstract computation model based on directed,

6

acyclic graphs (DAGs) and an associated cost model for predicting the application run time [13,
14, 65]. Each node in the DAG corresponds to a point of parallel introduction (fork), parallel
elimination (join), or a task (sequence of machine instructions that are executed serially). An edge
between two nodes denotes a sequential dependency between those nodes. A task is ready to
execute once all the nodes it depends on have executed. The cost model is as follows. Executing
a DAG node has unit cost. Thwork (T;), is the run time on a single processor, or equivalently,

the total amount of time to execute all the tasks in the DAG. §gendenotes the longest chain of
dependencies in the DAG. The length of the span) corresponds to the run time on an inPnite
number of processofsyhich is the time to execute the tasks located on the span.afége
parallelism (T = T{/T+) represents the maximum theoretical speedup for a given application.
For a given application witfi 5 average parallelism, we can expect scalable parallel performance
whenTp # P, whereP is the number of processors. In this dissertation, | conbne my interest to
such scalable parallel applications.

This dissertation uses the notion of task scheduling given by Spoonhower [82]:

A task scheduling policydetermines the schedule, which is the order in which tasks

are evaluated and the assignment of parallel tasks to processors.

An online task scheduling policgletermines the schedule while the application executes, as op-
posed to astatic scheduling policy, which determines the schedule before running the applica-
tion. Online policies are preferable for use with applications in which task run times vary and
are difbcult or impossible to predict. Indeed, there are many applications for which this condi-
tion holds [78], and it is this kind of OirregularO parallelism that is of primary interest for this

dissertation.

1. The span length is sometimes called dbgsh.

1.3 Work stealing

The starting point of this dissertation work is a particular task scheduling policy catiddsteal-

ing. Many parallel languages use work stealing, including Cilk++ [51], X10 [77], Fortress [58],
and IntelOs Threading Building Blocks [47]. The principle of work stealing is that idle workers
which have no useful work to do should bear most of the scheduling costs and busy workers which
have useful work to do should focus on Pnishing that work. In online work stealing, the system as-
signs a group of processors to collaborate on a given computation. Idle processorshealiesl

obtain work bystealingtasks from busy processors, calladtims[16, 40, 62].

The number of steals is a key performance metric because each steal operation involves com-
munication among processors. Minimizing the total amount of communication is crucial because,
if processors communicate too much, parallelism is not worthwhile. The effectiveness of work
stealing follows, in large part, from the property that, for a given application, the total number of
steals is small. Theoretical studies of work stealing give an upper bound on the expected number
of steals and empirical studies conPrm the theoretical bound, showing that the number of steals is
indeed small for many parallel applications [3, 14]. Supposing a given application has sufbcient
parallelism (e., To # P, whereP is the number of processors), processors rarely need to steal
and consequently spend most of their time busy doing useful work.

Some scheduling costs have a larger impact on run time than others. As a consequence of
AmdahlOs law, the best way to reduce the total scheduling cost is to bnd the subcosts that matter
most and focus on reducing them. Importantly, in an implementation of work stealing, we can
attribute each operation as contributing to the work overhead or span overhead.

The theoretical analysis on work stealing is crucial for Pnding the most signibcant subcosts.
Because processors stay busy most of the time, we can associate the work overhead with the
common case and the span overhead with the rare casewditkebrst principle states that a
design should focus on reducing costs associated with the work overhead, even at the expense of

increasing costs associated with the span overhead [36].

8

1.4 Overview

This dissertation is about designing language implementations, in particular the parts of these im-
plemenations that are relevant to work stealing, that support a variety of parallel-programming
constructs in a functional language on a shared-memory multiprocessor. The goal of this disser-
tation is to develop technigues that increase the effectiveness of such language implementations.
Specibcally, | characterize the effectiveness of a language implementation as the extent to which
its performance is robust, where robust performance means that performance is scalable across
many applications and platforms without requiring any per-application tuning.

My thesis statement is as follows.

The work-prst principle is a useful guide for building effective implementations of

high-level parallel languages.
The contributions of my dissertation work are in two parts:

¥ Lazy Promotion addresses scalable performance by demonstrating techniques that reduce

the amount of overhead per task.

¥ Lazy Tree Splitting addresses scalable and robust performance by demonstrating techniques

that automatically and adaptively coarsen the granularity of tasks.

1.5 Lazy Promotion

There are many studies on implementations of work stealing and implementations of parallel mem-
ory managers, but none yet which considers the two in combination. In Chapter 3, | present a
study of the latter type. In this work, | present a new implementation of ManticoreOs work-stealing
scheduler and a performance study demonstrating scalable parallel performance across several

benchmarks. | use the following design methodology:

Design the memory manager brst, then adapt the scheduling policy to the memory

manager (not vice versa).

My rationale for using this methodology consists of two parts. First, total memory-management
costs are usually larger than costs imposed by the work stealing scheduler. Second, memory man-
agementis a less structured problem than scheduling in the following sense: memory management
has no common case in general that serves as a guide for reducing communication costs; on the
other hand, work stealing does have such a common case, as debned by the work-pPrst principle.
One way to reduce the communication costs is to introduce structure into the memory management
scheme. For example, the approach used by Manticore relies on separation of state across proces-
sors. Given the design of an efbcient memory manager, the design of an efpcient work-stealing
scheduler follows readily from the work-pbrst principle.

ManticoreOs memory manager usesld-heap architecturein which the heap is organized
into processor-local areas and a shared global area. Processors collect their local heaps indepen-
dently and asynchronously, without using any explicit inter-processor synchronization. The global
heap is collected by a stop-the-world parallel collector.

Global-heap collections are expensive because they necessarily involve inter-processor syn-
chronization and atomic operations that can saturate the memory bus. On the other hand, local-
heap collections are cheap because they involve no inter-processor communication. We support
independent local collections across processors by relying on a strict separation of state across
processors. In particular, there can be no object in the global heap that points to an object in some
local heap and there can be no object in some local heap that points to an object in another local
heap.

As an consequence of these heap invariants, if we want to share a heap object between two or
more processors, we must Ppsbmotethat object to the global heap. Promoting some heap object
X involves copying to the global heap the object graph that is rooted &romotion is a major

source of overhead in Manticore because promotion involves copying and promotion increases the

10

size of data in the global heap, which in turn increases the number of costly global collections.

The work stealing scheduler can use one of two promotion policiesagier promotion for
each task, the scheduler promotes the object represeritjugt before spawning. In lazy pro-
motion, for each task, the scheduler delays promoting the object represemntundil just before
stealingt. The theoretical analysis of work stealing predicts that, for large parallel applications,
steals are rare and spawns are common. Therefore, we expect a work-stealing scheduler based
lazy promotion to promote fewer heap objects, on average, than a work-stealing scheduler based
on eager promotion. Because promotion is expensive, the work-pPrst principle predicts that the lazy
promotion strategy will offer better performance than eager promotion.

The main results of this work come from a following performance study that compares three
implementations of Manticore on a sixteen-core machine across several PML benchmark pro-
grams. Two of these implementations are based on lazy and eager promotion. The other imple-
mentation is a ORat-heapO version of Manticore, which uses a just the global heap. | compare the
split- and Rat-heap implementations because one might question the benebt of using split-heap
design on a shared-memory machine.

The results are as follows. Eager and lazy promotion have similar performance in some cases
but lazy promotion is faster for the benchmarks that exhibit high garbage-collection (GC) loads.
The slowdowns of eager promotions are caused by extra time spent doing promotion and global
GC. Flat heap is, in each case, much slower than split-heap versions and does not scale beyond
eight processors. Furthermore, the Rat-heap mutator is much slower than the split-heap mutator.
The obvious culprit for the Rat heapOs poor performance is poor memory locality. | present a study

of cache performance that supports this claim.

11

1.6 Lazy Tree Splitting

On its face, implementing NDP operations seems straightforward because individual array ele-
ments are natural units for creating tadk€orrespondingly, a simple strategy is to spawn off one
task for each array element. This strategy is unacceptable in practice, as there is a scheduling cost
associated with each taskd., the cost of placing the task on a scheduling queue) and individual
tasks often perform only small amounts of work. As such, the scheduling cost of a given task might
exceed the amount of computation it performs. If scheduling costs are too large, parallelism is not
worthwhile.

One common way to avoid this pitfall is to group array elements into bxed-size chunks of
elements and spawn a task for each chiltdger Binary Splitting(EBS), a variant of this strategy,
is used by IntelOs TBB [47, 75] and Cilk++ [51]. Choosing the right chunk size is inherently
difpcult, as one must Pnd the middle ground between undesirable positions on either side. If the
chunks are too small, performance is degraded by the high costs of the associated scheduling and
communicating. By contrast, if the chunks are too big, some processors go unutilized because
there are too few tasks to keep them all busy.

One approach to picking the right chunk size is to use static analysis to predict task execution
times and pick chunk sizes accordingly [83]. But this approach is limited by the fact that tasks
can run for arbitrarily different amounts of time, and these times are difPcult to predict in specibc
cases and impossible to predict in general. Dynamic techniques for picking the chunk size have
the advantage that they can base chunk sizes on runtime estimates of systeityaBinary
Splitting (LBS) is one such chunking strategy for handling paradielall loops [86]. Unlike
the two aforementioned strategies, LBS determines chunks automatically and without programmer
(or compiler) assistance and imposes only minor scheduling costs. LBS sticks to the work-prst

principle by deferring most scheduling costs to the rare cases, such as when some processors are

2. I do not addresfartening (or vectorizing) [50, 52] transformations here, since the techniques of this paper apply
equally well to Rattened or non-Rattened programs.

12

likely to be idle.

Chapter 4 presents an implementation of NDP that is based on my extension of LBS to binary
trees, which | calLazy Tree Splitting(LTS). LTS supports operations that produce and consume
trees where tree nodes are represented as records allocated in the heap. We are interested in op-
erations on trees because Manticore, the system that supports PMLyppesefl5], a balanced
binary-tree representation of sequences, as the underlying representation of parallel arrays. My
implementation is purely functional in that it operates functionally over persistent data structures,
although some imperative techniques are used under the hood for scheduling.

LTS exhibits performance robustness, which is a highly desirable characteristic for a parallel
programming language, for obvious reasons. Prior to ManticoreOs adoption of LTS, Manticore
usedEager Tree Splitting(ETS), a variation of EBS. My experiments demonstrate that ETS lacks
performance robustness: the tuning parameters that control the decomposition of work are very
sensitive to the given application and platform. Furthermore, | demonstrate that the performance

of LTS compares favorably to that of (ideally-tuned) ETS across our benchmark suite.

1.7 Outline

This dissertation consists of six chapters.

Chapter 2 provides context for the rest of this dissertation, including background on the fol-
lowing topics: First, | describe PML, the programming language that | use as a basis for building
parallel programs. Second, | present several PML benchmarks that | use for experiments appearing
later in the dissertation. Third, | describe the hardware platform on which | carry out experiments.
Fourth, | describe Manticore, the system that supports PML. Fifth, | describe ManticoreOs schedul-
ing system, which is a collection of primitive mechanisms for building scheduling policies. Sixth,
| provide background on work stealing.

Chapter 3 presents ManticoreOs work-stealing scheduler, which is based on the technique of
Lazy Promotion. This chapter includes a description of the scheduling algorithm and its imple-

13

mentation. This chapter also includes an empirical study of the technique.

Chapter 4 presents Lazy Tree Splitting, a technique for scheduling the execution of parallel op-
erations that produce and consume trees. From this technique, | build an effective implementation
of nested data parallelism. This chapter includes a description of the algorithm, associated data
structures, and an empirical evaluation comparing Lazy Tree Splitting to Eager Tree Splitting.

Chapter 5 presents, several low-level aspects ManticoreOs implementation of work-stealing,
including the work-stealing scheduler loop, the task-cancellation mechanism, and the processor-
interrupt mechanism.

The closing chapter summarizes these results and suggests future work.

14

CHAPTER 2
CONTEXT

21 PML

PML [31, 33, 34, 35] is a purely-functional, parallel subset of Standard ML [59], that offers a
variety of features for expressing parallelism. This section gives an overview of parts of PML that
are relevant to this dissertation, including the sequential part of PML, the Pne-grain parallelism

features, and CML.

2.1.1 Sequential programming

The sequential part of PML corresponds to a restricted subset of Standard ML (SML) [59] that
provides a variety of parallel-programming mechanisms.

PML supports the functional elements of SML, including datatypes, polymorphism, type in-
ference, and higher-order functions, and an imperative element: exceptions. PML has two main

simplibcations over SML.:
¥ PML has no mutable datae. no references or arrays.

¥ The PML module system is a subset of SMLOs module system in which there are no functors.

2.1.2 Fine-grain parallelism

In PML, Pne-grain parallelism is expressed by parallel tuples and parallel arrays.

Parallel tuples

The expression

(| e, ..., e

15

datatype tree
= Lf of int
| Nd of tree = tree

fun trProd (Lf i) =
| trProd (Nd (iL, tR)) =
(op *) (| trProd tL, trProd tR)

Figure 2.1: Parallel tree-product function

serves as a hint to the compiler and runtime that the subexpressians, e, are candidates for
parallel evaluation. Up to of these subexpressions can evaluate in parallel. There is an implicit
barrier synchronization on the completion of all subexpressions. The result of the expression is an
ordinary tuple value. Figure 2.1 contains an example use of a parallel tuple to compute in parallel

the product of the leaves of a binary tree of integers.

Parallel thunk lists

PML provides another simple fork-join mechanism, which enables parallelism over arbitrary-

length sequences of computations. The operation
val parN : (unit -> Oa) list -> Oa list

serves as a hint to the compiler that the given list of thunks are candidates for parallel evaluation.
Please note thagarN can be readily implemented in terms of parallel tuples. PML offendN
as a primitive because PML uses a more efpcient implementation that is not visible to application

programmers.

Parallel arrays

PML provides gparallel array type constructorgarray) and operations to map, blter, reduce,
and scan these arrays in parallel. Like most languages that support NDP, PML includes compre-

hension syntax for maps and blters, but for this dissertation we omit the syntactic sugar and restrict

16

type Oa parray

val range : int * int -> int parray

val subP : Oa parray = int -> Oa

val lengthP : Oa parray -> int

val concatP : Oa parray list -> Oa parray

val mapP: (Oa -> Ob) -> Oa parray -> Ob parray
val filterP . (Oa -> bool) -> Oa parray

-> Oa parray

val reduceP : (Oax* Oa-> Oa -> Oa -> Oa parray
-> Oa

val scanP : (Oax* Oa-> Oa -> Oa -> Oa parray
-> Oa parray

Figure 2.2: Parallel arrays.

ourselves the interface shown in Figure 2.2. The funatamge generates an array of the integers
between its two argumentsyubP subscripts a value from a given position in the given parallel ar-
ray, lengthP returns the number of elements in the given parallel arraycandatP returns
the parallel array which is the concatenation of the given list of parallel amaggP, filterP
andreduceP have their usual meaning, except that they can be evaluated in parallskamfel
produces a prebx scan of the array. These parallel-array operations have been used to specify both
SIMD parallelism that is mapped onto vector hardware. (IntelOs SSE instructions) and SPMD
parallelism where parallelism is mapped onto multiple cores; this paper focuses on exploiting the
latter.

One simple example is main loop of a ray tracer, which generates an image ofwvaaltti

heighth.

fun raytrace (w, h) =
mapP (fn y => mapP (fn x => trace (X, Y))
(range (O,w - 1))
(range (0,h - 1))

This parallel map within a parallel map is an examplei@dted data parallelism. Note that the
time to compute one pixel depends on the layout of the scene, because the ray cast from position
(x,y) might pass through a subspace that is crowded with refl3ective objects or it might pass

through relatively empty space. Thus, the amount of computation acrosade¢x,y) ex-

17

pression (and, therefore, across the inmapP expression) can differ signibcantly depending on
the layout of the scene. A robust technique for balancing the parallel execution of this unbalanced

computation is the primary contribution of this paper.

2.1.3 Concurrent ML

Concurrent ML (CML) is a language for programming concurrent applications [73]. CML pro-
vides concurrent threads. Threads synchronize and communicate via message passing over named
channels.

By including CML with implicit threading, PML supports a form of two-level parallelism. A
PML program consist of one or more CML threads executing concurrently, possibly on different
processors. Each CML thread can, at any instant, evaluate an implicitly-threaded computation. In
this model, each CML thread acts as a kind of SPMD processor for implicitly-threaded computa-
tions.

For example, one could imagine a 3-d game in PML where there is one CML thread that
handles rendering, multiple CML threads that handle Al agents, and multiple CML threads that
handle user interaction. There must be some limited, coarse-grain parallelism among these CML
threads. The rendering and Al threads could also express parallelism by using PMLOs implicit-

threading features.

2.2 PML benchmark programs

For benchmarking, | use six programs taken from the suite of PML benchmarks. Each program
is written in a pure, functional style and was originally written by other researchers and ported to

PML.

Quicksort Figure 2.3 shows the Quicksort PML program. In this program, we take a parallel

array of integers calleds and return a brand new parallel array containing the elements

18

of xs in ascending order. The algorithm is similar to the one found in many introductory
textbooks, and it works as follows. s contains one or fewer elements, we retum
because it is already sorted. Otherwise, we pick a pivot elemant partitiorxs into three

parts based op. The parts contain all elementsxd that are equal to, less than, and greater
thanp respectively. The prst partition is already sorted because all of its elements are equal.
The other two partitions we sort recursively. Finally, we concatenate the tree subarrays to

form the sorted result.

We express parallelism in two ways: the parallel tuple lets the expression for building the
prst partition and two recursive calls be evaluated in parallel, and the parallel-array Plters let
the partitions be built in parallel. This algorithm has expected va(klogn) and expected

span lengtiO(log n) wheren is the length of the input array. It follows that the expected
average parallelism i©(n), which, for largen is ample parallelism to take advantage of

many processors.

Our Quicksort benchmark sorts a sequence of 1,000,000 integers in parallel. This code is

based on the HsL version of the algorithm [78].

Barnes Hut The Barnes Hut benchmark [4] is a classic N-body problem solver. Each iteration has
two phases. In the brst phase, a quadtree is constructed from a sequence of mass points. The
second phase uses this quadtree to accelerate the computation of the gravitational force on
the bodies in the system. Our benchmark runs 20 iterations over 200,000 particles generated

in a random Plummer distribution. Our version is a translation of a Haskell program [37].

Raytracer The Raytracer benchmark render@s6$ 256image in parallel as two-dimensional
sequence, which is then written to a Ple. The original program was written in ID [66] and is
a simple ray tracer that does not use any acceleration data structures. The sequential version
differs from the parallel code in that it outputs each pixel to the image Ple as it is computed,

instead of building an intermediate data structure.

19

SMVM SMVM is a prime example of irregular parallelism which computes the multiplication of
a sparse matrix with a dense vector. Figure 2.4 shows SMVM in PML. This program uses
the compressed row format, a well-known representation for sparse matrices. In the matrix,
eachrow is represented by a parallel array of index-value pairs where the indices specify

the columns where the associated values are located.

A matrix is simply a parallel array ofows . The multiplication of the sparse matrix by
the dense vector is implemented ymvm For eachrow, we compute the dot product of
that row withv. The dot product operation implemented dgtp multiplies elements of

a givenrow with corresponding elements of the given returning the sum of all these

multiplication results.

The algorithm has worlkO(m) and span lengti®(logn) wherem is the total number of
nonzeroes and is the maximal-length row of the sparse matrix, which means that the aver-

age parallelism i©(m/ logn).

The matrix contains 1,091,362 elements and the vector 16,614. This code is based on the

NESL version of the algorithm [78].

DMM The DMM benchmark is a dense-matrix by dense-matrix multiplication in which each

matrix is100$ 10Q

Tree Rootbx The Tree RootbPx benchmark takes as input a tree structure in which each node is
annotated with a value and returns, for each node, the sum of the values on the path from
the root of the tree down to that node. This code is based on #&. Nersion of the

algorithm [78] and we use it to measure the performance o$¢aeP operation.

| also use two synthetic benchmarks to test various aspects of the system.

Nested SumsFigure 2.5 shows the Nested Sums benchmark, which is a synthetic benchmark that

exhibits irregular parallelism.

20

val quicksort : int parray -> int parray
fun quicksort xs =
if lengthP xs <= 1 then xs

else let
(* select some pivot element p from xs *)
val p = subP (xs, lengthP xs div 2)
val (eq, It, gt) = (| filterP (fn x => x = p) xs,
filterP (fn x => x < p) xs,
filterP (fn x => x > p) xs |)
in
concatP [lt, eq, of]
end
Figure 2.3: Quicksort in PML
type row = (int * float) parray
type matrix = row parray
val dotp : row = float parray -> float
fun dotp (row, v) = sumP (mapP (fn (i, X) => x * subP(v, i)) row)
val smvm: matrix = float parray -> float parray
fun smvm (m, v) = mapP (fn row => dotP (row, v)) m

Figure 2.4: SMVM in PML

Fib Figure 2.6 shows a PML program that computeszﬁl% Pbonaci number. The program uses

a nave algorithm that runs in exponential time.

2.3 Test machine

Experiments reported in this dissertation were performed on a test machine with the following
specibcations: The machine has four quad-core AMD Opteron 8380 processors running at 2.5GHz.

Each core has a 512Kb L2 cache and shares 6Mb cache with the other cores of the processor. The

let fun upTo i = range (O, i)
in mapP sumP (mapP upTo (range (0, 5999)))
end

Figure 2.5: Nested Sums in PML
21

fun fib n =
(case n
of 0 =>0
| 1 =>1
| n=>(op +) (] fib (n-1), fib (n-2) |))

val x = fib 29

Figure 2.6: Fib in PML

system has 32Gb of RAM and is running Debian Linux (kernel version 2.6.31.6-amd64). | ran each
experiment 10 times and report the average performance results. For most of these experiments
the standard deviation was below 1%, but in 10 (out of 144 experiments) the deviation was over

4%. The worst-case deviation was 6.66%or this reason, | omit error bars from plots.

2.4 Manticore

Manticore serves as a bridge from PML programs to shared-memory multiprocessors, such as our
test machine. Manticore consists of a PML compiler, parallel memory manager, and a scheduling
system for the various types of parallelism that can be expressed in PML. This section outlines the
main aspects of the system, including the process model, the memory-management scheme, and
the language called BOM on top of which all scheduling and synchronization code is written. In

the sequel, | describe the Manticore scheduling system in detail.

2.4.1 Process model

Manticore could use a process model in which each CML thread or task is hosted by a different
operating-system thread. This model has the advantage that scheduling is provided by the oper-
ating system, which would obviate the need for scheduling in Manticore, thus greatly simplifying

the Manticore implementation. This technique does not scale to large numbers of threads or tasks

1. Specibcally, the worst case was a deviation of 0.19 seconds on an average of 2.85 seconds for the lazy-promotion
version of Quicksort on 16-processors.

22

because the cost of managing operating-system threads is too high in general. Furthermore, an
operating-system often lacks scheduling policies that are sufbcient for managing Pne-grain com-
putations.

Manticore has a user-level process model that sits on top of a more primitive process model,
such as operating-system threads or hardware processors. ManticoreOs model includes two types
of processes: Wberis a lightweight thread of control. girtual processor(vproc) is a processing
element that executes bPbers. There are a bxed number of vprocs and an unbounded number of
Pbers. At any instant during execution, a given vproc is either idle or executing a Pber.

Manticore assigns vprocs to hardware threads or operating-system threads, such as POSIX
threads (pthreads), as is the case in this dissertation. This design, although portable across many
systems, has the disadvantage that Manticore has little control over the scheduling of pthreads.
Many operating systems allow the operating-system scheduler to deschedule pthreads at any time
for an arbitrary duration, and even worse, to migrate pthreads to different hardware processors.
Some operating systems, such as Linux, offer an afbnity extension to bind pthreads to distinct
processors. The current Manticore implementation relies on this feature. But this feature, however,
does not prevent vprocs from being preempted by the operating system scheduler. Systems with
threading libraries, such as Manticore, would benebt from a mechanism that provides some control
over operating-system scheduling, such as a mechanism to dedicate a hardware processor to a

pthread. Investigating the design of such a mechanism is beyond the scope of this dissertation.

2.4.2 Memory management

Functional languages tend to have high allocation rates and require efbcient garbage collectors.
The Manticore heap architecture is designed to maximize locality and to minimize synchronization
between processors. This design is based on a combination of the approach of Doligez, Leroy, and
Gonthier (DLG) [25, 26] and AppelOs semi-generational collector [1].

The heap is organized into a local heap for each vproc and a global heap shared by all vprocs.

23

Following Appel [1], each local heap is divided into a nursery where new objects are allocated
and an old-object region. The local heaps all have bxed size, whereas the global heap consists of
an unbounded number of Pxed-size heap chunks. Each vproc OownsO several global-heap chunks.
The set of global-heap chunks are partitioned among vprocs.

Figure 2.7 illustrates the heap organization for a three-processor system. Like the DLG collec-
tor, ManticoreOs collector maintains two heap invariants (in Figure 2.7, the invariants are indicated
by crossed-out lines): First, there is no object in the global heap that contains a reference to an
object in some local heap. Second, there is no object in some local heap that contains a reference
to an object in some other local heap. These invariants let us implement a local-heap collector in
which processors collect their local heaps independently and without synchronization.

The Manticore runtime system uses four different kinds of garbage collection:

Minor GC is used to collect the nursery by copying live data into the old region of the local heap.
After a minor GC, the remaining free space in the local heap is divided into half and the

upper half is used as the new nursery.

Major GC is used to collect the old data in the local heap. The major collector is invoked at the
end of a minor collection when the amount of local free space is below some threshold. The
major collector copies the live old data into the global heap (except for the data that was just

copied by the minor collector; it is left in the local heap).

Promotion is used to copy objects from the local heap to the global heap when they might become
visible to other vprocs. For example, if a thread is going to send a message, then the message

must be promoted brst, since the receiver can be running on a remote vproc.

Global GC is used to collect the global heap. The global collector is invoked when a major col-
lection detects that the amount of data allocated in the global heap has exceeded a threshold.
The global collector is a stop-the-world parallel collector. We currently do not attempt to bal-

ance the load from global collector; each vproc traces the from-space data that is reachable

24

Global heap

"5 2 -0
\?/O\/

‘ o—9

local heap local heap local heap

A B

Figure 2.7: The Manticore heap
from its roots, stopping when it hits a forward pointer.

There are two important consequences of this heap design. On the positive side, most garbage-
collection activity is asynchronous. The minor collections require no synchronization with other
vprocs, and major collections and promotions only require synchronization when the vprocOs
global chunk becomes full and a new chunk must be acquired. The major drawback of this de-

sign is that any data that might be shared across vprocs must be promoted into the global heap.

2.4.3 Ropes

Manticore uses ropes as the underlying representation of parallel arrays. Ropes, originally pro-
posed as an alternative to strings, are persistent balanced binary tressastftontiguous arrays
of data, at their leaves [15]. For the purposes of this dissertation, we view the rope type as having

the following dePnition:

datatype Oa rope
= Leaf of Oa seq
| Cat of Oa rope =* Oa rope

25

although in ManticoreOs actual implementation there is extra information i@athenodes to
support balancing. Read from left to right, the data elements at the leaves of a rope constitute the
data of a parallel array it represents.

Since ropes are physically dispersed in memory, they are well-suited to being built in parallel,
with different processors simultaneously working on different parts of the whole. Furthermore, the
rope data structure is persistent, which provides, in addition to the usual advantages of persistence,
two special advantages related to memory management. First, the system can avoid the cost of
store-list operations [1], which would be necessary for maintaining an ephemeral data structure.
Second, a parallel memory manager, such as the one used by Manticore [32], can avoid mak-
ing memory management a sequential bottleneck by letting processors allocate and reclaim ropes
independently.

As a parallel-array representation, ropes have several weaknesses as opposed to contiguous
arrays of, say, unboxed doubles. First, rope random access requires logarithmic time. Second,
keeping ropes balanced requires extra computation. Third, mapping over multiple ropes is more
complicated than mapping over multiple arrays, since the ropes may have different shape. As |
show in performance studies in Chapters 3 and 4 these weaknesses are not crippling by themselves,
yet | am aware of no study in which NDP implementations based on ropes are compared side by
side with implementations based on alternative representations, such as contiguous arrays.

The maximum length of the linear sequence at each leaf of a rope is controlled by a compile-
time constanM . At run-time, a leaf contains a number of elememtsuch thaO % n % M. In
general, rope operations try to keep the size each leaf as clddeas possible, although some
leaves will necessarily be smaller. We @der demand that a rope maximize the size of its leaves,
as doing so would involve lots of extra computation with little gain.

Our rope-balancing policy is a relaxed, parallel version of the sequential policy used by Boehm,
et al. [15]. The policy of Boehmer al. is as follows. For a given ropeof depthd and lengtm,

the balancing goal id % &0gy, n' + 2. This property is enforced by the function

26

val balance : Oa rope -> Oa rope

which takes a rope and returns a balanced rope equivalent {oeturningr itself if it is already
balanced).

In my rope-balancing policy, only those ropes that are built serially are balandemidoyce |,
i.e., the serial balancing process only ever takes place within a given chunk. There is no explicit
guarantee on the balance of a rope containing subropes that are built by different processors. For
such a rope, the amount of rope imbalance is proportional to the distribution of work across pro-
cessors rather than the size of the rope itself. As | discuss in the performance study in Chapter 4,
across all benchmarking results, balancing has minimal impact on performance.

As noted above, rope operations try to keep the size of each leaf as cldsasgossible. In

building ropes, rather than using t@at constructor directly, we debPne a smart constructor:
val cat2 : Oarope * Oarope -> Oa rope

If cat2 is applied to two small leaves, it may coalesce them into a single larger leaf. Note that
cat2 does not guarantee balance, although it will maintain balance if applied to two balanced

ropes of equal size. We also debne a similar function
val catN : Oa rope list -> Qa rope

which returns the smart concatenation of its argument ropes.
We sometimes need a fast, cheap operation for splitting a rope into multiple subropes. For this

reason, we provide
val split2 : Oarope -> Oarope * Oa rope

which splits its rope parameter into two subropes such that the size of these ropes differs by at most

one. We also debne

val splitN : Oarope * int -> Oa rope list

27

which splits its parameter into subropes, where each subrope hasstiwe size, except for one
subrope that might be smaller than the others.

We sometimes use
val length : Oa rope -> int

which takes a rope and returns the number of elements stored in the leavesg of

The operation
val mapSequential : (Oa -> Ob -> Oarope -> Ob rope

is the obvious sequential implementation of the rope-map operation.
The various parallel-array operations described in Section 2.1.2 are implemented by analogous
operations on ropes. Chapter 4 describes the implementation of these rope-processing operations

in detail.

2.44 BOM

BOM is a normalized functional language extended with a variety of low-level features, such as
mutable memory, atomic memory operations, and Prst-class continuations. BOM serves two dif-
ferent roles: First, BOM is an intermediate language: the compiler maps PML programs to BOM
programs. Second, BOM is the programming language used by Manticore to express scheduling
policies and synchronization protocols. This section describes several features provided by BOM
that | use later to program scheduling policies.
For simplicity, in this dissertation, | present BOM programs in SML syntax. The actual BOM

syntax bears resemblance to a normalized version of SML with a few additional constructs. The

description of these constructs is below.

2. In ManticoreQs actual implementation, this operation takes constant time, as we cache |&ajtiires.

28

Continuations

A continuation reibPes an instance of a computational process, @ Pber) at a given step in the

execution of the process. The continuation data structure encapsulates the state of a process at a

given step of evaluation. This structure includes the values of machine registers and the process
stack.

A brst-class continuations a language construct that lets a program capture the current state
at any point and later resume execution at that point. First-class continuations are a well-known
mechanism for expressing concurrency [41, 70, 68, 63, 80, 89]. In BOM, the state of a suspended
Pber is represented by a continuation.

BOM continuations have the tyff@a cont , where the type variabl®aranges over the argu-
ment types of continuations. BOM provides ttent binding form for introducing continuations

and thethrow form for applying continuations. Theont binding:
let cont K arg = exp in body end

bindsk to the brst-class continuation
I arg.(throw k((exp)

wherek(is the continuation of the whole expression. The scopeintludes both the expression
bodyand the expressioexp (i.e., k can be recursive). Continuations have indePnite extent and can

be used multiple time3.

Example: callcc The traditionakallcc function can be debned as

fun callcc f = let cont k x =x in fk end

3. The syntax of ManticoreOs continuation mechanism is taken from the Moby compilerOs BOL IR [69], but Manti-

coreOs continuations are brst-class, whereas BOLOs continuations are a restricted form of one-shot continuations known

asescaping continuations.

29

Thecont binding reibes the return continuationa#licc . Manticore usesont because it is
more convenient thacallcc , as programming witicont avoids the need to nesallcc Os in

many places.

Memory management
BOM provides immutable and mutable tuples. An immutable tuple has the type
[bty:, ..., btyn]
where the typebty; ... btyn specify the types of elements of the tuple elements. The operation
#i(X)

extracts out thé" element of the tuple.

A mutable tuple is denoted similarly, but is prebxed by
I[bty:, ..., btyy]
In-place update is provided by the operation
#i(x) =y

which storesy into thei®" element ofx.

Data placement is made explicit by two operations:
¥ (alloc (X1, .. Xn)) allocates tuplé x1, ..., Xn) inthe vproc-local heap.

¥ (promote x) takesx, a reference to a heap object, and returns the promoted reference,
i.e., the reference that points to a copy of the heap objetitat is located in the global
heap. Ifx has been promoted before, then the operation just returns the promoted reference.
Otherwise, the operation recursively promotes all objects reachablexfieomd then copies

X to the global heap.

30

fun atomicTestAndSet (lock : ![bool]) = let
val initial = #0(lock)
in
#0(lock) := true;
initial
end

fun atomicCompareAndSwap (

X : lword],
old : word,
new : word) : word = let
val oldval = #0(x) (=* select out word stored in X *)
in
if oldval = old then # O(X) := new else ();
oldval
end

Figure 2.8: Atomic operations

There is one additional property that helps reduce promotion costs. When promoting some
objectx, the memory manager needs only to return the new pointgr t®bserve that OstaleO
references to the leftover local versionyofcan still exist after the promotion. The absence of
mutable objects in the local heap means that other objects in the local heap can safely continue to
point-to and use the leftover local object.

Of course, these leftover local objects will eventually become a space leak if not collected. The
trick used by Manticore is to let the memory manager recognize and reclaim these leftover objects
subsequently during minor collections. These leftover local objects are apparent to the minor
collector, as promoting some objecinvolves installing a forwarding pointer into the header word
of x, indicating that leftover locak can be reclaimed. This technigue is one important way in

which Manticore leverages the functional purity of PML programs.

Atomic operations

BOM provides the two atomic operations shown in Figure 2.8.

The atomic test-and-set operation takes a memory location, writes to it, and returns the old
31

value. If multiple processors are accessing the same location and a processor is executing the
operation, then no other processors are allowed to execute their test-and-set operations until the
prst one is Pnished.

The atomic compare-and-swap operation takes a memory location and two parameters, and if
the value stored at the location is the same as the brst parameter, then the operation writes the
second parameter to the location. The return value is the value stored at the location just before the

operation, which can be used to indicate whether a substitution was performed.

Example

As an example, consider the following BOM fragment in which two Phetsandk2, modify a

shared state variable called
let
val x = promote (alloc false)
cont ki1 () = (
fi(;
if not (atomicTestAndSet Xx) then h () else exit ()
cont k2 () = (
f2 (0 ;
if not (atomicTestAndSet Xx) then h () else exit ()
in
start k1 and k2 running on two different vprocs
end

Fiberskl andk2 performfl () andf2 () respectively and then prst of these bbers to
complete applied () . The race condition is resolved by using #temicTestAndSet op-
eration. This operation takes a memory cell containing a boolean value and then atomically reads

the value and writesue into the cell. The result is the value read from the cell.

2.5 The Manticore scheduling system

PML programs can express parallelism using different language mechanigmiy using NDP
and CML threads. These different mechanisms have fundamentally different objectives and there-

fore use different scheduling policies. For instance, a CML thread might need a scheduling policy
32

that offers fairness, one of many real-time scheduling policies that offers responsiveness, or a
resource-aware policy [87] that tries to maximize throughput of 10 devices. NDP requires a work-
distribution policy such as work stealing to balance load effectively among system processors. The
work stealing policy and many other policies used for NDP are inherently unfair, and would not be
suitable in general for CML threads. Other special-purpose threading mechanisms have been pro-
posed, including clocks and phasers [79], and PMic@se [33], that require special scheduling
policies. No single scheduling policy will be suitable in general.

In order to support various parallelism mechanisms effectively, Manticore provides a schedul-
ing system that supports various different scheduling policies, in particular those policies that are
useful for PML, including a CML-thread scheduler and a work-stealing scheduler. In work that
originally appeared in ICFP 2008 [32], | presented the design and implementation of ManticoreOs
scheduling system. This section gives an overview of parts of the design that are relevant to this
dissertation. First, | present the scheduling primitives exposed by the scheduling system, including
scheduler actions, and the interface to vprocs. Second, as an example, | present a CML thread

scheduler written in BOM.

2.5.1 Scheduling primitives

This scheduling system consists of a few abstractions and primitive operations for programming
scheduling policies. The goal of the design is to be simple, yet provide a basis for programming the
various scheduling policies used by PML programs. The contribution of this design is a style, fol-
lowing from the primitives, for building scheduling policies out of small scheduling components.
The organizing feature of the design is théeduler action, a component based on brst-class
continuations for building schedulers.

The scheduling system exposes a small collection of primitive operations, on top of which
more complex scheduling code can be written. This section presents the abstractions provided by

the runtime system and gives an informal description of the scheduler operations with some simple

33

examples.

ManticoreOs scheduling system uses a cooperative model for scheduling in which a scheduler
and the bber that it schedules act like coroutines. The scheduler hands off its time to the bber
and the bber relinquishes its time by passirgygmal to the scheduler. The signal denotes one of
several events that require the scheduler to act.

The scheduling system debnes three signals:
¥ STOPdenotes the termination of the current bber.

¥ (PREEMPT k) denotes an asynchronous interrupt. The signal is paired with the kalue

the continuation of the bber interrupted by the signal.

¥ (SLEEP nseg denotes a request made by the current bber to put itself to sleagdor

nanoseconds.

A scheduler actionis a function that consumes a signal and performs some scheduling activity
based on the signal. Each vproc has its own stack of scheduler actions, and the top of this stack
is called thecurrent scheduler action When a signal arrives at a vproc, the vproc handles it by
popping the current action from the stack, and passing the signal to the current action.

There are two basic scheduling operations1 starts executing a given bber afwward
passes a signal to the current scheduler action.

Figures 2.9 and 2.10 show the state transitions for these operations.

¥ The expressiomun(K, Ks) pushes the scheduler actin onto the action stack and

invokes the PbeK 5.

¥ The expressioforward X pops the current action from the stack and applies the action

to the signalX .

Therun operation requires that signals be maskedfdneard operation does not.

Let us derive some basic scheduling operations from the above primitives.
34

B UJ

mask mask

| run (Kl,@ K1

action stack running action stack running

Figure 2.9: Theun operation
Terminating The operation
fun stop () = forward STOP

informs the current scheduler that the executing Pber is terminating.

Creating a Pber The operation

fun fiber (f ;ounit -> unit) = let
cont k() = (f(; stop ())
in k end

takes a given function and returns a Pber. When scheduled, the Pber applies the function and

stop s. For example, when executed by a scheduler, the Pber
fiber (fn => print "hello”)

will print hello and terminate.

Yielding The operation

fun yield () = let
cont k() =0
in forward (PREEMPT k) end

has the calling Pber release to the current scheduler the host vproc. The scheduler receives a

preempt signal, which contains the continuation of the calling Pber.

35

B B

mask mask

K forward (X) >

action stack running action stack running

Figure 2.10: Théorward operation

U =

mask mask

K preempt (K2) >

action stack running action stack running

Figure 2.11: VProc preemption
Preemption

Figure 2.11 shows the vproc state transition for the preemption signal. A preemption signal can
arrive at a vproc at any instant in which the vproc has signals unmasked and the scheduler-action
stack is nonempty. The PbHBr; is running at the instant that the preemption arrives. The vproc

creates a preemption signal and passes the sigigj tthe current scheduler action.

2.5.2 Fiber-local state
Often, a bPber needs to access local state. For example, the bber might need to know

¥ the unique identiber of the current CML thread;

¥ scheduling data structures, such as queues, associated with a given thread

Fiber-local state (FLS) provides such local state.
Each vproc stores an FLS record, and the scheduler maintains this record. Figure 2.12 shows

some of the FLS interface, including tifls type, an operation to create FLS, one to set the
36

type fls

val newFls : unit -> fls
val setFls : fls -> unit
val getFls : unit -> fls

Figure 2.12: Fiber-local state

current FLS, and one to access the current FLS.

2.5.3 VProcs

If a Pber is being executed by a vproc, then we say that vproc isdsevprocfor that Pber. The

operation below returns the reference to the host vproc.
val host : unit -> wvproc
The operation below returns the list of all vprocs.
val vprocs : unit -> vproc list

Each vproc maintains a local FIFO queue of threads, and access to this queue is provided by

the operations below.

val enq : fiber * fls -> unit
val deq : unit -> (fiber * fls) option

The operations implicitly select the queue of the host vproc.

Each vproc has a Olanding pad,0 which is a list of incoming threads. The operation
val engqOnVP : (vproc = fiber = fls) -> unit

pushes the given thread on the landing pad of the given vproc. Each vprocs regularly moves threads

from its landing pad onto its local scheduling queue.

37

cont roundRobin (STOP)
| roundRobin (PREEMPT K)
val fls = getFIs ()
cont kO () = (
setFls fls;
throw k ())
in
enq kO;
dispatch ()
end

cont

= throw dispatch()

= let

dispatch () = run (roundRobin, deq ())

Figure 2.13: The basic round-robin thread scheduler

Example: migrating The operation

fun migrateTo vp = let
val fls = getFls ()
cont k (X)

in
engqonVP (vp, K);

stop ()
end

= (setFls fls; x)

causes the calling thread to migrate to the given vproc.

2.5.4 The CML thread scheduler

Let us build a basic CML thread scheduler using the scheduling primitives from above. The sched-
uler uses a round-robin policy in which each thread gets to execute for one quantum. The quantum
begins when the thread executes and ends when either a preemption arrives or the thread termi-
nates. Figure 2.13 shows the implementation of the scheduler. The contintoatraiRobin

the scheduler action that schedules threads. Each vproc executes an independent instance of this

scheduler action.

To complete this scheduler, let us implement the thread-spawn operation. This operation,

shown below, creates a Pber to execute the body of the thread, and enqueues the Pber on the

host vproc.

38

fun spawn f =
eng (fiber (fn () => (setFls (newFlIs ()); f ()))

The remote-spawn operation spawns a given thread on a given vproc.

fun spawnOn (f, vp) = spawn (fn () => (migrateTo vp; spawn f))

2.6 Work stealing

The principle of work stealing states that idle processors should bear the responsibility of Pnding
work to do and that busy processors should focus on completing their own local work before
participating in scheduling. This strategy works well because, for applications with a sufbcient
parallelism, processors rarely run out of work to do. The idle processors bear the brunt of the
scheduling costs, while the busy processors greedily complete their local work.

Let us consider the schedule produced by work stealing for a given parallel execution graph.
For now, we assume that the whole parallel execution graph is provided to the scheduler in advance
(i.e., static scheduling), and later we consider online scheduling. In work stealing, each processor
runs an independent instance of the scheduler and all processors proceed ahead one instant at a
time. At a given instant, a processor is either busy doing local work or idle and in search of
work. A busy processor owns a subgraph of the parallel execution graph from which the processor
greedily executes a node. The execution of hodes proceeds in depth-brst, left-to-right order over
the subgraph. Whenever a busy processor executes a fork node, the right child of the fork node
is made available to be stolen by an idle processor, or thief. We call an idle procegsef a
because at each instant it tries to steal a subgraph from another processor, which weeaikthe
Each steal attempt, the thief picks a victim. Supposing that the victim has a subgraph available to
steal, the steal attempt succeeds and the execution graph owned by the victim is split at the oldest
(unexecuted) fork node. The thief takes for itself the subgraph rooted at the right child of this fork
node and proceeds to execute it, while the victim continues executing where it left off in its own

subgraph. This process repeats until the entire parallel execution graph has been executed.

39

Let us turn our attention to some issues involved in implementing the online work stealing
scheduler. Implementations of work stealing typically maintain stealable nadgsti{e right
children of fork nodes) in double-ended queues (deques). Each processor maintains its own deque.
A processor executes from its own deque in much the way a sequential processor executes from
its stack. When a processor executes a fork node, the processor pushes the right child of the fork
node onto the bottom of its deque. Then the processor proceeds to execute the left-child node.
Upon completion of the left subgraph, the processor pops a task off the bottom of its deque and
executes it. If the deque is not empty, then the task is necessarily the most recently pushed task;
otherwise all of the local tasks have been stolen by other processors and the processor must steal
a task from the top of some victim processorOs deque. The strategy for choosing the victim varies
from implementation to implementation, but typically, on a shared-memory multiprocessor, the
victim is chosen from all processors uniformly at random.

The work-Pprst principle has been shown to be an effective guide for building an efpcient im-
plementation of work stealing [36]. The principle states that a design should focus on reducing
costs carried by the work of the computation, even at the expense of increasing costs carried by the
span.

The justibcation for the work-prst principle can be derived from three assumptions.

Assumption 1 In practice, the work-stealing scheduler generates schedules that are similar to the
ones predicted by the abstract analysis of work stealing [11, 14]. In particular, we assume that the

scheduler executes a given computatiorPoprocessors in expected time

Tp = Ty/P + O(T+) (2.1)

The left-hand side is called thveork termand the right-hand side is tlspan term We use these

terms to distinguish the common and rare case of work stealing respectively. We delsparthe

40

overheadto be the smallest constamt such that

Tp % TP +c T» (2.2)

Assumption 2 The average parallelisify, is sufbciently large to obtain linear speedup. That is,

we haveTp/P # ¢ . Following from Equation 2.1, we havig) T1/P , a linear speedup.

Assumption 3 For a given program, there is a correspondsegquential elision The sequential

elision is a version of the program in which all parallel constructs are replaced with their sequential
counterparts. For instance, a parallel tuple becomes an ordinary tuple. The sequential elision
provides a baseline for measuring the performance of parallel evaluation. We can thus debne the
work overhead; = T{/T g whereTg is the execution time of the sequential elision. Following

from our previous assumptions we have
Tp %ClTslp + o Te
(2.3)
) ¢ Tg/P
which suggests shows the work overhead as the common case.

Now we can state the work-pPrst principle precisely [36]:
Minimize c; even at the expense of increasmg.

The key performance metric for work stealing is the number of steals required to schedule a
given parallel execution graph. Blumedfeal. proved that, for a given program scheduled by
work stealing, the expected number of steal®{® T+), and, in particular, the expected number
of steals per processor@T) [14]. Consequently, work stealing has the crucial property that all
stealing-related overheads are contained in This property is the key in applying the principle
to an implementation of work stealing. It suggests moving most of the costs to when tasks are

stolen and reducing costs elsewhere, such as when tasks are spawned.

41

For intuition on why the bound on the number of steals holds, recall that the thief steals the
oldest ready task that is available in the subgraph owned by the victim. The subgraph rooted at this
oldest task often contains the more nodes than the subgraphs rooted at the other ready nodes of the
victim. This oldest task has the greatest potential in the sense that it contains the largest amount
of work and is thus likely to keep the thief busy for the longest time. Aeor@. quantify this
notion of potential for an individual steal and extend the notion to the whole program execution [3].
Using this notion of potential, they are able to bound the number of steals. The total potential of
the program never increases, and each steal decreases this potential by a constant fraction with
constant probability. Therefore, the expected total number of steals is limited by how quickly this
potential vanishes.

On a shared-memory machine, there are several mechanisms one might use to provide task
stealing. | categorize such a mechanism as having either public or private access. In public access,
each processor shares a pointer to its own deque with the other processors. A thief steals a task
from a victim by modifying in place the deque of the victim. The race condition between the thief
and victim is avoided by using a shared-memory synchronization protocol. In private access, each
processor maintains exclusive access to its own deque. To steal a task, a thief signals a victim
asynchronously and awaits a response that contains either a message indicating failure or a stolen

task. Signaling is typically implemented by software polling or OS interrupts.

42

CHAPTER 3
LAZY PROMOTION

In this chapter, | present WS LP, a work-stealing policy that uses lazy promotion. The design of
WS LP is informed by the work-Prst principle [36]. The work-brst principle states that a scheduler
design should seek to minimize the scheduling costs imposed on the work of the computation. In
Manticore, the most signibPcant amount of work overhead is imposed by memory management, and
in particular, promotion. The design of WS LP stays faithful to the work-prst principle by setting

its highest priority to be the reduction of promotion costs.

3.1 Motivation

Recall the description of the Manticore memory manager from Chapter 2.4. In order to share a
heap object between processors, that heap object must Prst be promoted. Promotion is the process
of copying a heap object (and transitively copying each object reachable from that object) from
a processor-local heap to the global heap. Reducing the amount of promoted data reduces both
the cost of copying objects to the global heap and the amount of data that enters the global heap.
Promoting atask involves promoting all the heap objects that are reachable from that task. The
scheduler plays an important role in determining when and how many tasks are promoted.
ManticoreOs brst implementation of work stealing used eager promotion, which means that, for
each task, the scheduler promotégust before pushingon the deque. Through some early anal-
ysis | found that the scheduler overhead was high. A parallel function call was at least seventeen
times more expensive than the corresponding serial function call. By comparison, in Cilk, this
factor is between four and eight depending on the architecture. Figure 3.1 shows the breakdown of
the serial overhead of the Fib benchmark. The breakdown reveals that about half of the overhead

of work stealing can be attributed to promotion.

43

Other (18%)

Object promotions (47%)

Creating fibers (30%

Deque operations (9%

Synchronization variables (14%)
FLS lookups (10%)

Figure 3.1: Breakdown of work-stealing overheads

Methodology The methodology | used to obtain this result is similar to the methodology used
by Frigoer al. in their evaluation of CilkOs work-stealing scheduler [36]. The methodology is as
follows. Because théib function spends nearly all of its time scheduling and very little time
computing, its execution time gives a reasonably accurate estimate of scheduling overhead. | start
with the sequential elisiofib and measure the time to execute it on a single processor. Then, to
this program, | manually add on each source of overhead and time the resulting code. Doing so, |

was able to isolate the Pve main components of the total scheduling cost. These components are
Object promotions (47%) This accounts for promoting the task being pushed on the deque.

Synchronization variables (14%) This accounts for the non-synchronization overhead associ-

ated with synchronization variables.

FLS lookups (10%) This accounts for processor-local storage lookups, which are used to access

scheduling state, such as the deque.
Deque operations (9%) This accounts for deque operations.
Creating Pbers (3%) This accounts for creating the Pbers that go on the deque.

In addition, 18% of the overhead is unaccounted for.

44

In addition to the high overheads of eager promotion, there is another, stronger motivation to
use a different strategy. Global heap collections require barrier synchronizations and use atomic
memory operations that have the potential to saturate the memory bus. Promotion incurs such a
high cost because it increases the amount of data in the global heap, and more data in the global
heap means more global collections. Communication costs such as these limit the scalability of
the whole system.

Using lazy promotion can help to lower the work overhead and reduce the amount of promoted
data. In lazy promotion, for each taskthe scheduler delays promoting thentil just beforet is
stolen, and it is never stolen, thehis never promoted. Recall that the expected number of steals
in randomized work stealing ©(P T+). Since lazy promotion promotes two tasks per steal, one
for the right branch and one for the join task, the expected number of promoted tasks promoted
by lazy promotion iSO(P T+), and as such lazy promotion moves the cost of promotion onto the
span of the computation. Lazy promotion effectively moves the promotion overhead off the work
overhead and onto the span, and since promotion is costly, doing so is likely to be worthwhile.

In order to support lazy promotion, either ManticoreOs heap invariant must be relaxed or the
scheduler implementation must use a private-access model in which deques are hidden from other
processors. To understand why, recall that ManticoreOs memory manager relies on two heap in-
variants to reduce the cost of communication (Figure 2.7). A pointer outside a per-processor heap
cannot point to an object inside a per-processor heap. Under such a heap invariant, a public-access
implementation must promote each task entering a deque because a thief processor could steal the
task at any moment. A private-access implementation can readily support lazy promotion because,

in private-access, a deque is hidden from thief processors.

3.2 The WS LP policy

Figure 3.2 shows the pseudocode for the per-worker loop of WS LP. WS LP bears resemblance

to the work stealing policies proposed by Blumeofe and Leiserson [14] and Aratd3]. As is

45

common, in WS LP, each processdras a dequé®); of tasks and an assigned taskhat records

the task that the processor is executing. But unlike the other policies, in WS LP, a processor has
sole access to its own dequez(it uses the private-access model described above). To steal from
another processorOs deque, a thief must send a steal request to its victim, and the victim must reply.
WS LP guarantees lazy promotion by delaying the promotion of a task until that task is stolen. If

a task is executed locally.4., not stolen), the task will never be promoted.

Let us consider the operation of an individual processor. Each round of scheduling, a processor
checks whether it has an assigned task (line 4). If it does not, the processor becomes a thief.
Otherwise, the processor executes the assigned task. When the assigned task spawns two tasks,
calledr ands, the processor pusheson the local deque and makeshe assigned task (line 9).

When the assigned task joins two tasks, catl@ds, the processor has to determine which node

to execute next (line 13). Figure 3.3 illustrates the structure of the parallel execution graph at this
point. In particular, the task spawnsr ands, the taskt; joinsr ands, and the task is the
continuation of the join. Without loss of generality, we may fqubn the left- or right-hand side

of this graph. Ifs was not stolen, then the processor psgeom the deque proceeds to execute

s locally. If s was stolen, then the processor promotes the continuatiorktasll schedules it if
necessary (line 24).

Figure 3.4 gives the pseudocode for initializing the scheduler. The scheduler starts with an
one unexecuted tagk, which represents the root task of the parallel execution graph. Processor
zero gets assigndgd while the other processors are assigned no tasks (they immediately become
thieves). The per-processor scheduling instances are spawned after the state is initialized. Note that
the per-processor loops never terminate. In an implementation, it is desirable to have the workers
terminate once all tasks in the parallel execution graph have been executed. 1 elide this detail
here because the termination protocol is fairly subtle, but note that Herlihy and Shavit describe a
readily-applied solution [43].

WS LP uses the following protocol to handle task stealing. The thief, shown in Figure 3.5, pbrst

46

1: procedure WORKER(i):
2: {each vproc maintains an assigned thsknd a dequ€);}
3: loop

4: if tj has already been executirbn
5: yield to parent scheduldigives a thief a chance exechte
6: call THIEF(i)
7. else
8: executd;
9: if tj spawns two taskien
10: { call these tasks ands}
11: pushs on top ofQ;
12: t*r
13: else ift;j joins two taskghen
14: { call these tasks ands}
15: {letr be the ancestor df (see Figure 3.3)
16: if Q;j is nonemptythen
17: {tasks was not stoleh
18: pop the taski from top of Q; {it must be the case that= s}
19: ti* u
20: push the continuation tagkon top ofQ;
21: else
22: {tasks was stoleh
23: promote the continuation tagk
24: if k is ready to executthen
25: t; * the continuation task
26: else
27: continue to next round
28: end if
29: end if
30: else ift; is interrupted by an asynchronous sigtten
3L yield to parent schedulggives a thief a chance exechte
32: end if
33: endif
34: end loop

Figure 3.2: WS LP per-processor scheduling loop.

a7

Figure 3.3: The structure of the parallel execution graph

procedure MAIN (t;): {root taskt, }

to* 1t

+—o ti * dummy task

+ Q; * empty deque

call WoRKER(i) in parallel for all vprocs

Figure 3.4: WS LP initialization.

48

procedure THIEF(i):
{the thief subroutine is called by vprog
select a victim vprog¢ uniformly at random
spawnVICTIM (i, j) on vprocj
wait for notibcation from the victim vprogc
if the steal succeeddlden

t; * the stolen task
end if
return

©e NPT R®N R

Figure 3.5: WS LP thief subroutine.

selects a victim uniformly at random and then spawns a liaison Pber on the victim vproc. | describe
the liaison Pber below. The thief then awaits a response from the liaison Pber. If the response is
a negative acknowledgement, the thief returns and soon after, the scheduler loop will try to steal
again. When the response is a stolen task, the thief pushes the task on its deque and returns.

The liaison Pber executes the subroutine shown in Figure 3.6 on the victim processor. If the
victimOs deque has fewer than one task, the liaison bber replies with a negative acknowledgement,
and otherwise, it pops the task from the bottom of the deque, promotes the task to the global
heap, and replies by sharing a reference to the stolen task. Once the subroutine returns, the victim
processor can then resume what it was doing previously.

This task-stealing mechanism bears some similarity:tve messages [88]. The portion of the
thief code that runs on the victim vproc is an independent computational agent (it is represented
as a bber). This approach has the advantage that there is no need for the vproc or the scheduler to
OinterpretO a steal request. The bber carrying the thief code is itself the message. We can use this
Rexibility to experiment with alternative steal policies, such as one that reduces latency by sending

out multiple thieves at once.

49

procedure VICTIM (t, v): {thieft, victim v}
if there are at least two tasks @y then
pop the oldest task from the bottom ofQy
promotes
notify the thief vprod that it has stoleis
else
notify the thief vprod that the steal attempt failed
end if

Figure 3.6: WS LP victim subroutine.

3.3 Implementing WS LP in Manticore

The pseudocode in Figures 3.2, 3.4, 3.6, and 3.5 contain the specibcation for WS LP. In this sec-
tion, | present the implementation that is used by Manticore. The implementation consists of three
parts. The Prst two, the implementation of deques and clone compilation, provide optimizations
that are crucial for providing reasonably-low scheduling costs. The third part is the mechanism
used by WS LP to facilitate steal requests. This mechanism is based on a technique in which each
processor polls regularly for steal requests. | show how to balance between overloading processors
with steal requests and keeping them responsive enough to maintain high processor utilization.

The new implementation offers improved performance over ManticoreQOs original eager-promotion
implementation. Théib benchmark in Figure 2.6 runs almost twice as fast as the version un-
der eager-promotion. This improvement is largely due to the reduced promotion costs and faster
private-access deques used by WS LP. Furthermore, Section 3.4 shows that WS LP also offers
superior scalability over the eager-promotion implementation.

One contribution of this implementation is its overall robustness. To achieve robustness, the

implementation addresses three issues:
¥ Deques do not overf3ow.
¥ Clone compilation avoids two potential sources of blowup in the size of its generated code.

¥ The steal-request protocol avoids 3ooding busy processors with excessive steal requests but

50

still polls actively enough to keep processors busy most of the time.

Several alternative techniques for reducing work overheads have been used in other implemen-
tations of work stealing [27, 39, 62]. These techniques rely on extending a compiler to support
special calling conventions and stack layouts. Such extensions complicate the compiler implemen-
tation and make it hard to provide Rexibility.£., it is harder to switch to a different stack layout
or support multiple layouts). In this sense, these techniques are not as modular as techniques used
by WS LP.

The implementation of WS LP does not require special calling conventions or stack layouts.
The only special compiler support the implementation is a clone-compilation pass, which is a
lightweight source-to-source transformation. Otherwise, the Manticore implementation is a stan-

dalone library.

3.3.1 Deques

With regard to ManticoreOs implementation, the purpose of the deque is to provide the victim
processor with constant-time access to its oldest stealablestaSlbserve, however, that if we
relax the constant-time access requirement, the deque becomes superf3uous. The victim could
instead access by either parsing its own call stack or by backtracking. Both of these strategies
would requireO(T-) time per steal. Supposing the number of stea3(i§ P), as predicted by
the theoretical analysis, the scheduler would spg@(B 2P) time traversing stacks, which would
be unacceptable for large . The parsing strategy could perhaps reduce this cost in practice by
walking the stack from the oldest frame to the newest, but in general, the length of the walk would
still be unbounded. Nevertheless, it may be probtable to investigate techniques to improve on this
worst-case behavior. In Section 6, | discuss the issue further.

The deque supports just the three operations shown in Figure 3.7. The brst two are used by the
local worker. Recall that a local worker treats its deque as a LIFO stack. These operations provide

exactly this function to the local worker. The other operation is used by the thief to steal a task.
51

(* pushTop f =)

(* create a task t corresponding to thunk f and push t on *)
(* the top of the local deque *)
val pushTop : (unit -> unit) -> task

(* popTop () *)

(* pop a task from the top of the local deque. *)

(* returns either SOME t where t is the popped task *)
(* or NONE if the deque is empty. *)

val popTop . unit -> task option

(* popBot () *)

(* pop a task from the bottom of a local deque *)

(* returns either SOME t where t is the popped task *)
(* or NONE if the deque is empty. *)

val popBot . unit -> task option

Figure 3.7: Three deque operations.

The task returned by this operation is the oldest stealable task local to the processor. Therefore,
the task typically represents a large chunk of work. The thief is likely to stay busy executing this
task for a long while before it needs to steal again.

The two local operations are executed frequently during the execution of a program, once for
each fork-join. An efpcient deque implementation can reduce scheduling costs signibPcantly. The
deque representation that | use is a simple circular buffer. The buffer uses the Oalways leave one
byte openO policy in order to distinguish between the cases when the buffer is full or empty. Al-
though a few bytes are wasted as a result, this policy is preferable because it requires a smaller
number of memory accesses than some alternative policies, such as read/write counts and bll
counts. One disadvantage of using a circular buffer is the cost of the conditional branch to handle
pointer wraparound. But this cost is negligible on processors, such as the x86-64, that provide a
conditional-move instruction.

Deque overf3ow is an issue that any robust implementation must address. If a processor tries
to push a task on a full deque, the scheduler allocates a new deque that is twice the size of the

original deque and copies the tasks from the old to the new deque. Doing so is straightforward

52

because the deque is processor local, so there is no need for synchronization. The race condition
with the thief is prevented by masking interrupts temporarily. It would be a waste, however, for
each deque to remain at its maximum size, so the implementation provides a shrinking policy. If,
when a processor tries to pop from its deque, the processor bnds that the number of tasks in the
deque is smaller than some faction of the deque size, the processor shrinks the deque. Shrinking
entails allocating a new deque and copying the tasks to the new deque.

As an added benebt, WS LP may choose a small initial size for each deque under the assump-
tion that the the number of tasks that are stored in the deque at a given instant tends to be small and
nearly constant, even for large problem sizes. The deque size was set to 64 for every experiment

reported in this chapter, and there was never a need to resize the deque.

3.3.2 Compiling clones

Several implementations of work stealing employ specialized calling conventions and stack layouts
with the goal of reducing scheduling overheads [28, 39, 45]. Riga Os Cilk-5 implementation
pioneered an alternative approach called clone compilation [36]. Clone compilation is a compiler
pass that transforms a program with fork-join parallelism into a version that is readily optimized
by the compiler. Clone compilation requires no special calling conventions or stack layouts and
offers competitive performance.

The idea is to compile each parallel branching point to a fast and slow clone. The fast clone
is executed in the common case in which both branches execute lacallyhe right arm of the
branch branch is not stolen). The fast clone executes with a minimal amount of synchronization (or
none at all depending on the implementation). The slow clone is executed when the right arm of the
branch is stolen. In the slow clone, because both branches run concurrently, the join point between
the two branches must employ synchronization to determine which of the processors will execute
the join continuation. The slow clone is more expensive because it uses costly synchronization.

Clone compilation derives its efpciency from the property that the slow clone is only ever taken in

53

the rare case of a steal.

This section presents the clone compilation techniques | have developed for Manticore. Man-
ticore offers clone compilation as an option for compiling PMLOs parallel tuple construct. Let
us examine the clone compilation by example. Figure 2.1 shows the function to which we apply
the translation. Thé&Prod function takes a binary tree with integers at its leaves and returns
the product of the leaves. It exploits parallelism at each branch of the tree. | show the compiled
version in Figure 3.8.

This code shows the fast and slow clone intermingled. The fast clone is taken if the second
branch of the two parallel branches(trProd tr) is not stolen. Observe that the test for this
condition is based on whether the deque is empty or not. Consider why this check works. When
the deque is empty, clearly all the tasks on the local processor were stolen, and so was the right
branch. If the deque is not empty, then the right branch must be sitting at the top of the deque where
the processor left it. After popping this task, the processor can simply discard it and proceed to
with the fast path.

The slow clone is taken if the right branch is stolen. The computation splits into two parallel
tasks, one local and one on the thief. When each task completes, it joins with the other one by
callingjoin () . The brst processor to join cabsop () , thus yielding control to its parent
scheduler; the second processor resumes the return continugton The tie between the two
processors is broken by performing an atomic test-and-set operation @stime variable. The
results of the two branches are maintainedlinandxR.

By callingstop () , the joining processor hands control off to the scheduler action sitting on
the top of the scheduler-action stack. The implementation WS LP is structured so that that this
scheduler action will be the part of WS LP which handles stealing. When activated, this scheduler
activation immediately makes the joining processor a thief processor. Because it is not crucial for

understanding the performance of WS LP, | describe this part of the implementation in Chapter 5.

1. Note that, in Manticore, clone compilation is an AST-to-BOM pass because the AST lacks support for mutable
state and Prst-class continuations. Such mechanisms are present in BOM.

54

Observe that initially all of these state variables are allocated in the local heap. Only when the
slow clone executes do these variables get promoted to the global heap. This property is enough to
ensure lazy promotion.

Figure 3.9 shows the clone compilation for the general case. This translation is mostly a
straightforward generalization of our example, but with the complication of supporting exceptions
and avoiding code blowup for large tuples. The rest of this section describes three issues | address

in this general case that have not been addressed elsewhere:
¥ Supporting lazy promotion.
¥ Supporting the semantics for exceptions debned by PML [33].

¥ Avoiding code blowup.

Supporting exceptions

The semantics of PML requires that exceptions be delivered in the order in which they would be
delivered under a sequential evaluation [33]. In the case of a parallel tuple, an exception raised
during the evaluation of the elemegttrumps any exception raised by an element in the tuple that

is to the right ofg;. For example, the expression
(| raise A, raise B)

always raises\.

Below are two necessary modibcations to the basic clone translation.

1. If, during evaluation of the tuple elemeat, an exception is raised, the raising processor

cancels evaluations of tuple elements righgofThe cancellation operation

val cancelTask : task -> unit

55

fun trProd (Lf i) =i
| trProd (Nd (iL, tR)) = callcc (fn retk => let
val resume = alloc false
val xL = alloc NONE
val xR = alloc NONE

fun join () = if atomicTestAndSet (promote resume)
then
throw retK (valOf (!(promote xL)) = valOf (I(promote xR)))
else
stop () (= this worker now becomes a thief *)
val _ = pushTop (fn _ =>
(* slow clone (executed by the thief) *)
(xR := promote (SOME (trProd tR));
join ()))
val vL = trProd tL
in
if popTop () <> NONE
then

(* fast clone *)
vL = trProd tR

else
(* slow clone (executed by the victim) *)
(xL := promote (SOME vL); join ()
end)

Figure 3.8: Parallel tree-product function after clone compilation.

56

takes a task and frees up its resources quickly.CEmeelTask operation is derived from

the implementation of cancellable Pbers, which | describe later in Chapter 5.

2. If, during evaluation of the tuple elemesgt, an exception is raised, the raising processor

waits for one of two events to occur:

(a) At least one of the tuple elements left@fraises an exception.

(b) Every tuple element left of Pnishes evaluating.

In case (a), the processor becomes a thief and in (b), the processor propagates the exception

to the next level up in the call chain.

One remaining issue is that, in handling case 1, our clone translation has the raising processor
busy wait by callingvaitOn . Lete be the tuple element raising the exception. Busy waiting can

be avoided, however, by suspending the taslorresponding te;. We have two cases to address.

1. An elementto the left of; raises an exception, in which case, the suspended task gets thrown

away and reclaimed by the GC.

2. All elements to the left og Pnish evaluating, in which case, the last of these elements to

Pnish resumes,.

The suspend and resume protocol can be implemented by using a few shared state variables and
protecting them with a mutex lock. Since the this protocol only gets invoked in the slow clone, the

rare case, a lock is an acceptable cost.

Avoiding code blowup

ManticoreOs clone compilation scheme avoids two potential sources of code blowup.

57

Exponential code blowup Recall that each subexpression except for the brst one is compiled to
a fast and a slow clone version. It iséwe to simply copy these versions because doing so would

lead to an exponential increase in program size. For example, @ive campilation of

(I e, (e (e el])])]

would make eight copies @&;. To prevent such blowup, | lift each subexpression (except the prst

one) into its own function, which is shared by the fast and slow clone.

Quadratic code blowup In the body of the let expression, there are a series in-place updates
performed on the; variables. For each elementthere aren - j updates, which leads t0?

such updates overall. | avoid this quadratic blowup by using the following strategy. For parallel
tuples with greater than four elements, | break the construction into two phases, one that builds an
intermediate tuple and one that builds a Rattened copy of that has the desired structure. | limit the
size of each intermediate tuple to a small constant so as to avoid the quadratic blowup. Note that

this strategy is implemented in Manticore but not ref3ected in the translation in Figure 3.9.

3.3.3 Steal requests

The work-prst principle suggests that, because steals are rare, lowering the overheads imposed
by the thief should be of secondary concern to lowering work overheads. But there is a limit to

the latency that is tolerable for steal requests, as this latency sets a lower bound on the amount of
parallelism necessary to obtain a speedup. The Manticore implementation described in this chapter
uses a lightweight communication mechanism based on software polling. In software polling, each
processor polls regularly for incoming messages, such as steal requests, and reacts to new messages
quickly. Manticore amortizes much of the work overhead costs by integrating the polling with GC
checks.

There are some reasonable alternatives to software polling, such as hardware interrupts. Later,

58

[[(l €1, .., € n |)]]

callcc (fn k =>
let val nDone = alloc 1

val (X1, ..., X) = (alloc NONE, ..., alloc NONE)
fun join i =
if atomicFetchAndAdd (promote nDone, i) =n -i+ 1

then throw k(valOf (! (promote Xxj)),

valOof (! (promote x,)))
else stop()
fun waitOn x ; = if (!x;) = NONEthen waitOn x ; else ()
fun f, 0 =1en]
val w, = pushTop (fn () => (
X, = SOME (f,()

handle e => (waitOn x , 1; ... waitOn x 1
raise e)));
join 1))
fun f, () = [ez]| handle e => (cancelTask w 3; ... cancelTask w n
raise e)
val w = pushTop (fn () => (
X2 = SOME (f2() handle e => (waitOn x g;
raise e));
join 1))
val vy = [e;]
handle e => (cancelTask w ,; ... cancelTask w n, raise e)
in
if popTop() <> NONEthen
let val vy = o)
in
if popTop() <> NONEthen
Vi ot 00)
else
(x 1 = promote (SOME w);
X, 1 = promote (SOME Vv, 1);
join(n - 1))
end
else
(X 1 := promote (SOME v);; join 1)
end)

Figure 3.9: The full clone translation for parallel tuples.

59

in Section 5.3, | discuss mechanism used by Manticore in detail and evaluate it compared to hard-
ware interrupts.

On a multicore machine, using software polling, the round-trip latency of a steal request is in
the tens of microseconds for a steal and in the hundreds of nanoseconds for a failed steal attempt.
By comparison, a public-access implementation of work stealing typically offers latency in the
hundreds of nanoseconds in both cases. The higher latency has not been a problem so far, but
reducing this latency is still a worthwhile goal, as it is quite high compared to the public-access
approach.

There are two techniques that can help reduce latency in software polling. The brst is to have
each processor maintain a 3ag indicating whether the processor is busy or idle. The thief always
checks this RBag before sending a steal request. The second technique allows the thief to send
multiple steal requests concurrently, much like a broadcast mechanism. This latter mechanism
remains future work.

One disadvantage of such a signaling approach is that processors that are busy with useful
work must bear some of the scheduling overhead by responding to steal requests, including those
requests that are unsuccessful. The scheduler must bPnd a balance between sending too few and too
many steal requests. If there are too few, processors will go underutilized. If there are too many,
performance will be degraded because busy processors will spend much of their time servicing
steal requests. This latter issue is especially problematic when a processor is executing a short
sequential section and is about expose parallelism. It is best to let the busy processor execute
uninterrupted until it exposes parallelism.

WS LP operates under the assumption that the longer a thief goes without stealing, the longer
it will be until stealable tasks become available. On the other hand, stealable tasks are likely to be
exposed soon after a processor starts emitting steal requests. WS LP therefore uses the following
back-off strategy for steal requests. The thief prst tries to steal every processor. If the attempts

fail, the thief spins for a few microseconds before repeating. The next round, the thief spins twice

60

as long. After reaching some maximum of spin cycles, the thief sleeps for a few milliseconds
by callingpthread _cond _timedwait() . This way, the thief bnds new work quickly if it is

available, but does not overburden the system if work is scarce.

3.4 Empirical evaluation

In this section, | present three empirical studies using the six benchmarks from Chapter 2. The
prst study looks at the performance of ManticoreOs work-stealing system as compared to a state-
of-the art sequential implementation. The second study examines the performance benepbts of
lazy-promotion as compared with ManticoreOs original eager-promotion implementation. Since
one might question the split-heap design choice, the last study compares the split heap with a

Bat-heap implementation.

3.4.1 Scalability

Figure 3.10 contains speedup curves for our six benchmarks, where the sequential baseline times
are collected from the sequential elisions of the benchmarks compiled by MLton. MLton is a
sequential whole-program optimizing compiler for Standard ML [90, 60], which is known for the
high performance of its generated cc?dé:onsidering MLtonOs suite of aggressive optimizations
and its overall maturity over our implementation in terms of sequential performance, the speedup
curves are encouraging.

The Quicksort benchmark scales linearly to only four times as fast as MLton. | attribute this
imperfect speedup to three factors. First, the MLton compiler aggressively Rattens data represen-
tations, but Manticore does not. For example, the MLton version sorts vectors of integers, whereas
Manticore sorts vectors of boxetld, heap-allocated) integers. Second, the MLton compiler spe-

cializes the higher-order plter function, which is used to partition the array, whereas our version

2. We used MLton version 20070826 for the AMD64.

61

16 i
@@ quicksort

14 X Xbarnes hut

—~—tree rootbx

speedup
(00]

6 %3 10 14 16
number of proceSsors

Figure 3.10: Parallel speedup of our lazy-promotion work-stealing system over sequential MLton

62

is building and passing a closure for the predicate functions. Third, as discussed below, there is
higher global-GC overhead for this benchmark. The prst two of these issues can be addressed by
improving ManticoreOs sequential performance.

Performance is slightly weaker for Barnes-Hut. Our single-processor performance is about
twice as slow as MLton, which gives us a Ratter curve. This programOs lack of scaling beyond
twelve processors stems from the limited average parallelism, since we saw better speedups when
we increased the problem size to 400,000 particles.

The Raytracer benchmark is embarrassingly parallel and scales linearly, on sixteen cores run-
ning about ten times faster than MLton. We note that the RaytracerOs single-processor performance
in our system is nearly the same as in MLton, which is partly the reason Raytracer has a steeper
curve than in the other benchmarks.

Performance for SMVM is similar to Barnes Hut. The lack of scaling beyond twelve processors
stems from the limited average parallelism for the chosen problem size (1 million nonzeroes).

DMM has a smooth linear speedup, but the speedup curve is 3at for the same reason as with
Quicksort and Barnes Hut: Manticore offers weaker sequential sequential performance than ML-
ton.

The Tree Rootbx benchmark scales linearly up to sixteen cores, where the speedup is about

three times MLton.

3.4.2 Lazy VS. eager promotion

Across the six benchmarks, lazy-promotion often outperforms eager promotion. Quicksort, Barnes
Hut, and DMM show signibcant benebts from lazy promotion, and only SMVM shows a penalty
from lazy promotion. By breaking down where these programs spend their time, we can understand
why and when lazy promotion helps performance. In Tables 3.1 and 3.2, | show the break down
of the execution time into non-GG.4., mutator) and GC components. This data demonstrates

that the benebpt of lazy promotion over eager promotion comes from reducing the time spent in the

63

16 e—e lazy promotion

eager promotion
141 Z-4-Rat heap

12

10

speedup
(@)

6 ? 10 14 16
number of processors

(a) Quicksort

16 e—e lazy promotion

eager promotion
141 2% Rat heap

12

10

speedup
o))

= N

6 ? 10 14 16
number of proceSsors

(b) Barnes-Hut

Figure 3.11: Comparative speedup plots for the three versions of our system.

64

1€ e—e lazy promotion

eager promotion

141 20 flat heap

12

10

speedup
(o))

1 2 4 12 14 16

6 ? 10
number o processors

(c) Raytracer

16 e—e lazy promotion

eager promotion
141 Z4-rat heap

12

10

speedup
(o))

1 2 4 12 14 16

nu?nber o? proce%gors
(d) SMVM

Figure 3.12: Comparative speedup plots for the three versions of our system.

65

16 e—e lazy promotion

eager promotion
141 Z-4-Rat heap

12

10

speedup
(@)

= N

6 ? 10 14 16
number of processors

(e) DMM

16 e—e lazy promotion

eager promotion
141 2% Rat heap

12

10

speedup
o))

N

| 1 1
| T
16

14

=

6 ? 10
number of proceSsors

(f) Tree Rootbx

Figure 3.13: Comparative speedup plots for the three versions of our system.

66

garbage collector. It also explains why we see no improvement for the Raytracer and a degradation
in SMVM, since both benchmarks spend virtually no time in GC.
We can further rebne this data by dividing the GC time into three categories: locakGe(-

nor and major collections), promotion, and global GC as is shown in Tables 3.3 and 3.4. This data
shows that extra time spent promoting objects and extra time spent in global collections accounts
for the bulk of the extra GC time in the eager-promotion version. Note, however, that promotion
is more signibcant for Barnes-Hut, whereas global GC is more signibcant for Tree Rootbx. | at-
tribute much of this difference to the fact that Tree RootbPx maintains a larger live-data set than

Barnes-Hut.

3.4.3 Split-heap vs. flat-heap

The last set of experiments are intended to test the design choice of splitting the heap. In partic-
ular, we want to know if the cost of promotion outweighs the benebt of local heaps. For these
experiments, | used a version of Manticore combined with a Rat (or unipedfHeape Rat-heap
implementation, each vproc allocates from its own chunk of memory. When this chunk is full, it
is added to the the global to-space and another chunk is acquired. Eventually the global to-space
exceeds a threshold triggering a parallel collection, which is essentially the global GC used by the
other versions. The threshold is determined in the same way as in the split heap. Because the
heap is RRat, there is no need to promote objects that are globally visible. As can be seen from
Figures 3.11, 3.12, and 3.13, the RBat-heap version is signibcantly slower than either the eager or
lazy-promotion versions.

Tables 3.1 and 3.2 show the execution time broken down into non-GC and GC components.
It might be argued that a better Rat-heap G.(a generational GC) might improve the perfor-
mance of the Rat-heap version sufpbciently to better our split-heap performance, but there is data

that weighs against this conclusion. Specibcally, even though the GC overhead in the Rat-heap

3. The RBat-heap version of Manticore was programmed by John Reppy with some assistance from the author.

67

Quicksort

lazy eager Rat
n-procs| time non-GC + GC| time non-GC + GC time non-GC + GC
1 444 4.05+0.39 | 6.07 4.57+1.50 |10.10 8.96+1.14
2 2.82 2.67+0.15 | 3.14 2.38+0.77 | 6.40 5.53+0.86
4 1.19 1.10+0.10 | 1.60 1.27+0.33 | 3.77 3.21+0.55
6 0.83 0.76+0.08 | 1.07 0.78+0.29 | 3.34 2.76+0.58
8 0.65 0.59+0.06 | 0.81 0.62+0.19 | 2.78 2.53+0.25
10 0.55 0.51+0.04 | 0.72 0.43+0.29 | 2.97 2.70+0.27
12 0.46 0.42+0.04 | 056 0.45+0.11 | 3.19 2.97+0.21
14 0.42 0.38+0.04 | 0.63 0.54+0.09 | 3.19 2.87+0.32
16 0.40 0.38+0.03 | 0.58 0.45+0.13 | 3.65 3.46+0.19
Barnes-Hut
lazy eager Rat
n-procs| time non-GC + GC| time non-GC + GC time non-GC + GC
1 15.66 10.90+4.76 | 17.87 11.55+6.32 | 29.67 25.98+3.69
2 13.45 10.89+2.57 | 8.97 5.85+3.12 | 25.03 22.29+2.74
4 11.41 10.06+1.35 | 455 3.00+1.55 | 23.52 21.10+2.41
6 10.77 10.24+0.53 | 3.28 2.16+1.12 | 22.66 20.88+1.78
8 505 4.29+0.76 | 2.64 1.77+0.86 | 21.36 19.79+1.57
10 243 1.77+0.66 | 2.23 1.57+0.66 | 21.80 20.47+1.33
12 243 1.91+0.51 | 1.96 1.24+0.72 | 21.25 19.94+1.30
14 1.84 1.18+0.65 | 1.91 1.21+0.71 | 13.59 12.70+0.88
16 1.82 1.09+0.72 | 1.83 1.05+0.78 | 13.35 12.54+0.80
Raytracer
lazy eager Rat
n-procs| time non-GC + GC time non-GC + GC time non-GC + GC
1 3.39 3.34+0.05 | 3.59 3.51+0.08 | 4.33 4.28+0.05
2 1.69 1.67+0.02 | 1.80 1.76+0.04 | 2.33 2.29+0.03
4 0.85 0.84+0.01 | 0.91 0.90+0.02 | 1.31 1.27+0.04
6 0.57 0.56+0.01 | 0.61 0.60+0.01 | 0.97 0.96+0.01
8 0.43 0.43+0.01 | 047 0.46+0.01 | 0.84 0.82+0.02
10 0.35 0.34+0.01 | 0.38 0.37+0.01 | 1.62 1.60+0.02
12 0.29 0.29+0.00 | 0.32 0.31+0.01 | 2.54 2.53+0.00
14 0.25 0.25+0.00 | 0.28 0.27+0.01 | 3.00 3.00+0.00
16 0.22 0.22+0.01 | 0.24 0.24+0.00 | 3.60 3.60+0.00

Table 3.1: Execution-time breakdown (in seconds)

68

SMVM

lazy eager Rat

n-procs| time non-GC + GC| time non-GC + GC time non-GC + GC

0.16 0.16+0.00 0.14 0.14+0.00 0.28 0.28+0.00
0.08 0.08+0.00 0.07 0.07+0.00 0.17 0.17+0.00
0.04 0.04+0.00 0.04 0.04+0.00 0.08 0.08+0.00
0.03 0.03+0.00 0.02 0.02+0.00 0.06 0.06+0.00
0.02 0.02+0.00 0.02 0.02+0.00 0.04 0.04+0.00
0.02 0.02+0.00 0.02 0.02+0.00 0.04 0.04+0.00
12 0.02 0.02+0.00 0.01 0.01+0.00 0.04 0.04+0.00
14 0.01 0.01+0.00 0.01 0.01+0.00 0.04 0.04+0.00
16 0.01 0.01+0.00 0.01 0.01+0.00 0.03 0.03+0.00

[
o X R~N

DMM

lazy eager Rat

n-procs| time non-GC + GC time non-GC + GC| time non-GC + GC

1 6.04 5.41+0.63 6.94 5.33+1.61 14.74 14.37+0.36
2 3.02 2.71+0.32 3.48 2.65+0.83 7.57 7.35+0.22
4 1.52 1.36+0.16 1.78 1.36+0.42 405 3.90+0.16
6 1.03 0.91+0.11 1.20 0.90+0.30 3.16 3.03+0.14
8 0.78 0.70+0.09 0.90 0.68+0.23 3.33 3.23+0.11
10 0.65 0.57+0.08 0.73 0.54+0.19 3.74 3.65+0.09
12 0.53 0.47+0.06 0.62 0.46+0.16 434 4.27+0.07
14 0.47 0.41+0.06 0.54 0.39+0.15 5.14 5.07+0.07
16 0.43 0.37+0.06 0.49 0.35+0.14 6.29 6.22+0.07

Tree Rootbx

lazy eager Rat

n-procs| time non-GC + GC| time non-GC+ GC time non-GC + GC

1 10.68 8.45+2.23 10.77 7.88+2.89 27.40 13.57+13.83
2 7.01 6.46+0.55 5.92 4.19+1.74 17.63 8.07+9.56
4 4.65 4.16+0.49 3.69 2.51+1.19 13.46 5.95+7.51
6 3.46 2.98+0.48 2.62 1.63+0.98 10.11 5.22+4.90
8 3.49 3.18+0.31 2.21 1.41+0.80 8.51 4.70+3.80
10 2.18 1.85+0.33 1.97 1.12+0.86 7.59 4.72+2.87
12 1.43 1.21+0.22 2.15 1.10+1.05 6.97 4.60+2.37
14 1.36 1.15+0.22 1.87 1.11+0.75 6.46 3.68+2.78
16 136 1.17+0.19 1.74 0.61+1.13 6.34 4.42+1.92

Table 3.2: Execution-time breakdown (in seconds)
69

Quicksort

lazy promotion eager promotion

procs| local prom. global local prom. global

038 0.00 0.00 0.21 129 0.00
0.19 0.00 0.00 0.10 0.66 0.00
0.07 0.00 0.00 0.03 0.33 0.00
0.10 0.00 0.00 0.038 0.20 0.00
0.04 0.00 0.00 003 0.14 0.00
10| 0.04 0.00 0.0 0.00 0.17 0.00
12| 0.03 0.00 0.0 0.00 0.14 0.00
14| 0.03 0.00 0.00 0.02 0.12 0.00
16| 0.02 0.00 0.00 0.01 0.12 0.00

oA~ DNBE

Barnes-Hut

lazy promotion eager promotion

procs| local prom. globall local prom. global

385 000 089 273 172 2.03
154 001 052 144 091 0.98
110 0.03 0.33 0.68 0.46 0.47
065 004 020 049 033 0.32
053 007 014 035 0.26 0.29
10| 0.37 0.12 0.1 0.30 0.23 0.19
121 0.34 0.13 0.09 0.27 0.21 0.11
141 036 019 0.10 0.29 0.28 0.17
16| 0.39 0.26 0.0 0.28 0.35 0.17

oA~ DNPE

Table 3.3: Garbage collection time statistics (in seconds)

70

Tree Rootbx

lazy promotion eager promotion

procs| local prom. globall local prom. global
141 072 0.00 0.82 141 0.69
097 032 0.00 039 0.72 0.64
033 0.27 0.00 022 037 0.59
034 0.09 0.00 013 0.21 049
0.17 0.11 0.00 0.12 0.16 0.53
10| 0.16 0.12 0.00 0.32 0.14 0.48
12| 0.13 0.08 0.00 0.06 0.16 0.57
14| 0.12 0.07 0.00 0.07 0.14 0.52
16| 0.14 0.09 0.00 0.07 0.13 0.50

oo~ DNPE

DMM
lazy promotion eager promotion
procs| local prom. globall local prom. global
063 0.00 0.00 0.33 127 0.00
0.32 0.00 0.00 017 0.68 0.00
0.16 0.00 0.00 0.08 0.34 0.00
0.11 0.00 0.00 006 0.24 0.00
0.08 0.02 0.00 005 0.18 0.00
10| 0.06 0.01 0.00 0.04 0.15 0.00
12| 0.05 0.01 0.00 0.03 0.16 0.00
14| 0.05 0.01 0.00 0.03 0.12 0.00
16| 0.04 0.01 0.00 0.02 0.12 0.00

oA~ DNPE

Table 3.4: Garbage collection time statistics (in seconds).

71

implementation is higher, so is the non-GC time. In fact, the 3at-heap non-GC time is higher than
the total time of our split-heap versions.

The obvious explanation is that the split-heap implementations make better use of the L3 cache.
Table 3.5 shows the L3 cache read- and write-miss counts across Quicksort, Barnes Hut, and Ray-
tracer? | report the average miss counts across ten runs of the benchmarks and across several
processor conbgurations and input data sizes. Cache misses were read from the processor hard-
ware counter, not from simulation. Due to overhead of rapidly and simultaneously reading the L3
cache performance counters from multiple vprocs, the global garbage collections had to be tracked
separately. For this reason, the measurements include only global collections for the lazy and eager
versions, but all collections for the Rat-heap version.

Even including minor and major GC activity, the L3 cache read- and write-miss levels are
signibcantly lower for the split-heap architecture than the Rat-heap. Across all benchmarks, there
are roughly an order of magnitude more L3 cache misses when using the Rat-heap. These results

suggest that the better performance of split heap can be attributed, in large part, better cache usage.

3.5 Related work

There are three major groups of previous work related to WS LP:
¥ older implementations of work stealing that are based on the idea of lazy task creation
¥ implementations of parallel Haskell
¥ implementations of imperative parallel languages

| discuss each of these in turn.

4. Lars Bergstrom instrumented Manticore with the necessary performance counters.

72

Barnes-Hut

lazy eager Rat
n-procs size non-GC| gc | non-GC| gc | non-GC| gc
2 10K| 0.853 0.0 2.27 0.0 25.5 0.109
2 b50K| 6.11 0.0 13.5 0.0 144. 2.10
2 100K| 14.9 0.0 30.3 3.67 | 289. 8.12
8 10K| 1.99 0.0 2.75 0.0 27.2 0.0101
8 b50K| 10.2 0.0 15.0 0.0 154. 0.763
8 100K | 22.4 0.0 33.8 0.570) 311. 2.12
16 10K| 2.91 0.0 3.11 0.0 32.7 0.0266
16 50K| 16.2 0.0 16.8 0.0 17.5 0.207
16 100K| 35.6 0.109 38.1 0.183| 362. 0.927
Raytracer
lazy eager Rat
n-procs siz¢ non-GC| gc |[non-GC| gc | non-GC| gc
2 100| 0.439 0.0 0.645 0.0 7.28 0.0266
2 250| 1.54 0.0 1.48 0.0 44.9 0.308
2 500| 6.08 0.0 5.77 0.0 181. 2.47
8 100| 0.701 0.0 2.32 0.0 11.2 0.0186
8 250| 2.48 0.0 5.32 0.0 52.4 0.0813
8 500| 6.18 0.0 8.04 0.0 192. 0.804
16 100 0.739 0.0 1.99 0.0 23.4 0.0192
16 250 2.41 0.0 3.97 0.0 69.9 0.0509
16 500| 5.75 0.0 10.3 0.0 221. 0.451
Quicksort
lazy eager Rat
n-procs size non-GC| gc [non-GC| gc | non-GC| gc
2 M| 7.32 0.0 10.6 0.0 148. 11.2
2 2M | 16.0 0.0 22.1 0.0 286. 43.0
2 3M | 26.7 0.0 32.0 16.6 420. 114.
8 iIM | 10.1 0.0 12.9 0.0 164. 4.68
8 2M | 21.5 0.0 26.9 0.0 317. 15.6
8 3M | 36.0 0.0 38.2 6.44 | 469. 42.4
16 IM| 14.3 0.0 154 0.0 190. 3.61
16 2M | 29.0 0.0 314 0.211] 341. 8.25
16 3M | 49.7 0.0 46.7 2.52 | 562. 20.2

Table 3.5: L3 Read+Write Cache Misses (in millions).

73

3.5.1 Lagzy task creation

There are several early scheduler implementations for functional languages with similarities to
the implementation of WS LP. These implementations se task creation [62] to schedule
computation, which results in schedules that are similar to those of WS LP, but they require special
calling conventions and stack layouts, and do not support multiprogramming.

Lazy task creation was introduced by Mohr for the Mul-T language [62]. Other early examples
include TAM [22] and Lazy Threads [39], which were implementations for non-strict languages.

Of the various implementation of work stealing, FeeleyOs design is most similar to Manti-
coreQOs [27]. Like WS LP, FeeleyOs design has the thief and victim communicate via inter-processor
signals, and the inter-processor communication is implemented by software polling. The primary
motivation of FeeleyOs design is to improve the memory locality on a shared-memory, NUMA mul-
tiprocessor. His work does not address the interaction of the garbage collector and the scheduler,

wheras this issue is the primary motivation and focus of this chapter.

3.5.2 Parallel-Haskell implementations

GUM is an implementation of parallel Haskell on clusters [85]. GUM uses a distributed-heap
GC in which each processor can collect its own heap independently. Unlike ManticoreOs heap
architecture GUM has no global heap. Instead, the GUM runtime distinguishes between global
and local addresses and maintains information about references to and from other processors.

Like FeeleyOs system, GUM uses a special message (called a FISH) to request work from
other processors. In both designs, the notion of Osteal requestO is a part of the notion of virtual
processor. In contrast, the Manticore implementation carries out steal requests by sending Othief
PbersO to take work directly from victim vprocs. The notion vproc is independent of the notion
of steal request. Because of this separation, the notion of vproc is both simpler and more general.
Although the thief-Pber mechanism is more expensive, the work-prst principle suggests that the
cost is negligible because of the infrequency of steals.

74

The Glasgow Haskell Compiler (GHC) is the compiler and runtime system for parallel Haskell.
GHC supports Pne-grain tasks (called sparks) that are similar to the tasks created by parallel tuples.
Sparks are scheduled by a work stealing scheduler. The scheduler implementation is based on the
public-access model. GHC offers parallel speedups ranging from 3 to 6.6 on seven cores, but it is
unclear how far beyond seven cores GHC system will scale before its GC will become a sequential
bottleneck [56].

GHCOs GC is a sophisticated parallel generational collector. But its primary disadvantage is
its stop-the-world requirement. Each processor has an local allocation area, and when the local
allocation area Plls up, all processors stop together to perform a parallel collection. In this regard,

the GHC collector is similar to the Rat-heap GC used in the performance study above.

3.5.3 Imperative parallel-language implementations

Cilk is an extension to the C programming language that supports fork-join parallelism [12]. The
work stealing algorithm used by Cilk is similar to WS LP, although WS LP extends work stealing
to support lazy promotion and a distributed-memory style protocol for stealing tasks. In my design,

| use the common case analysis of work stealing, or work-pbrst principle, that was used for the Cilk-
5 implementation [36]. Since Cilk is designed for C with manual memory management, there have
been, to my knowledge, no studies carried out on garbage collection performance related to the
Cilk scheduler.

Deque overfBow is a well-known problem for implementations of work stealing that use the
public-access model. Hendler al. [42] and Chase and Lev [20] present two solutions to the
overf3ow problem, though each of their stealing protocols rely on subtle lock-free synchronization
algorithms to protect the state of deques. Such complications do not apply to WS LP because it
uses a private access model. In WS LP, the deque is protected by temporarily postponing signals
while the deque is being resized.

Backtracking-based Load Balancing (BLB) is a distributed-memory implementation of work

75

stealing [45]. BLB supports a C-like language with manual memory management, and as such,
BLB does not address garbage collection.

Like WS LP, BLB uses an implementation of work stealing in which the thief and victim
communicate via inter-processor signals. But instead of using deques to maintain ready tasks, as
WS LP does, BLB uses a backtracking mechanism. When a thief receives a steal request, the thief
pauses and backtracks to bnd its oldest stealable task. Backtracking is attractive because it obviates
the need for deques, but as | discussed in Section 3.3.1, it implies that each steal takes unbounded

time.

3.6 Summary

This chapter presented the design and implementation of ManticoreOs work-stealing scheduler and
split-heap memory manager. The memory manager uses a split-heap architecture where each pro-
cessor has a local heap that is independent from other processorsO local heaps. While this archi-
tecture provides better locality and reduced garbage collection synchronization, it suffers from the
requirement that any heap object that is made visible to other processors must be pramoted (
copied) to the global heap. An early analysis shows that this process accounts for almost 50% of
the scheduling overhead in our work-stealing implementation.

To address the cost of promotion, | have developed a new work-stealing scheduler based on
lazy promotion. | have analyzed the performance of our systems and presented results from three
representative benchmarks. These results show that lazy promotion is often benebcial and does
no harm. The data shows that lazy promotion imposes a lower GC load, largely because less
data is promoted to the global heap. | also present experiments comparing ManticoreOs split-heap
implementation to a Rat-heap version. These experiments demonstrate the benebts of the split-
heap design. In particular, the split-heap design has much better L3 cache behavior, as well as

lower GC overhead.

76

CHAPTER 4
LAZY TREE SPLITTING

The Goldilocks problem In NDP programs, computations are divided into chunks, and chunks

of work are spawned in parallel. Those chunks might be debned by subsequences (of arrays, for
example, or, in our case, ropes) or iteration spaces kstysomek + n). The choice of chunk

size inBuences performance crucially. If the chunks are too small, there will be too much overhead
in managing them; in extreme cases, the benebts of parallelism will be obliterated. On the other
hand, if they are too large, there will not be enough parallelism, and some processors may run out
of work. An ideal chunking strategy apportions chunks that are neither too large nor too small, but
are, like GoldilocksOs third bowl of porridge, Ojust right.O Some different chunking strategies are

considered in the sequel.

4.0.1 Fragile chunking strategies

A fragile chunking strategy is prone either to creating an excessive number of tasks or to missing
signibcant opportunities for parallelism. Let us consider two simple stratdgias; decomposi-
tion andstructural decompositionand the reasons that they are fragileThary decomposition,
we split the input rope intd = min(n,J $ P) chunks, where is the size of the input ropd, is
a bxed compile-time constant, aRdis the number processors, and spawn a task for each chunk.
For example, in Figure 4.1(a), | show tfheary decomposition version of the rope-map operation.

In computations where all rope elements take the same time to process, such as those performed
by regular afPne (dense-matrix) scientibc codes,Tttaey decomposition will balance the work
load evenly across all processors because all chunks will take about the same amount of time. On
the other hand, when rope elements correspond to varying amounts of work, performance will be
fragile because some processors will get overloaded and others underutilized. Excessive splitting

is also a problem. Observe that folevels of nesting and sufpciently-large ropes, Thary

77

fun mapTary J frp = let
fun g chunk = fn () => mapSequential f chunk
val chunks = splitN (rp, J * numProcs ())
in
catN (parN (map g chunks))
end

(a) T-ary decomposition

fun mapStructural f rp = (case rp
of Leaf s => mapSequential f rp
| Cat(, =
Cat(] mapStructural f I,
mapStructural f r)

(b) structural decomposition

Figure 4.1: Two fragile implementations of the rope-map operation.

decomposition creatds $ P)i tasks overall, which can be excessive when eitlogP get large.

To remedy the imbalance problem, we might styuctural decompositionin which both
children of aCat node are processed in parallel and the elementd.ef node are processed
sequentially. | show the structural version of the rope-map operation in Figure 4.1(b). Recall
that the maximum size of a leaf is determined by a bxed, compile-time constant lghlbetl
that rope-producing operations tend to keep the size of each leaf cldde But by choosing
anM > 1, some opportunities for parallelism will always be lost and by choobing 1, an

excessive number of threads may be created, particularly in the case of nested loops.

4.0.2 Eager binary splitting

EBS is a well-known approach that is used by many parallel libraries and languages, including
Thread Building Blocks [75, 47] and Cilk++ [51]. In EBS (and, by extension, eager tree splitting
(ETS)), we group elements into bxed-size chunks and spawn a task for each chunk. This grouping
is determined by the following recursive process. Initially, we group all elements into a single

chunk. If the chunk size is less than the stop-splitting thresh8&IT{, evaluate the elements

78

fun mapETS SST frp =

if length rp <= SST then mapSequential f rp
else let

val (I, r) = split2 rp

in

cat2 (| mapETS SST f |,
mapETS SST f r |)
end

Figure 4.2: The ETS implementation of the rope-map operation.

sequentiall} Otherwise, we create two chunks by dividing the elements in half and recursively
apply the same process to the two new chunks. For example, in Figure 4.2, | show the ETS version
of the rope-map operation.

EBS has greater Rexibility than the-ary or structural decompositions because EBS allows
chunk sizes to be picked manually. But this Rexibility is not much of an improvement, because,
as is well known [47, 75, 86], Pnding a satisfact&@$T can be difpcult. This difPculty is due,
in part, to the fact that parallel speedup is very sensitv@3a@. | ran an experiment that demon-
strates some of the extent of this sensitivity. Figure 4.3 shows, for seven PML benchmarks (see
Section 4.2 for benchmark descriptiongdyallel efficiency as a function ofSST. The parallel
efbciency is the sixteen-processor speedup divided by sixteen times 100, where the baseline time
for the speedup is taken from the sequential evaluation. For example, 100% parallel efbciency
represents perfect linear speedup and 6.25% parallel efbciency represents almost no speedup. The
results demonstrate that there is®8T that is optimal for every program and furthermore that a
poorSST is far from optimal.

The Raytracer benchmark demonstrates, in particular, how fragile ETS can be with respect to
nesting and to relatively small ropes. Raytracer loses 80% of its spee@las changed from
32 to 128. The two-dimensional output of the program is a®58%6 rope of ropes, representing
the pixels of a square image. Wh8ST = 128, Raytracer has just two chunks it can process in

parallel: the brst 128 rows and the second. We could address this problem by transforming the

1. In TBB, if SST is unspecibed, the default$'7T = 1, whereas Cilk++ only useSST = 1.
79

+—+ Barnes Hut

100 —— DMM
e—e Raytracer
90 +~—r Nested Sums

»~~—XA Quicksort

> SMVM
—~<—— Tree Rootfix

o0
[a)

~
@)

W
(@)

parallel efficiency
N W A o
o o O o

—_—
o

7 8 9 10 11 12 13 14

0 1 2 3 4 5 6
log, SST

Figure 4.3: Parallel efbciency is sensitiveS8T (16 processors).

two-dimensional representation into a single Rat rope, but then the clarity of the code would be
compromised, as we would have to use index arithmetic to extract any pixel, thereby breaking with
the nested-data-parallel programming style.

Recall that task execution times can vary unpredictably. Chunking strategies that are based
solely on bxed thresholds, such as EBS and ETS, are bound to be fragile because they rely on
accurately predicting execution times. A superior chunking strategy would be able to adapt dy-

namically to the current state of load balance across processors.

4.0.3 Lagzy binary splitting

The LBS strategy of Tzannes, al. [86] is a promising alternative to the other strategies because

it has good adaptivity to dynamic load balance. Tzanwees/. show that LBS is capable of

80

performing as well or better than each conbguration of eager binary splitting, and does so without
tuning.

LBS is similar to eager binary splitting but with one key difference. In LBS, we base each
splitting decision entirely on a dynamic estimation of load balance. Let us consider the main
insight behind LBS. We call a processamngry if itis idle and ready to take on new work, ahdsy
otherwise. It is better for a given processor to delay splitting a chunk and to continue processing
local iterations while remote processors remain busy. Splitting can only be probtable when a
remote processor is hungry.

Although this insight is sound, it is still unclear whether it is useful. Av&hungry-processor
check would require inter-processor communication, and the cost of such a check would hardly be
an improvement over the cost of spawning a thread. For now, let us assume that we have a good

approximate hungry-processor check
val hungryProcs : unit -> bool

which returngrue if there is probably a remote hungry processor taise otherwise. Later,
we consider how to implement such a check.

LBS works as follows. The scheduler maintains a current cloarkd a pointer that points at
the next iteration in the chunk to process. Initially, the chunk contains all iterations=a8d To
process an iteration the scheduler brst checks for a remote hungry processor. If the check returns
false, then all of the other processors are likely to be busy, and the scheduler greedily executes the
body of iterationi. If the check returns true, then some of the other processors are likely to be
hungry, and the scheduler splits the chunk in half and spawns a recursive instance to process the
second half.

Tzannesgr al. [86] show how to implement an efbcient and accurate hungry-processor check.
Their idea is to derive such a check from the work stealing policy. Recall that, in work stealing,
each processor has a deque, which records the set of tasks created by that processor. The hungry-

processor check bases its approximation on the size of the local deque. If the deque of a given
81

processor contains some existing tasks, then these tasks have not yet been stolen, and therefore it
is unlikely to be probtable to add to these tasks by splitting the current chunk. On the other hand,

if the deque is empty, then it is a strong indication that there is a remote hungry processor, and it is
probably worth splitting the current chunk. This heuristic works surprisingly well considering its
simplicity. It is cheap because the check itself requires two local memory accesses and a compare
instruction, and it provides an accurate estimate of whether splitting is probtable.

Let us consider how LBS behaves with respect to loop nesting. Suppose our computation has
the form of a doubly-nested loop, one processor is executing an iteration of the inner loop, and all
other processors are hungry. Consequently, the remainder of the inner loop will be split (possibly
multiple times, as work is stolen from the busy processor and further split), generating relatively
small chunks of work for the other processors. Because the parallelism is fork-join, the only way
for the computation to proceed to the next iteration of the outer loop is for all of the work from the
inner loop to be completed. At this point, all processors are hungry, except for the one processor
that completed the last bit of inner-loop work. This processor has an empty deque; hence, when it
starts to execute the next iteration of the outer loop, it will split the remainder of the outer loop.

Because there is one hungry-processor check per loop iteration, and because loops are nested,
most hungry-processor checks occur during the processing of the innermost loops. Thus, the gen-

eral pattern is clear: splits tend to start during inner loops and then move outward quickly.

4.1 Lazy tree splitting for ropes

LTS operations are not as easy to implement as ETS operations, because, during the execution of
a given LTS operation, a split can occur while processimgrope element. This section presents
implementations of bve important LTS operations. The technique | use is based on HuetOs zipper
technique [46] and a new technique we cgllirting a context. Let us Prst look in detail at the

LTS version of maprhapLTS because its implementation offers a simple survey of the relevant
techniques. Then | summarize implementations of the additional operations.

82

4.1.1 Implementing mapLTS

Structural recursion, on its own, offers no straightforward way to implemagL TS Consider
the case in whiclmapLTS detects that another processor is hungry. HowroapL TS be ready
to halve the as-yet-unprocessed part of the rope, keeping in mind that, at the halving moment,
the focus might be on a mid-leaf element deeply nested within a numb&atofnodes? In a
typical structurally recursive traversal 4., Figure 4.1(b)), the code has no handle on either the
processed portion of the rope or the unprocessed remainder of the rope; it can only see the current
substructure. We need to be able to Ostep throughO a traversal in such a way that we can, at any
moment, pause the traversal, reconstruct processed results, divide the unprocessed remainder in
half, and resume processing at the pause point.

A key piece of our implementation is an internal operation catbegpUntil . ThemapUntil

operation is capable of pausing its traversal based on a runtime predicate:
val mapuntil
(unit -> bool) -> (Oa -> Ob)
-> Qa rope
-> (Oa rope * Ob rope, Ob rope) progress
The brst argument tmapUntil is a polling function é.g., hungryProcs); the second ar-

gument is the function to be applied to the individual data elements; and the third argument is
the input rope. Instead of returning a fully processed ropapUntil returns a value of type
(Oa rope = Ob rope, Ob rope) progress ,where the type constructprogress is

debned as
datatype (Oa Ob) progress
= More of Oa
| Done of Ob

In the result ofmapUntil , a valueMore (u, p) represents a partially processed rope where
u is the unprocessed part apds the processed part; a valDene p represents a fully processed
rope. The evaluation ahapUntil cond f rp proceeds by applyinf to the elements afp

from left to right until eithercond () returnstrue or the whole rope is processed. Before we
consider the implementation afiapUntil , we examine hownapUntil is used to implement

mapLTS
83

fun mapLTS f rp
if length rp <=1 then
mapSequential f rp
else (case mapUntil hungryProcs f rp
of More(u, p) => let
val (ul, u2) = split2 u
in
catN (parN [fn () => balance p,
fn () => mapLTS f ul,
fn () => mapLTS f u2))
end
| Done p => balance p)

Figure 4.4: The LTS implementation of the rope-map operation.

The mapLTSalgorithm, shown in Figure 4.4, starts by checking the length of the input rope.
When the rope length is greater than one (the interesting case), the algorithmaaUstil to
start processing elements. If this call returns a partial reSldt¢ (u, p)), thenmapLTSsplits
the unprocessed subropeand schedules the parallel evaluation of the balancing (if necessary)
of the processed subropeand the recursive mapping of the halves of the unprocessed subrope
u. At the join of the parallel computation, the three now processed subropes are concatenated
and returned. Note that because this algorithm is recursive, splitting may continue until a single
rope element is reached. If the calltmapUntil returns a complete resulDone p), thenp
is balanced (if necessary) and returned. Balanpirfop either theMore or Done cases) may be
probtable here because the ropes returneddyyUntii may be unbalanced.

It remains to implement thenapUntil operation. The crucial property of theapUntil
operation is that during the traversal of the input rope, it must maintain sufpcient information to,
at any moment, pause the traversal and reconstruct both the processed portion of the rope and the
unprocessed remainder of the rope. HuetOs zipper technique [46] provides the insight necessary to
derive a persistent data structure, and functional operations over it, which enable this OpausableO
traversal. A zipper is a representation of an aggregate data structure that factors the data structure

into a distinguished substructure under focus and a one-hole context; plugging the substructure into

84

the context yields the original structure. Zippers allow efpcient navigation through and modibca-
tion of a data structure. With a customized zipper representation, some basic navigation operations,
and our novel context-splitting technique, we arrive at an elegant implementatoaptintil

To represent the rope-map traversal, we use a context representation similar to HuetOs single-
hole contexts [46], but with different types of elements on either side of the hole, as in McBrideOs

contexts [57]. Thus, our context representation is debned as
datatype (Oa, Ob) ctx
= Top N N N

| CatL of Qa rope x (Qa, Qb) ctx
| CatR of Ob rope * (Oa Ob) ctx
whereTop represents an empty conteiatL(r, ¢) represents the context surrounding the left
branch of aCat node where is the right branch and is the context surrounding thi@at node,
andCatR(l, ¢c) represents the context surrounding the right branch@&tanode wherd is
the left branch and is the context surrounding tt@at node. Note that, for a rope-map traversal,
all subropes to the left of the contextOs hole are proceStedope) and all subropes to the right
of the contextOs hole are unprocesé&i (ope).

The implementation ahapUntil will require a number of operations to manipulate a context.
Theleftmost (rp, ¢) . (sO, cO) operation plugs the (unprocessed) ropeinto the

contextc, then navigates to the leftmost leafrpf, returning the sequens® at that leaf and the

contextcO surrounding that leaf:

val leftmost : Oarope * (Oa Ob ctx
-> Oa seq * (Oa Ob ctx

fun leftmost (rp, c) = (case rp
of Leaf s => (s, C)
| Cat(l, r) => |eftmost (I, CatL(r, c)))

Thestart operation simply specializésftmost to the case of the whole unprocessed rope in

the empty context:
val start : Oarope -> Oaseq » (Oa Ob ctx

fun start rp = leftmost (rp, Top)

85

It is used to initialize theanapUntil traversal. See Figure 4.5(a) for a pictorial example of this
operation. In the bgure, a right-facing leaf node denotes a processed node and facing the left an
unprocessed node. Thext (rp, ¢) operation plugs the (processed) rapeinto the context

c, then attempts to navigate to the next unprocessed leaf.

val next
Ob rope * (Oa Ob ctx
> (Oaseq * (0Oa Ob ctx, Ob rope) progress

fun next (rp, c) = (case c
of Top => Done rp
| CatL(r, cO) =>
More(leftmost (r, CatR(rp, cO)))
| CatR(l, cO) => next (cat2 (I, rp), cO))

This navigation can either succeed, in which case&t returnsMore (sO, cO) (see Fig-
ure 4.6(c)), wheresO is the sequence at the next leaf arfd is the context surrounding that
leaf, or fail, in which cas@ext returnsDone rpO (see Figure 4.5(b)), wher@O is the whole
processed rope.

The Pnal operation on contexts is an operation to split a context into a pair of ropes N the
unprocessed subrope that occurs to the right of the hole and the processed subrope that occurs to the
left of the hole. It is convenient for theplitCtx ~ operation to additionally take an unprocessed
rope and a processed rope meant to pPll the hole, which are incorporated into the result ropes (see

Figure 4.6(d)):
val splitCtx : Oa rope * Obrope * (Oa Ob ctx
-> Oa rope * Ob rope

fun splitCtx (u, p, c) = (case c
of Top => (u, p)
| catL(u®, cO) =>
splitCtx (cat2 (u, ud), p, cO)
| catR(pO, cO) =>
splitCtx (u, cat2 (pO, p), cO))
With these context operations, we give the implementatiomapUntil in Figure 4.7. The

traversal oimapUntil is performed by the functiolp . The argumens represents the sequence
of the leftmost unprocessed leaf of the rope and the argumesygresents the context surrounding

that leaf.
86

Top

rp

c

s' < <

(a) start rp . (s0,cO)
Top
rp'
c
> rpl=>=
(b) next (rp,c) . Done rpd

Figure 4.5: Operations on contexts

87

Top

(c) next (rp,c) . More (sO,cO)

= Ga>C
— [=<]
P u

Top p'
G
&
(d) splitCtx (u,p,c) . (ub,pd)

Figure 4.6: Operations on contexts

88

fun mapuUntil cond f rp = let
fun Ip (s, ¢) = (case mapSeqguntil cond f s
of More(us, ps) =>
More(splitCtx (Leaf us, Leaf ps, c))
| Done ps => (case next (Leaf ps, c)
of Done p® => Done pO
| More(sO, c®) => Ip (sO, c0)))
in
Ip (start rp)
end

Figure 4.7: ThenapUntil operation.

The processing of the sequence is performednapSeqUntil , a function with similar be-
havior tomapuUntil , but implemented over linear sequences. hepSeqUntil that actually
callscond and applies the functioh. Note thatmapSeqUntil must also maintain a context
with processed elements to the left and unprocessed elements to the right, but doing so is trivial for
a linear sequence. (Recall the standard accumulate-with-reverse implementatiapnfof lists.)

If mapSeqUntil returns a partial resultMore (us, ps)), then the traversal pauses and
returns its intermediate results by splitting its context. (This pause and returnngasT Sthe
opportunity to split the unprocessed elements and push the parallel mapping of these halves of the
unprocessed elements onto the work-stealing dequmgpiSeqUntil returns a complete result
(Done ps), then the traversal plugs the context with this completed leaf sequence and attempts
to navigate to the next unprocessed leaf by callmext (Leaf ps, c) . If next returns
Done pOQ, then the rope traversal is complete and the whole processed rope is returned. Otherwise,
next returnsMore (sO, c®) and the traversal loops to process the next leaf sequade (

with the new contextq®).

4.1.2 Implementing other operations

The implementation dilterLTS is very similar to that omapLTS IndeedfilterLTS uses

the same context representation and operatiomsagd. TS, simply instantiated with unprocessed

89

and processed elements having the same type:

val filterLTS : (Ba -> bool)
-> Oa rope -> Oa rope

type Oa filter_ctx = (Oa 09 ctx
As with mapLTS where the mapping operation was applied byrttegpSeqUntil operation, the
actual bltering of elements is performed by fitterSequntil operation.
ThereducelLTS operation takes an associative operator and its zero and a rope and returns

the ropeOs reduction under the operator.

val reducelLTS : (Oa* Oa-> 0Oa -> Oa
-> Qarope -> Oa

Thus, thaeducelL TS operation may be seen as a generalized sum operation. The implementation

of reducelLTS is again similar to that ofnapL TS but uses a simpler context:

datatype Oa reduce_ctx
= Top
| CatL of Oa rope =* Oa reduce_ctx
| CatR of Oa * Oa reduce_ctx

whereCatR (z, ¢) represents the context surrounding the right branch@dtanode in which

z is thereduction of the left branch and is the context surrounding the reduction of @&t node.
ThescanLTS operation, also known asefix sums, is an important building block of a data-

parallel programming language. LikeducelLTS , thescanLTS operation takes an associative

operator and its zero and a rope and returns a rope of the reductions of the prebxes of the input

rope.

val scanLTS : (Oa* Oa -> 0Oa -> Oa
-> Oa rope -> Oa

For example,

scanLTS (op +) O (Cat (Leaf [1, 2], Leaf [3, 4])
Cat (Leaf [1, 3], Leaf [6, 10])

In a survey on prebPx sums, Blelloch describes classes of important parallel algorithms that use

this operation and gives an efbcient parallel implementation of prebPx sums [6], on which our

90

implementation okcanLTS is based. The algorithm takes two passes over the rope. The prst
performs a parallel reduction over the input rope, constructing an intermediate rope in which partial
reduction results are recorded at each internal node. The second pass builds the result rope in
parallel by processing the intermediate rope. The efpciency of this second pass is derived from
having constant-time access to the cached sums while it builds the result.

The result of this brst pass is calledhanoid-cached tree [44], specialized in the current case

to monoid-cached rope. In @ monoid-cached rope,

datatype Oa crope
= CLeaf of Oa * Oa seq
| CCat of Oa * Oa crope =* QOa crope

each internal node caches the reduction of its children nodes. For example, supposing the scanning

operator is integer addition, one such monoid-cached rope is
CCat (10, ClLeaf (3, [1, 2]), CLeaf (7, [3, 4]))

Our implementation of BlellochOs algorithm is again similar to thahafL TS, except that
we use a context in which there amgpe s to the right of the hole andached_rope s to the
left of the hole. Aside from some minor complexity involving the propagation of partial sums, the
operations on this context are similar to those on the context usetpi TS

Themap2LTS operation maps a binary function over a pair of ropes (of the same length).

val map2LTS : (Oa » Ob -> Oc)
-> Qarope * Obrope -> Ob rope

For example, the pointwise addition of the ropp$ andrp2 can be implemented as
map2LTS (op +) (rpl, rp2)

Note thatrpl andrp2 may have completely different branching structures, which would com-
plicate any structural-recursive implementation. The zipper technique provides a clean alternative:
we maintain a pair of contexts and advance them together in lock step during execution. The result

rope is accumulated in one of these contexts.

91

Contexts and partial results nicely handle the processing of leaves of unequal length. When the
map2SeqUntil function is applied to two leaves of unequal length, it simply returns a partial
result that includes the remaining elements from the longer sequencemdp2Until func-
tion need only step the context of the shorter linear sequence to bnd the next leaf with which to
resume themap2SeqUntil processing. Note that we do need to distinguisp2SequUntil
returning with a partial result due to the polling function, in which casg2Until should also
return a partial result (signaling that a task should be pushed to the work-stealing deque), from
map2SequUntil returning with a partial result do to exhausting one of the leaves, in which case
map2Until should not return a partial result. The implementation straightforwardly extends to

maps of arbitrary arity.

4.1.3 Rebalancing

In our implementation, there are two circumstances in which we need to do balancing. The prst s
in filterLTS , because the Pltering predicate may drop elements at arbitrary positions inside the
rope. The second is in operations lik@apLTS because such operations may split at an arbitrary

rope leaf.

4.2 Evaluation

| have already presented data that shows the performance of ETS is sensitiv8$d tharameter.
In this section, | present the results of additional experiments that demonstrate that LTS performs
as well or better than ETS over a range of benchmarks. Furthermore, it demonstrates scalable

performance without any application-specibc tuning.

92

4.2.1 Benchmarks

For this empirical evaluation, | use six benchmark programs from the benchmark suite and one
synthetic benchmark. All benchmarks use the same max leafMize 256), which provides the

best average performance over the programs in the benchmark suite.

4.2.2 Lazy VS. eager tree splitting

My most important experimental results come from a comparing LTS to ETS side by side. Figures
4.8, 4.9, and 4.10 show speedup curves for all seven of the benchmarks. For each graph, | plot the
speedup curve (over sequential PML performance) of ETS 88 values ofl, 128 and16384
and of LTS. | have argued that one of the main advantages of LTS over ETS is that LTS does not
require tuning for each benchmark. These graphs show that LTS is better than most conbgurations
of ETS, and that the downside of picking a p&@®T value for ETS can be quite severeg(,
Figure 4.8b) with an SST of 128). They also show that not only is the best choic&8T for
ETS dependent on the particular benchmark, but in some cases it is also dependent on the number
of processorse(g., Figure 4.8a) and Figure 4.11 textit(f)).

With an optimal pick ofSST value, ETS can outperform LTS, because of lower overhead. In
my experiments, | collected data for eve3$T / {2i | 0%i % 14 and compared the best ETS
performance against LTS for each benchmark on 16 processors. | found that even with always
choosing the besSST value for the given benchmark and number of processors, ETS was never
more than 20% faster than LTS. In practice, it is impossible to make such precise and specialized
tuning decisions: priori, since workloads and compute resources are unpredictable. Therefore, |
believe that LTS provides a much better solution to the Goldilocks problem.

To address the question of why optimal ETS is faster than LTS, | collected probling data for
the benchmarks. This data shows that the per-processor utilization for ETS is never more than
3% greater than that of LTS, which is almost within the 2% of sampling error mentioned above.

Thus, | believe that the performance gap has to do with increased overhead, rather than poorer

93

16
e OLTS
14| YXXKETS (8ST=2")
1y HHETS (8ST=2")
YYETS (SST=2")
al0
=
g 8
6
4
2
1
1 2 4 6 8 10 12 14 16
number of processors
(a) Quicksort
16

e OLTS

14| X KETS (8ST=2")
” +—ETS (SST=2")
YYETS (SST=2")

—

1 2 4 6 8 10 12 14 16
number of processors

(b) Barnes-Hut

Figure 4.8: Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.

94

16
e OLTS
14| YXXKETS (8ST7=2")
1 —+—ETS (SST=2")
YYETS (SST=2")
g.l(]
g 8
6
4
2
1 I I I | I
1 2 4 6 8 10 12 14 16
number of processors
(c) Raytracer
16

o OLTS

14| X KETS (SST=2")
0 —+—ETS (SST=2")
Y ETS (8ST=2")

1 2 4 6 8 10 12 14 16
number of processors

(d) SMVM

Figure 4.9: Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.

95

16
e OLTS
14| YXXKETS (8ST=2")
1y HHETS (8ST=2")
YYETS (SST=2")
al0
S
gs
6
4
2
1 j I |
1 2 4 6 8 10 12 14 16
number of processors
(c) DMM
16

e OLTS

14| X KETS (8ST=2")
” +—ETS (SST=2")
YYETS (SST=2")

—

1 2 4 6 8 10 12 14 16
number of processors

(d) Tree Rootbx

Figure 4.10: Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.

96

16
e OLTS
14| X XETS (8ST=2°)
1y | TETS (SST=2")
Y—YETS (SST=2")
al(
E
§8
6
4
2
1 I N/ //§I<
1 2 4 6 8 0 12 14 16

number of processors

(f) Nested Sums

Figure 4.11: Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.

scheduling. | also considered the possibility that rebalancing was the source of the performance
gap, but my probling data showed that the total time spent rebalancing is an insignibPcant fraction
of the the total programOs run time. Thus, | believe that the main source of this performance gap is
the overhead of using a zipper to implement LTS (this point is discussed in further detail below).

In Table 4.1, | present performance measurements for the seven benchmarks run in several
different sequential conbgurations, as well as on 16 processors.

The brst column of data presents timing results for MLton. MLton is a sequential whole-
program optimizing compiler for Standard ML [60, 90], which is the Ogold standardO for ML
performance. The second data column gives the baseline performance of the natural sequential
PML versions of the benchmarkse, parallel operations are replaced with their natural sequential
equivalents). Manticore | about a factor of two slower than MLton for all of the benchmarks except
DMM and Nested Sums. Considering MLtonOs suite of aggressive optimizations and maturity, the

sequential performance of PML is encouraging. The slower performance here can be attributed to

97

PML
Benchmark| MLton Seq. LTS Par.16 Speedup
Quicksort| 1.36s| 3.93s 5.61s 0.51s 7.77
Barnes Hut| 7.71s| 14.63s 20.62s 2.20s 6.64
Raytracer| 2.29s| 3.58s 3.54s 0.22s 16.15
SMVM 0.07s| 0.15s 0.19s 0.02s 8.94
DMM 0.84s| 3.49s 4.12s 0.30s 11.65
Tree Rootbx 3.79s| 8.43s 10.44s 1.32s 6.38
Nested Sums 0.21s| 1.46s 1.80s 0.14s 10.17

Table 4.1: The performance of LTS for seven benchmarks.

at least two factors. First, the MLton compiler monomorphizes the program and then aggressively
Rattens the resulting monomorphic data representations. Since ropes are polymorphic, Manticore
used a boxed representation for the array elements, instead of an unboxed representation. Sec-
ond, my probling shows higher GC overheads in Manticore. These issues can be addressed by
improving ManticoreOs sequential performance.

The third data column reports the execution time of the benchmarks using the LTS runtime
mechanismse(g., zippers), but without parallelism. By comparing these numbers with the natural
sequential measurements, we get a measure of the overhead of the LTS mechanisms. On average,
the LTS version is about 24% slower. | have determined through probling that the main source of
this overhead izor from calls tohungryProcs or rebalancing. Instead, the primary source of
the overhead comes from maintaining the traversal state via the zipper context. Such a strategy is
less efbcient than implicitly maintaining the state via the run-time call stack in a natural structural
recursior?

The last two columns report the parallel execution time and speedup on sixteen processors.
Overall, the speedups are quite good. The super-linear speedup of the Raytracer is explained by a
reduction in GC load per processor. This reduction happened because each processor has its own

local heap, so the total size of the available heap increases with the number of processors.

2. Manticore uses heap-allocated continuations to represent the call stack [2, 31].

98

The Barnes-Hut benchmark achieves a modest speedup, which | believe stems from a limit on
the amount of parallelism in the program. This hypothesis is supported by the fact that increasing
the problem size to 400,000 particles improves the speedup results. Because matrix-matrix multi-
plication exposes a large amount of average parallelism, on the order of 150,000 tasks, we expect
DMM to have a near-perfect linear speedup. However, DMM is 25-27% slower than a perfect
speedup. | attribute the slower performance on DMM to an increase in overheads incurred by the
LTS Zipper traversal. Observe that the sequential version of DMM that uses a LTS is 20% slower
than a similar version that does not.

There is still a question of whether my technique trades one tuning parar8&&) for an-
other, the max leaf sizeM). | address this concern in two ways. First, observe that even if
performance is sensitive ¥, this problem is specibc to ropes, but neither ETS nor LTS. Second,
consider Figure 4.12 which shows, for each of the benchmark programs, the parallel efbciency as
a function ofM (the parallel efbciency has the same meaning as it does in Figure 4.3). The results
show all benchmarks performing well fsd / {512 1024 2048 . One concern is DMM, which
is sensitive toM because it does many random access operations on its two input ropes. One
can reduce this sensitivity by using an alternative rope representation that provides more efbcient

random access.

4.3 Related work

Adaptive parallel loop scheduling The original work on lazy binary splitting presents a dy-
namic scheduling approach for paraltiel-all loops [86]. Their work addresses splitting ranges
of indices, whereas ours addresses splitting trees where tree nodes are represented as records allo-
cated on the heap.
In the original LBS work, they use grofitable parallelism threshold (PPT) to reduce the
number of hungry-processor checks. RIT is an integer which determines how many iterations
a given loop can process before a doing hungry-processor check. Our performance study has

99

100 — o o 6 o o o o o

-||:||— gi\/lrl\r)les Hut | —
o—e Raytracer
¥—r Nested Sums
4~ Quicksort
— SMVM

~<—— Tree Rootfix

~J o0
o O

W
(@)

parallel efficiency
N W A o
oo O)

—_—
(@)

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14
log,

Figure 4.12: The effect of varying max leaf silzk (16 processors)

PPT =1 (i.e., one hungry-processor check per iteration) because we have not implemented the
necessary compiler mechanisms to do otherwise.

Robisoner al. propose a variant of EBS callealito partitioning [75], which offers good
performance for many programs and does not require tuhidgito partitioning derives some
limited adaptivity by employing the heuristic that when a task detects it has been migrated it splits
its chunk into at least some bPxed number of subchunks. The assumption is that if a steal occurs,
there are probably other processors that need work, and it is worthwhile to split a chunk further. As
discussed by Tzannes, al. [86], auto partitioning has two limitations. First, fotevels of loop
nesting,P processors, and a small, constant parani€teit creategK $ P)i chunks, which is

excessive if the number of processors is large. Second, although it has some limited adaptivity, auto

3. Auto partitioning is currently the default chunking strategy of TBB [47].

100

partitioning lacks performance portability with respect to the context of the loop, which limits its

effectiveness for scheduling programs written in the liberal loop-nesting style of an NDP language.

Granularity control Early work by Loidl and Hammond in the context of Haskell compared
three strategies for deciding whether to create a thread for parallel work or continue in sequence [55].
In simulation, they found that using a simple cut-off generated more speedup than more compli-
cated strategies that dynamically determine whether to create a thread and which thread to run
based on a priority associated with the function to run. This cut-off is a value based on a granular-
ity estimation function provided to the parallel primitives. They found, as we did, that speedup was
highly dependent upon the cut-off value. Their approach differs from ours in that the cut-off value
is statically provided to the runtime; they require a function that can report a granularity metric
of the work to perform based on the function being called and the data computed upon. Notably,
their work handles any divide-and-conquer algorithm, whereas our solution specibcally addresses
parallel map operations.

Tick and Zhong presented an approach using compile-time granularity analysis in concurrent
logic programs [83]. Their compiler creates a call gr4atullapses all strongly-connected com-
ponents (mutually-recursive functions), and then walks up the collapsed graph creating recurrence
equations representing cost estimates. These recurrence questions are solved at compile time and
used at run time for cost estimation of functions based on their dynamic inputs. This work does
not discuss how these cost metrics are integrated into their scheduler, but does provide an 85b
91% accurate estimator of runtime costs for arbitrary functions across their suite of benchmarks.
Their static analysis takes advantage of logic programming language features, but demonstrates a

potentially more effective approach to determining a satisfad®®y .

Data parallelism NESL is a nested data-parallel dialect of ML [8]. TheeBL compiler uses

a program transformation callgthttening, which transforms nested parallelism into a form of

4. This language is not higher-order, which greatly simplibes the construction of the call graph.

101

data parallelism that maps well onto SIMD architectures. Note that SIMD operations typically
require arrays elements to have a contiguous layout in memory. Flattened code maps well onto
SIMD architectures because the elements of Battened arrays are readily stored in adjacent memory
locations. In contrast, LTS is a dynamic technique that has the goal of scheduling nested parallelism
effectively on MIMD architectures. A Rattened program may still use LBS (or LTS) to schedule
the execution of array operations on MIMD architectures, so in that sense, Rattening and LTS are
orthogonal.

There is, of yet, no direct comparison between an NDP implementation based on LTS and an
implementation based on Rattening. One major difference is that LTS uses a tree representation
whereas [3attening uses contiguous arrays. As such, the LTS representation has two major disad-
vantages. First, tree random access is costlier, for a rop©fiflag) n) time, wheren is the length
of a given rope. Second, there is a large constant factor overhead imposed by maintaining tree
nodes. One way to reduce these costs is to use a ObushyO representation that is similar to ropes but
where the branching factor is greater than two and child pointers are stored in contiguous arrays.

The NesL backend written by Chatterjee [21] and Data Parallel Haskell [18] performs fusion
of parallel operations in order to increase granularity. We do not currently implement such trans-
formations. While fusion reduces overall work for data-parallel operations, it reduces the work per
element but does not affect the coarsening of the iterations within a data-parallel operation. Such
fusion techniques are orthogonal to LTS.

Narlikar and Blelloch present a parallel depth-brst (PDF) scheduler that is designed to min-
imize space usage [65]. Later work by Greiner and Blelloch on proposes an implementation of
NDP based on the PDF scheduler [10]. The PDF schedule is a greedy schedule that is based on the
depth-prst traversal of the parallel execution graph. The PDF schedule is as close to the sequential
schedule as possible in the sense that the scheduler only ever goes ahead of the sequential sched-
ule when the scheduler is limited by data dependencies. In contrast, the work stealing approach

used by LTS has each processor doing an independent depth-prst traversal of that processorOs own

102

portion of the parallel execution graph.

The work on space efbcient scheduling does not address the issue of building an automatic
chunking strategy, which is the main contribution of LTS. Narlikar and Blelloch coarsen loops
manually in order to obtain scalable parallel performance in their performance study. LTS Pnds
good chunk sizes automatically, without programmer assistance.

Ctis an NDP extension to C++ [38]. $oal. describe a fusion technique for Ct that is similar
to the fusion technique of DPH [81]. The fusion technique used by Ct is orthogonal to LTS for
the same reasons as for the fusion technique of DPH. The work on Ct does not directly address the

issue of building an automatic chunking strategy, which is the main contribution of LTS.

GpH GpH introduced the notion of an Oevaluation strategy,0 [84] which is a part of a program
that is dedicated to controlling some aspects of parallel execution. Strategies have been used to
implement eager-splitting-like chunking for parallel computations. We believe that a mechanism
like an evaluation strategy could be used to build a clean implementation of lazy tree splitting in a

lazy functional language.

Cilk Cilkis a parallel dialect of the C language extended with linguistic constructs for expressing
fork-join parallelism [36]. Cilk is designed for parallel function calls but not loops, whereas our

approach addresses both.

4.4 Discussion

The main idea of lazy splitting is to maintain some extra information so it is always possible to
spawn off half of the remaining work. This paper presents an instantiation of this idea for oper-
ations that produce and consume ropes. Although the main idea has potential to be adapted to a
larger class of divide-and-conquer programs, | believe at least three substantial challenges must be

met before this goal can be achieved. The Pbrst challenge is to support other tree representations,

103

such as, for example, red-black trees. Specibcally, one must derive efbcient traversal patterns that
preserve the invariants of such structures. Second, LTS programs involve zippers, which are an im-
plementation detail. Are there general techniques to derive LTS specibcations automatically from
more natural specibcations? For example, is there a mechanical process for deriving LTS programs
(e.g., mapLT9) from structural-recursive programagd., mapStructural)? One possible ap-
proach is to use a static analysis to identify divide-and-conquer recursive functions, then apply
a program transformation to generate analogous lazy-splitting versions. Third, there is a need
for general techniques to aggregate work for small problem sizes (rope leaves effectively provide
this mechanism in the system described here). Failure to provide such techniques will result in
excessive overhead and limited scalability.

The splitting strategy used by LBS and my LTS can cause unnecessary splitting. To understand
why, observe that splitting is prone to start at the innermost loops and then work its way to the
outer loops, as discussed at the end of Section 4.0.3. Having the thief worker splitdheost
loops is more efbcient because the outer iterations usually contain the most work.

The implementation here uses innermost splitting for two reasons. First, to support outer-
most splitting would involve special support from the language implementation, as splitting the
outermost loop would involve modifying a part of the whole continuation, not just a part of the
continuation of the current loop. Second, in the empirical study, for each benchmark, | observed
that total number of splits stayed under the low hundreds. Since, steals are extremely fast in the test
machine, having a few extra steals made little difference. | expect that an implementation based

on outermost stealing would be superior for larger machines.

4.5 Summary

| have described the implementation of NDP features in the Manticore system. | have also pre-
sented a new technique for parallel decomposition, lazy tree splitting, inspired by the lazy binary
splitting technique for parallel loops. | presented an efbcient implementation of LTS over ropes,

104

making novel use of the zipper technique to enable the necessary traversals. My techniques can be
readily adapted to tree data structures other than ropes and is not limited to functional languages.
A work-stealing thread scheduler is the only special requirement of my technique.

LTS compares favorably to ETS, requiring no application-specibc or machine-specibc tuning.
For any given benchmark, LTS outperforms most or all conbgurations of ETS, and is, at worst,
only 20% slower than the optimally tuned ETS conbguration. Since, in general, optimal tuning
of ETS for arbitrary programs and computational resources is not possible, | believe that LTS
is a superior implementation technique. The ability of LTS to enable good parallel performance

without requiring application-specibPc tuning is very promising.

105

CHAPTER 5
IMPLEMENTING WORK STEALING IN MANTICORE

This chapter discusses several parts of Manticore that are important for work stealing, including
task cancellation, the BOM implementation of WS LPOs scheduler loop , and the vproc-interrupt

mechanism.

5.1 Task cancellation

Task cancellation is a mechanism that provides a crucial optimization: when a speculative task is
known to be unecessary for the rest of the computation, that task can be terminated in order to free
up system resources. In PML, task cancellation is used by parallel tuples as a means to clean up
after an exception is raised, and it is used by the speculative congixattsandpcase [33, 34].

Task cancellation involves a subtle synchronization protocol. To cancel a given task, that task
must be terminated and an all of its descendants in the spawning tree must be canceled as well.
At the time of cancellation, these descendants are spread across vprocs, and can themselves be
creating new tasks. Arriving at a correct protocol is challenging.

This chapter presents the design for the task-cancellation mechanism used by Manticore. The
mechanism that | propose is implemented entirely in terms of the runtime primitives presented in
Chapter 5. The design allows for cancellation to be integrated into an existing scheduling policy
with a modest programming effort. The implementation consists of a single cancellation library
that is shared by all task schedulers.

This design makes a step toward a larger goal: to structure the Manticore scheduling system as
a collection of small components. From these small components, the system can provide a wide
variety of policies and support various forms of implicit threads.

The rest of this chapter is as follows. First, | present the design of the mechanism. Then, |

describe the implementation of the Oparallel-orO operation, which uses cancellation to implement

106

datatype cancelable = CANCELABLEof {

canceled : ![bool],

running . I[vproc option],
children . I[cancelable list],
parent . cancelable option

}

Figure 5.1: The type ofancelable

a powerful form of speculative parallelism. Then | evaluate the design through a few experiments.

5.1.1 The design

Let us build a cancellation mechanism for bPbers, the most basic form of process in Manticore. The
cancelable treds a tree that records parent-to-child relationships among executing Pbers. The
scheduler uses this tree to locate at runtime subtrees of a computation that are executing on remote
Vprocs.

A cancelable is a channel by which cancellation signals are communicated to a Pber. Each
channel is paired with exactly one Pber at runtime. Figure 5.1 shows the type of the channel.
The channel has four states: running and not canceled, running and canceled, terminating and not
canceled, and terminating and canceled. The relding tracks on which vproc the associated
Pber is running (it is set ttlONEf the bPber is not running). In addition, the channel maintains all
the node information for the cancelable tree. The parent node records the parent of the cancelable
or a nil value if the node is the root node. The child list tracks all the nodes spawned by the bber
corresponding to the channel.

Figure 5.2 shows the interface for cancelable pPbers.
¥ makeCancelable () returns a new cancelable.

¥ cancel ccancels the bPber associated with cancelablEhis operation is synchronous B

it waits for its canceled processes and their children to terminate if they are running.

107

val makeCancelable : unit -> cancelable

val cancel : cancelable -> unit
val cancelWrapFiber : (cancelable * fiber) -> fiber
val cancelWrapFun : (cancelable * (unit -> unit))

-=> (unit -> unit)
Figure 5.2: Operations over cancelables.

¥ cancelWrapFiber (¢, k) returnsanew cancelable version of Pbénat has the same

behavior ak.

¥ cancelWrapFun (¢, f) returns a new cancelable version of functiorthat has the

same behavior ds.

Below is an example of cancelable Pbers. The program initiates a long-lived parallel computa-

tion and then cancels the computation, along with any Pbers that it spawned in the meantime.

let
val k fiber (fn () => largeComputation ())
val ¢ = makeCancelable ()
val cFn = cancelWrapFiber (c, k)
in
enqOnVP (vproc, fiber cFn, getFLS ());
cancel ¢
end

Let us turn to the implementation encelWrapFiber , which is shown in Figure 5.3.
The operation uses the scheduler actiwwrgpper , to sit on the scheduler-action stack while the

Pber executes and poll for cancellation.

¥ Thesetlnactive function moves focus up one level in the cancelable tree and marks the

cancelable as terminating. Canceling a terminating Pber is a no-op.

¥ ThesetActive function sets the current cancelable to the given cancelable and marks the

bber as active.

1. Neal Glew identibPed a race condition in the original implementation. This original implementation appeared in
ICFPO08 [32]. The implementation reported here uses the bx that he suggested.

108

fun cancelWrapFiber (c, k) = let

val CANCELABLE{canceled, ...} =cC
fun terminate () = (setlnactive c; stop ())
fun dispatch (wrapper, k) = (

setActive c;

if (#0(promote canceled)) then
terminate ()
else
run (wrapper, Kk))
cont wrapper (sgn) = (case sgn
of STOP => terminate ()
| PREEMPT k=> (
setlnactive c;
atomicYield ();
dispatch (wrapper, k))
(* end case *))

fn () => (maskPreemption (); dispatch (wrapper, K))

Figure 5.3: Cancel wrapper.

The cancel operator marks a channel as cancelled and waits the Pber associated with the

channel to terminate. The behavioraaincel cis as follows:

¥ The calling vproc marks as canceled.
¥ The calling vproc preempts the host vproaof

¥ The the calling vproc waits for the cancelable to become inactive. Once the associated bPber
is both inactive and canceled, the Pber can no longer spawn child Pbers, so it must be the

case that the cancelableOs children list can no longer change.

¥ The calling vproc clears the child-pointer list and recursively apmigasel to each child

of c.

Let us consider the modibcations necessary to add cancellation support to a given scheduling

policy.

1. When spawning a Pber, the scheduler needs to wrap the new bber in a cancelable.
109

2. When blocking a bPber, the scheduler must always re-wrap the resumption bber.

5.1.2 Implementing parallel-or

The Oparallel-orO operation is a well-known form of speculative computation that dates back to

Multilisp [67]. We debne

val por : ((unit -> Oa option) =
(unit -> Oa option)) -> Oa option

as the parallel-or operation which nondeterministically returns the result of one of two function
applications. The expressigor (f{, fo) has the following behavior: An implementation

adheres to the following bve criteria:

o

. It creates a task to evaluate edghn parallel.

N

. It returns the brseOME walue.

w

. It returnsNONGETf both f; evaluate taNONE

SN

. It cancels useless tasks after the B&GMME walue is returned.

. It schedules the execution of subtasks so as to minimize the time to return a result.

(62

Let us implemenpor in terms of cancelables and work stealing.

A Qpor cellO maintains the intermediate state goa call. Each of the two branches of a
por call use this state to determine whether to post a result or to terminate. Figure 5.4 shows
the implementation gbor cells, which is encapsulated by therCell function. This function

maintains a local state variable call@dne , which is in one of three states:
¥ If EMPTY neither branch has completed.
¥ If PARTIAL, the result of exactly one branchNONE

¥ If FULL, the result of one or both branches is TdONE
110

fun porCell () = let
datatype por_cell = EMPTY| PARTIAL | FULL
val done = alloc EMPTY
fun markFull () =
if (atomicCompareAndSwap (promote done, EMPTY, FULL)
orelse
atomicCompareAndSwap (promote done, PARTIAL, FULL))
then ()
else stop ()
fun markEmpty () =
if (atomicCompareAndSwap (promote done, EMPTY, PARTIAL))
then stop ()
else if (#0(promote done) = FULL)
then stop ()
else ()
in
{markFull =markFull, markEmpty = =markEmpty}
end

Figure 5.4:por cells
The function exports two functions:

¥ markEmpty is called by a branch in order to record that the branch has compl@&¢E
If this branch is the second branch to complete and the other branch coniDi¢E then

markEmpty returns. OtherwisanarkEmpty terminates the branch by callistop ()

¥ markFull is called by a branch in order to record that the branch has computed a non-
NONEvalue. If this branch is the Prst branch to compute aN@NEvalue, thermarkFull

returns. OtherwisemarkFull terminates the branch by callirsop ()

Figure 5.5 contains the debnition pbr . The implementation is based on the work stealing
strategy similar to the one described in Chapter 3. Initially, the operation pushes on the deque a
task for the second branch and then starts executing the brst branch. There are two fast paths and
two slow paths. In a fast path, the operation executes locally, whereas in the slow path, the prst

branch executes locally and the second executes in parallel on a thief processor.

111

fun por (f1, f2) = let
cont retk (x) = X
val {markFull, markEmpty} = porCell ()
val ¢l = makeCancelable ()
val c2 = makeCancelable ()
fun slowClone () =

(case 2 ()
of SOME v=> (markFull (); cancel cl; throw retk (SOME v))
| NONE=> (markEmpty (); throw retKk NONE))
fun body () =
(case fl1 ()
of SOME v=>
if popTl () = NONEthen
(* slow path *)
(markFull (); cancel c2; throw retKk (SOME v))
else
(* fast path «)
SOME v
| NONE=>
if popTl () = NONEthen

(* slow path =)

(markEmpty (); throw retKk NONE)
else

(* fast path *)

f2.()

pushTl (cancelWrapFiber (c2, slowClone));
cancelWrapFun (c1, body) ()
end

Figure 5.5: Thepor function.

Associated with the branches are cancelablesndc2. In the slow path, the Pbrst branch to

return a nolNONEvalue cancels its sibling. In the fast path, there is no cancellation.

5.1.3 Evaluation

Experiment setup The test machine has four dual-core AMD Opteron 870 processors running
at 2GHz. Each core has a 1Mb L2 cache. The system has 8Gb of RAM and is running Debian

Linux (kernel version 2.6.18-6-amd64).

112

3,

£2.5* D———D/D///D\D
S 27
RN
01.5
1,
0.5 1

0 T T T T T T T T

0 1 8

3 4 5 6
Number of processors

Figure 5.6: Ratio of cancellation overheddl} to work-stealing overhead(,s).

| performed two experiments to measure the costs of cancellation. The brst experiment mea-
sures the extra scheduling overhead imposed by cancellation. | measured execution times for
versions of the synthetic Pbonacci benchmark (Figure 3.1) compiled with and without support for
cancellation. The quantit@s represents the overhead of work stealing scheduleiGypgdthe
overhead of work stealing and cancellation combined.

Figure 5.6 plots thé®./O ws as a function of number of processors. On a single processor,
scheduling costs with cancellation && times more expensive than without. The cancellation
overhead remains nearly constant up to eight processors.

The second experiment measures the latency of cancellation mshgeens as a benchmark.

The benchmark solves tleeQueens puzzle fan = 20, and is written in terms gbor .

Figure 5.7 shows the average time over 20 runs that it took to cancel the outstanding compu-
tations (i.e., all of the Pbers that were either running or on the deque waiting to be stolen). The
results show (1) that the latency of cancellation is largely independent of the number of processors,
and (2) that the standard deviation is small, except for the six-processor conbguration, where two
outliers skewed the results. These outliers are likely due to the OS swapping out a vproc at the
instant in which a cancellation is occurring. Similar anomalies have been reported in the context

of JCilk [23], although on a different architecture and OS.

113

3 4 5 6
Number of processors

Figure 5.7: Cancellation time for n-Queens benchmark.

0 T \ \ \ \

4
Namber of pro%esso?s
Figure 5.8: Time per canceled Pber.

For the second experiment, | plotted the average time in milliseconds to cancel a computation
in Figure 5.8. The graph shows that the cancellation phase is benebting from parallelism.
These two experiments show that the overheads from supporting cancellation are not dependent

on the number of processors, which suggests that cancellation will scale well when applied to more

realistic workloads.

5.2 The WS LP scheduler loop

In Chapter 3, | described WS LPOs clone compilation. This section presents WS LPOs scheduler
loop, which completes our description of ManticoreOs WS LP implementation The implementation

of the scheduler loop demonstrates how WS LP bts into the larger Manticore scheduling system. In

114

particular, this implementation makes explicit the relationship between WS LP and CML threads.

Recall that a PML program consists of one or more CML threads. Furthermore, there can
be many more CML threads than the number of processors. As with other implementations of
CML [72, 74], the Manticore scheduler multiplexes CML threads on a given processor.

Because each CML thread can launch its own independent instance of WS LP, we allow mul-
tiple instances of WS LP to execute concurrently. An instance of WS LP consiBtsaairkers
whereP is the number of processors. The workers collaborate on behalf of the CML thread that
created the corresponding instance. At a given instant, a worker is either idle and attempting to
steal a task or busy working on part of the computation. Each instance of the work stealing sched-
uler is identibed by avsinstanceUID , a unique integer identiPer.

Let us consider the implementation of the worker loop. The type

datatype worker

= WORKEPRf ({
assignedVP . vproc,
wslnstanceUID . int,
terminate . I[bool],
nidle ;. int],
idleWorkers : bool array,
fls . fls

}

represents the local state of a given worker, including the vproc to which the worker is assigned,
the instance identiber, the termination Rag, the number of idle workers, the idle-worker array, and
the FLS of the calling CML thread.

The behavior of a given worker is specibped by the WS LP loop, shown in Figure 5.9. When a
task terminates, the loop either executes a task from the local deque or, if the local deque is empty,

becomes idle and tries to steal. Stealing is accomplished by the operation
val steal : worker -> task option

which takes a worker and repeatedly tries to steal from another worker, returning SQMIE t

where t is the stolen ddONETf the number of failed steal attempts exceeds some threshold value.

115

The thief uses the arragleWorkers , which maintains 3ags indicating which workers are
currently idle. If theidleWorkers [3ag of a given worker is set to true, then the thief delays
sending the potential victim a thief request. This policy helps reduce the latency of steals by
reducing time wasted sending useless thief requests.

Recall that WS LP uses the private access model described in Section 2.6, and therefore cannot
share deque references across processors. A thief locates the deque of its victim by looking up the

deque in a vproc-local table. The thief useswsnstanceUID as a key into the table.

Multiplexing The WS LP loop also handles preemption events, which cause the scheduler to
relinquish the processor for a while. By relinquishing the processor on preemption, the worker
allows other threads or workers from other instances of WS LP get access to the relinquished
vproc. In this way, the scheduler makes it possible for the system to multiplex a vproc among

multiple WS LP instances.

Termination A worker is terminated once the CML thread that created the worker is itself ter-
minated. Termination occurs exactly when all workers are idle. Worker termination is determined
by the Bagerminate , is set to true once the CML thread that created the worker is determined
to be terminated. Workers determine when termination occurs by maintaifiig , a count

of the number of workers that are idle. Once this variable is equal to the number of workers, the

terminate RRag is set to true and the workers terminate.

5.3 The vproc interrupt mechanism

One important part of the system is the mechanism for interrupting the execution vprocs. The
system uses this interrupt mechanism to perform several critical duties, including global garbage
collector initiation, delivering preemptions, and handling steal requests generated by the work-

stealing scheduleefc.. Consequently, properties of a given interrupt mechanism, such as latency,

116

(* runs task t under scheduler action a *)
(* built on top of the "run" operation *)
val runTask : (signal cont * task) cont

fun runTask (a, t) = ..

(* builds a task record corresponding to fiber k *)
val fiberToTask . fiber -> task
fun fiberToTask k = ..

(* similar to pushTop and popTop, but instead take deques
(* and tasks explicitly as parameters *)

val pushTop® : deque -> task -> unit

val popTopO : deque -> task option

(*» spawn a worker instance w on its assigned vproc vp
val spawnWorker : vproc * worker -> unit
fun spawnWorker (vp, w as WORKER{deque, fls, ...})
fun launch () = let
val deque = newDeque ()
in
cont ws STOP =
(case popTopO deque
of NONE=>
(case steal w
of NONE=> (
sleep ();
throw ws STOP)
| SOME t => runTask (ws, t))
| SOME t => runTask (ws, t))
| ws (PREEMPT k) = (
pushTopO deque (fiberToTask K);

yield ();
throw ws STOP);
run (ws, fiber (fn _ => stop ()
end
in
enqOnVP (vp, fls, fiber launch)
end

Figure 5.9: WS LP loop implemented in BOM

117

*)

let

affect the performance of the system as a whole, making it important to invest some effort into
designing the mechanism carefully.

ManticoreOs interrupt mechanism is based on a technique called software polling in which each
processor polls its own memory location to detect interrupts. A software-polling system must
strike a balance between polling frequently enough so that response time is low but not so much
so that application performance is degraded by overhead expenses.

Feeley describes a technique to address this issue in which the compiler inserts polling oper-
ations into application code. [29]. The frequency of polling checks can be controlled to a large
degree by adjusting several tuning parameters.

Manticore uses a different software-polling technique that is based on Ozeroing the limit pointer.O
This techniques forces the target vproc to perform a garbage collection. Once in the garbage col-
lector, the system makes a preemption transition like the one shown in Figure 2.11. There is a
potential problem, however, that the program can run for a long time without checking its heap-
limit pointer and during that time be unresponsive to interrupts. The Manticore compiler prevents
unbounded waits by inserting heap-limit checks into non-allocating loops. The technique is similar
to the one used by SML/NJ [71].

An analysis carried out by Mogul suggests that software polling is preferable for handling
events that are frequent and spaced out regularly and that hardware interrupts are preferable for
events that are infrequent and spurious [61]. Here, | argue that ManticoreOs choice of software
polling does not contradict this result.

Primarily, Manticore uses its form of software polling because the system already pays a cost
for frequent heap-limit checks and extending the mechanism to support software polling increases
this cost only slightly. The software-polling mechanism provides reasonably low latency. The
round-trip time for an interrupti,e., the time it takes for one vproc to interrupt another and receive
a response interrupt, is in the tens of microseconds.

An earlier version of Manticore used a zero-cost interrupt mechanism based on hardware in-

118

terrupts. In this version, an interrupt is delivered to a vproc by brst triggering a hardware interrupt
on that vproc. The interrupt handler then sets the limit pointer to zero.

One might wonder how the latency of software polling compares to hardware interrupts. So,
| ran an experiment on the sixteen-core test machine in which two vprocs alternate passing inter-
rupts back and forth for one million iterations. Software polling averages at 10 microseconds and
hardware interrupts averages at 90 microseconds.

There is another Manticore-specibc reason for not using hardware interrupts: building a robust
implementation is much harder because interrupts arrive asynchronously, whereas interrupts de-
tected by polling are handled synchronously. The polling mechanism rules out the possibility of
an interrupt handler getting invoked during sensitive points, such as in between transfers between

Manticore code and the GC when the stack is in an inconsistent state.

5.4 Summary and related work

The Manticore scheduling system presented in Section 2.5.1 is an extension of ShiversO proposal
for exposing hardware concurrency using continuations [80]. The Manticore system extends Shiv-
ersO proposal to support nesting scheduler actions and multiple processors.

Morrisett and Tolmach designed MP, a extension to SML/NJ, for running SML programs on
multiprocessors [63]. MPOs concurrency features are built on top of brst-class continuations and
implemented in SML. In this regard, MP is similar to ManticoreOs scheduling system. But un-
like MP, ManticoreOs scheduling policies are written in a more primitive language, BOM. The
split between BOM and PML avoids polluting PML with implementation-specibc details, such as
promotion or atomic operations.

Fisher and Reppy designed a multiprocessing system for the Moby programming language [30].
Their design uses a compiler intermediate representation called BOL as the language for program-
ming scheduling and synchronization policies. In their design, much of the runtime is still im-
plemented in C and assembly, including parts of the thread scheduler. Primitives written at this

119

level might be faster than their counterparts written in BOL, but this style of programming intro-
duces unwanted complexity. For example, there is complexity in sharing data structures between
C and BOL. Both languages need to know the exact layout in memory in order to share the data,
so changing a data structure involves changing both the C and BOL runtime. Another source of
complexity is related to garbage collection. Scheduling code often needs to allocate objects in the
heap, but heap allocation is complex because it might involve invoking the garbage collector. Heap
allocating in a BOL (or BOM) program is easier than heap allocating in a C program.

STING is a system that supports a concurrent dialect oHSVE [48, 49]. Like Manticore,

STING offers Rexibility in scheduling, synchronization, and memory managemenic®s pro-

cess model consists of threads and virtual processors. This thread data type is more complex than
the type of continuation used to represent a Pber. For examplenag $hread consists of a thread
control block with associated stack, heap segment, saved register§TiINGOs notion of virtual
processor is different than ManticoreOsIN® virtual processors can be created and destroyed
dynamically by the application. Because the number D8 virtual processors is unbounded,

the virtual processors are scheduled among the actual hardware processors. vprocs corresponds to
actual hardware processors and therefore require no such scheduling. Furthermore, the dynamic
behavior of a $ING virtual processor is specibed by a rich data type. For example, the data struc-
ture of a SING virtual processor records preemption and migration policies. The scheduler-action
stack plays a similar role by determining the scheduling policy for a given vproc at a given instant.

In general, the Manticore design favors simplicity and portability, whereastinsRlesign favors

rich abstractions and fast execution.

Li er al. propose a new version of the GHC runtime system designed for shared-memory
multiprocessors [53, 54]. The GHC runtime supports Haskell, a lazy functional language. As
in the Manticore runtime, a goal of the design is to enable programmable scheduling policies in
Haskell.

One problem faced by GHC is that locking synchronization interacts poorly with lazy evalua-

120

tion. In a lazy setting, it is difbcult to guarantee that a thread holding a lock will release the lock
in a bounded amount of time because that thread might have to evaluate a long-running thunk.
To address this issue, the GHC runtime avoids locking and instead relies on a notion of transac-
tional memory, which is a concurrency-control mechanism analogous to database transactions. The
Manticore runtime does not have to address this issue because BOM programs are strict. There-
fore, BOM synchronization can be performed safely by using atomic-memory instructions, such
as compare-and-swap.

GHC uses a software-polling mechanism that is similar to the one | describe above in Sec-
tion 5.3. Polling is handled by piggy backing off heap-limit pointer checks. GHC uses this mech-
anism not for stealing (GHC handles steals by public-deque access) but for forcing processors to
join in a parallel GC. Marlower al. did a performance study to compare this mechanism to an
alternative one in which the heap-limit pointer is in memory and GCs are initiated via OS inter-
rupts [56]. They Pnd that the polling mechanism speeds up most benchmarks by reducing the
latency involved in stopping all processors for a parallel GC.

In his dissertation, Spoonhower presents a parallel implementation of MLton [82]. The im-
plementation consists of some low-level mechanisms for taking advantage of multiprocessors and
an SML library of scheduling primitives, which supports multiple task-scheduling policies. The
library interface is similar to the interface the Manticore scheduling system provides for task-
scheduling policies. He demonstrates implementations of breadth-brst, depth-brst, and work-
stealing scheduling policies. Unlike Manticore, SpoonhowerOs system has sophisticated mecha-
nisms for probPling memory usage. Interestingly, by relying on MLtonOs aggressive suite, Spoon-
hower is able to achieve the effect of the clone translation through just library functions.

The JCilk language [23] is a version of Java that is extended with fork-join parallelism and is
based on CilkOs work-stealing scheduler. The primary novelty of JCilk is speculative computation.
In JCilk, speculative computation is expressed by using a mechanism similar to Java exceptions.

JCilk and PML have different ways of expressing speculative computations, and these differences

121

are described elsewhere [34]. But both languages have similar implementation requirements with

respect to the cancellation of unecessary tasks. Specibcally, canceling somievakles termi-

natingt and recursively cancelling all a®s spawned tasks. The JCilk implementation is written

in Java, using a control mechanism similar to brst-class continuations and a few data structures to
track parent-child relationships in the computation. JCilkOs implementation is specialized to the

work stealing scheduler, whereas our ManticoreOs cancellation is not. Our cancellation mechanism
is independent of the work-stealing scheduler, and as such, our mechanism has potential to be in-
tegrated with any task scheduler that maps down to Pbers. This feature is useful if the language

supports different task-scheduling strategies, such as PDF [65].

122

CHAPTER 6
CONCLUSION

High-level parallel languages are expressive frameworks for building parallel programs. In such
languages, programmers are able to specify concisely what they want to compute by specifying a
little about how to decompose parallel computation. The example programs shown in Chapter 2
demonstrate the simplicity and clarity that is possible with such languages, in the particular case
of PML. This expressiveness is made possible, in large part, by abstracting away scheduling and
memory management. The complexity inherent in implementing these duties falls to the language
implementation.

A robust language implementation offers scalable parallel performance across many applica-
tions and platforms. As this dissertation has demonstrated, if the language implementation is not
robust, programmers (or compilers) will be faced with unrealistic for most application demands
to tune programse(g., by manually coarsening the granularity of recursions) to perform well un-
der particular conbgurations, such as the number of processors or input-data size. Such tuning is
unrealistic because the number of possible conbgurations is enormous.

High-level parallel languages are typically paired with simple cost models, such as the work-
span model. But the ability of these cost models to predict actual performance relies crucially
on the language implementation. Robust language implementations are important because they
increase the likelihood that programs will perform according to the language cost models.

This dissertation attacks these problems by starting from within the well-established framework
of work stealing, a policy for scheduling the execution of large numbers of tasks generated by NDP
constructs across processors. Seminal work on the Cilk-5 system demonstrated that the work-prst
principle is an essential tool for building efbcient implementations of work stealing [36]. Using
the work-brst principle as a guide, | have designed two techniques, Lazy Promotion and Lazy Tree
Splitting, for scheduling the execution of applications written in NDP. In the next four sections, |

summarize my work on Lazy Promotion, Lazy Tree Splitting, and the Manticore implementation,
123

and then | propose some ideas for building on these techniques.

6.1 Lazy Promotion

A simple example demonstrates why high-level parallel languages rely crucially on efbcient mem-
ory management. Suppose that, for a given application, memory management takes 10% or more
of total execution time, which is a reasonable assumption for many functional applications. If this
10% is sequential, then AmdahlOs law predicts thatdtigossible speedup on sixteen processors

is 6.4. We can avoid such sequential bottlenecks by using memory managers that offer scalable
parallel performance.

Manticore has a split-heap memory manager that offers scalable performance up to at least
sixteen processors. Promotion is the main cost imposed by ManticoreOs memory manager, and is a
signibcant cost for overall performance. In addition to copying overhead, promotion increases the
amount of data allocated in the global heap, thereby increasing the frequency of global collections.
Reducing the amount of promoted data reduces the frequency of global garbage collections, and
thus can help to reduce communication overall.

This dissertation presented a work-stealing policy called WS LP that is efbcient with respect
to promotion. The design of WS LP was inspired by the work-prst principle. Crucially, WS LP
delays promoting task data until the rare case in which a task is stolen, limiting the number of
overall promoted tasks ©©(P T+). The implementation of WS LP is based on three techniques:
an efbcient deque data structure, a clone-compilation scheme adapted from the Cilk-5 compiler,
and a steal-request mechanism. An engineering advantage of the implementation is that minimal
support is required from the compiler (just a simple source-to-source translation at an early phase
in the compilation process).

To evaluate the Manticore design, | have performed an empirical study of six PML benchmark
programs. The study shows that lazy promotion often outperforms eager promotion and never
does worse. The study also evaluates ManticoreOs split-heap design by comparing the system with

124

a modibed version based on a [3at-heap architecture. Our split heap outperforms the 3at heap by
a wide margin across all benchmarks. The results show that the Rat heap has a much higher miss
rate in the L3 cache than do the other versions of the system. The poor locality of a 3at heap is a
major factor in its poorer mutator performance.

The main lesson that can be drawn from this study is that, in garbage-collected languages, the
performance of memory management is crucial for scalable parallel performance and by using the
principle of separating local state across processors, we can readily design a memory manager that
offers scalable parallel performance. We can make this design simple by relying on strict invariants
on data placement, which are readily enforced in the setting of a pure, functional language, such as
PML. With this memory-manager design in hand, we can adapt our work-stealing policy so that it

performs well with the memory manager and the system as a whole.

6.2 Lazy Tree Splitting

| have presented an efbcient and robust implementation of nested-data parallelism in Manticore.
The implementation is based on a new technique called Lazy Tree Splitting, which is a general-
ization of Lazy Binary Splitting. Crucially, LTS provides programs with both robust performance
and a means to process hierarchical structures that are distributed in memory. | have evaluated the
technique by comparing it to an alternative ETS approach. LTS outperforms most conbgurations of
ETS, and is at most 20% worse than the optimal ETS conbguration. | have also presented evidence
that tuning ETS to achieve decent performance, let alone optimal performance, is unrealistic.

Although the zipper style used by LTS is a style of functional programming, LTS is a general
technique that can be benebcial for a large class of languages, including imperative or object-
oriented languages. The only special requirement of LTS is a work-stealing scheduler, which is
now part of many parallel languages. LTS also has potential to be implemented in pure languages,
such as Haskell and Concurrent Clean, although such an implementation would require special
measures to avoid violating referential transparency.

125

6.3 Implementing work stealing in Manticore

ManticoreOs implementation of work stealing is built from many parts. In Chapter 5, | gave in-
depth discussion on several important parts, including the task-cancellation mechanism, the work-
stealing scheduler loop, and the vproc-interrupt mechanism.

Task cancellation is a mechanism which task schedulers, such as work stealing, use to provide
efbcient speculative parallelism. The cancellation protocol is subtle because it involves tracking
down nodes in the task graph as nodes are being scheduled across different processors. | presented
an implementation of task cancellation and demonstrated its efbciency on an eight-processor sys-
tem. An advantage of the design of the mechanism is that task cancellation is implemented as a
small scheduling component that can be reasoned about in isolation.

The work-stealing scheduler loop is the Pnal part of this implementation. Its implementation
shows how | address work stealing for PML programs, where there are multiple CML threads and
each of which can spawn off parallel tasks. | use a strategy in which each CML thread has its own
work-stealing scheduler, which is similar to BlumofeOs multiprogrammed work stealing [3].

WS LP uses the vproc-interrupt mechanism interrupts to accomplish low-latency steals. The
main lesson from this study is that software polling is a viable mechanism for interrupts, which
can be readily implemented in a system like Manticore where heap-limit checks are frequent. The
secondary lesson is that hardware interrupts are also viable in terms of performance but much

harder to implement without concurrency bugs.

6.4 Future directions

Tree data structures, such as ropes, give the memory manager two useful types of Rexibility:

¥ Because trees can be distributed in memory, subtrees of the same tree can be allocated and

reclaimed concurrently by different processors.

¥ When trees are persistent, as is the case with our ropes, the memory manager has the freedom
126

to replicate subtrees across processors.

The Manticore memory manager takes advantage of both features, but uses replication to a very
limited extent. An interesting piece of future work is to extend LTS to support a memory manager
with an even more aggressive heap-splitting strategy, such as the memory manager offered by
GUM [85], in which there is no global heap. In such a memory manager, effective replication is
crucial for achieving scalable parallel performance.

LTS has potential to be used for more types of balanced trees than just ¢gpesed-black
trees. An interesting question is whether one can derive traversal patterns that are both efpcient
and preserve the invariants of such tree structures.

Unlike the Rattening approach to NDP, LTS is a purely dynamic approach and therefore can be
ported to an existing language implementation without need for sophisticated compiler transfor-
mations. Nevertheless, as discussed in Section 4.3, LTS can benebt from compiler optimizations
such as fusion [18] and compile-time granularity analysis [83].

The lazy splitting idea is general enough to be applied to the class of divide and conquer
algorithms. There are certain technical difbculties that must be overcome to make it effective for
general divide and conquer algorithms. These difPculties include identifying recursive functions
that exhibit the divide-and-conquer pattern and developing techniques to aggregate work for small
problem sizes (rope leaves effectively provide this mechanism). Failure to do the latter is likely to

result in excessive overhead that will limit scalability.

6.4.1 A domain-specific language for scheduling

Research on task scheduling has suggested that no single scheduling policy is the best for every
application and, furthermore, that there are many distinct policies, each with its own strengths and
weaknesses. For instance, Blellaghul. have shown that, for NDP programs, the PDF schedul-

ing policy offers lower memory use at run time than many other policies [9]. But such a space-

efbcient scheduler typically has a higher communication overhead than alternative work-stealing
127

policies. There exists a trade-off between the two policies and supporting both approaches is the
most Rexible approach. Furthermore, with respect to work stealing, certain applications are known
to benebt from different variants of the stealing policy [24, 76]. For example, Sancla¢zshow

cases where applications executed on NUMA architectures perform betteriwiichical work

stealing [76]. In hierarchical work stealing, as opposed to fully-randomized work stealing, thief
processors prefer to steal from processors that are closer in memory. These results suggest that
a language implementation can broaden the range of applications it supports well by supporting
multiple scheduling policies and easy extensions to those policies. An even more [3exible approach
would be to support a programmable scheduling system, such as the Manticore scheduling system
that | presented in Chapter 2.

The way that scheduling policies are written in a language implementation (or operating sys-
tem) leads to unclear and incorrect code. Because of performance reasons, the scheduling code is
often split into small pieces and the pieces are spread across several functions or bles. The more
natural specibcation of the scheduler, however, often consists of a single scheduling loop. Such a
specibcation is simpler and easier to test in isolation. A domain-specibc language offers the poten-
tial to write code that is closer the the original specibcation, and if the domain-specibc language
employs an optimizing compiler, it also offers the potential to generate efpcient scheduling code.
For example, a domain specibc language would use a specibcation of WS LP that is closer to the
pseudocode | presented in Chapter 3 than the BOM code | presented across Chapters 3 and 5, yet
the using domain-specibc language would ideally provide much the same performance as using
BOM directly.

As | argued above, it is desirable to support a mix of scheduling policies. A domain-specibc
language can assist in this goal by admitting a high-level specibcation of a policy that is liberated
from complexities of a particular language implementation. There are situations in which an appli-
cation writer who is not an expert in the language implementation may desire a custom scheduling

policy for his or her application. A domain-specibc language would allow such a programmer to

128

write a custom policy.

These issues have motivated other researchers to explore the domain-specibc language called
Bossa [5, 64]. Bossa, however, is limited to uniprocessor scheduling, and multiprocessor schedul-
ing would require a more general model than Bossa provides. A multiprocessor policy, such as WS
LP, is adistributed program in which a whole scheduler consists of multiple instances that exe-
cute concurrently. Often these instances need to communicate to balance workload. | am unaware
of recent work that addresses a domain-specibc scheduling language targeting multiprocessors.
| believe this line of work has the potential to both standardize the notation in multiprocessor
scheduling policies and provide more Rexible and efbcient multiprocessor scheduling for language

implementations.

129

REFERENCES

[1] A. W. Appel. Simple generational garbage collection and fast allocadiB&E, 19(2):171D
183, 1989.

[2] A. W. Appel. Compiling with Continuations. Cambridge University Press, Cambridge, Eng-
land, 1992.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed
multiprocessors, 1998.

[4] J. Barnes and P. Hut. A hierarchic@(N logN) force calculation algorithm. Nature,
324:446D449, Dec. 1986.

[5] L. P. Barreto and G. Muller. Bossa: a language-based approach to the design of real-time
schedulers. IRTS 02, pages 19D31, Mar. 2002.

[6] G. E. Blelloch. Prebx sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, Nov. 1990.

[7] G. E. Blelloch. Programming parallel algorithmS8ACM, 39(3):85D97, Mar. 1996.

[8] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementation
of a portable nested data-parallel languaffeDC, 21(1):4D14, 1994.

[9] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efbcient scheduling for languages
with Pne-grained parallelisndACM, 46(2):281D321, 1999.

[10] G. E. Blelloch and J. Greiner. A provable time and space efbcient implementation of NESL.
In ICFP ’96, pages 213D225, New York, NY, May 1996. ACM.

[11] R. D. Blumofe. Executing multithreaded programs efficiently. PhD thesis, Cambridge, MA,
USA, 1995.

[12] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efbcient multithreaded runtime system. RRoPP ’95, pages 207D216, New York,
NY, July 1995. ACM.

[13] R. D. Blumofe and C. E. Leiserson. Space-efbcient scheduling of multithreaded computa-
tions. InSTOC ’93, pages 362D371, New York, NY, 1993. ACM.

[14] R.D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.
JACM, 46(5):720D748, 1999.

[15] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: an alternative to strin§B&E,
25(12):1315D1330, Dec. 1995.

[16] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree of processors.
In FPCA ’81, pages 187D194, New York, NY, Oct. 1981. ACM.

130

[17] M. M. T. Chakravarty and G. Keller. Functional array fusion.I@fFP ’01, pages 205216,
New York, NY, 2001. ACM.

[18] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and G. Keller. Partial Vectorisation
of Haskell Programs. IWAMP ’08, New York, NY, Jan. 2008. ACM.

[19] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow. Data
Parallel Haskell: A status report. IDAMP ’07, pages 10D18, New York, NY, Jan. 2007.
ACM.

[20] D. Chase and Y. Lev. Dynamic circular work-stealing dequeSAfA ’05, pages 21D28, New
York, NY, 2005. ACM.

[21] S. Chatterjee. Compiling nested data-parallel programs for shared-memory multiprocessors.
ACM TOPLAS, 15(3):400D462, July 1993.

[22] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain paral-
lelism with minimal hardware support: a compiler-controlled threaded abstract machine. In
ASPLOS, pages 164D175, New York, NY, USA, 1991. ACM.

[23] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson. Programming with Exceptions in JCilk.
SCP, 63(2):147D171, 2006.

[24] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha. Scalable work
stealing. InSC ’09, pages 1b11, New York, NY, 2009. ACM.

[25] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection for multiprocessor
systems. IlPOPL ’94, pages 70D83, New York, NY, Jan. 1994. ACM.

[26] D. Doligez and X. Leroy. A concurrent, generational garbage collector for a multithreaded
implementation of ml. IlPOPL ’93, pages 113D123, New York, NY, Jan. 1993. ACM.

[27] M. Feeley.An efficient and general implementation of futures on large scale shared-memory
multiprocessors. PhD thesis, Brandeis University, Waltham, MA, USA, 1993.

[28] M. Feeley. A message passing implementation of lazy task creatioProtedings of the
US/Japan Workshop on Parallel Symbolic Computing: Languages, Systems, and Applica-
tions, pages 94D107, London, UK, 1993. Springer-Verlag.

[29] M. Feeley. Polling efbciently on stock hardware. ARCA 93, pages 179D187, New York,
NY, June 1993. ACM.

[30] K. Fisher and J. Reppy. Compiler support for lightweight concurrency. Technical memoran-
dum, Bell Labs, Mar. 2002. Available froittp://moby.cs.uchicago.edu/

[31] M. Fluet, N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Status Report: The Manticore
Project. InML ’07, pages 15D24, New York, NY, Oct. 2007. ACM.

131

[32] M. Fluet, M. Rainey, and J. Reppy. A scheduling framework for general-purpose parallel
languages. IGCFP ’08, pages 241D252, New York, NY, Sept. 2008. ACM.

[33] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded parallelism in Manticore.
In ICFP ’08, pages 119D130, New York, NY, Sept. 2008. ACM.

[34] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded parallelism in Manticore.
JFP, 2010. Accepted.

[35] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: A heterogeneous parallel
language. IMDAMP ’07, pages 37D44, New York, NY, Jan. 2007. ACM.

[36] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multithreaded
language. IlPLDI '98, pages 212D223, New York, NY, June 1998.

[37] GHC. Barnes Hut benchmark written in Haskell. Available franttp://darcs.
haskell.org/packages/ndp/examples/barnesHut/

[38] A. Ghuloum, E. Sprangle, J. Fang, G. Wu, and X. Zhou. Ct: A Rexible par-
allel programming model for tera-scale architectures. Technical report, Intel, Oct.
2007. Available athttp://techresearch.intel.com/UserFiles/en-us/
File/terascale/Whitepaper-Ct.pdf

[39] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: implementing a fast parallel
call. InJPDC, pages 37(1):5D20, 1996.

[40] R. H. Halstead Jr. Implementation of multilisp: Lisp on a multiprocessoLFIR "84, pages
9b17, New York, NY, Aug. 1984. ACM.

[41] C. T. Haynes, D. P. Friedman, and M. Wand. Continuations and coroutineSFANS§4,
pages 293D298, New York, NY, Aug. 1984. ACM.

[42] D. Hendler, Y. Lev, and N. Shavit. Dynamic memory ABP work-stealing. DISC ’04,
volume 3274 ofLNCS, pages 188D200, New York, NY, 2004. Springer-Verlag.

[43] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers, New York, NY, 2008.

[44] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data strubfiixe.
16(2):197b217, 2006.

[45] T. Hiraishi, M. Yasugi, S. Umatani, and T. Yuasa. Backtracking-based load balar¢ingP
'09, 44(4):55D64, Feb. 20009.

[46] G. Huet. The zipper/FP, 7(5):549D554, 1997.

[47] Intel. Intel Threading Building Blocks Reference Manual, 2008.

132

[48] S. Jagannathan and J. Philbin. A customizable substrate for concurrent languaBeB! In
’92, pages 5581, New York, NY, June 1992. ACM.

[49] S. Jagannathan and J. Philbin. A foundation for an efbcient multi-threaded scheme system.
In LFP 92, pages 345D357, New York, NY, June 1992. ACM.

[50] G. Keller. Transformation-based Implementation of Nested Data Parallelism for Distributed
Memory Machines. PhD thesis, Technische UniveegiBerlin, Berlin, Germany, 1999.

[51] C. E. Leiserson. The Cilk++ concurrency platform.DAC ’09, pages 522D527, New York,
NY, 2009. ACM.

[52] R. Leshchinskiy. Higher-Order Nested Data Parallelism: Semantics and Implementation.
PhD thesis, Technische UniveeiBerlin, Berlin, Germany, 2005.

[53] P. Li. Programmable concurrency in a pure and lazy language. PhD thesis, University of
Pensylvania, 2008.

[54] P. Li, S. Marlow, S. Peyton Jones, and A. Tolmach. Lightweight concurrency primitives for
GHC. InHASKELL ’07, pages 1079118, New York, NY, Sept. 2007. ACM.

[55] H. W. Loidl and K. Hammond. On the Granularity of Divide-and-Conquer Parallelism. In
GWFP ’95, pages 8D10. Springer-Verlag, 1995.

[56] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore Hask&llFin
’09, pages 65D77, New York, NY, AugustbSeptember 2009. ACM.

[57] C. McBride. Clowns to the left of me, jokers to the right (pearl): dissecting data structures.
In POPL ’08, pages 287D295, New York, NY, Jan. 2008. ACM.

[58] S. Microsystems. Fortress Programming Language.

[59] R. Milner, M. Tofte, R. Harper, and D. MacQuee€fhe Definition of Standard ML (Revised,).
The MIT Press, Cambridge, MA, 1997.

[60] MLton. The MLton Standard ML compiler. Available http://mlton.org
[61] J. C. Mogul. Network locality at the scale of process&éSM TOCS, 10(2):81D109, 1992.

[62] E. Mohr, D. A. Kranz, and R. H. Halstead Jr. Lazy task creation: a technique for increasing
the granularity of parallel programs. ItFP ’90, pages 1850197, New York, NY, June 1990.
ACM.

[63] J. G. Morrisett and A. Tolmach. Procs and locks: A portable multiprocessing platform for
Standard ML of New Jersey. IPPoPP ’93, pages 198D207, Apr. 1993. An earlier version is
available as CMU report CMU-CS-92-155.

133

[64] G. Muller, J. L. Lawall, and H. Duchesne. A framework for simplifying the development
of kernel schedulers: Design and performance evaluatio®AISE '05, pages 56065, Oct.
2005.

[65] G. J. Narlikar and G. E. Blelloch. Space-efbcient scheduling of nested paralleliéw.
TOPLAS, 21(1):138D173, 1999.

[66] R. S. Nikhil. ID Language Reference Manual. Laboratory for Computer Science, MIT,
Cambridge, MA, July 1991.

[67] R.B. Osborne. Speculative computation in multilispLFP ’90, pages 198208, New York,
NY, June 1990. ACM.

[68] N. Ramsey. Concurrent programming in ML. Technical Report CS-TR-262-90, Dept. of
C.S., Princeton University, Apr. 1990.

[69] J. Reppy. Optimizing nested loops using local CPS convergiarsC, 15:1619180, 2002.

[70] J. H. Reppy. First-class synchronous operations in Standard ML. Technical Report TR 89-
1068, Dept. of CS, Cornell University, Dec. 1989.

[71] J. H. Reppy. Asynchronous signals in Standard ML. Technical Report TR 90-1144, Dept. of
CS, Cornell University, Ithaca, NY, Aug. 1990.

[72] J. H. Reppy. CML: A higher-order concurrent languagePItDI '91, pages 293D305, New
York, NY, June 1991. ACM.

[73] J. H. ReppyHigher-order concurrency. PhD thesis, Dept. of CS, Cornell University, Ithaca,
NY, Jan. 1992. Available as Technical Report TR 92-1285.

[74] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, Cambridge,
England, 1999.

[75] A. Robison, M. Voss, and A. Kukanov. Optimization via Rel3ection on Work Stealing in
TBB. In IPDPS ’08, Los Alamitos, CA, 2008. IEEE Computer Society Press.

[76] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible architectural support for Pne-grain
schedulingASPLOS, 38(1):311D322, 2010.

[77] V. Saraswat. Report on the experimental language X10. Technical Report DRAFT v 0.41,
IBM Thomas J. Watson Research Lab, Yorktown Heights, NY, Feb. 2006.

[78] Scandal Project. A library of parallel algorithms written NESL. Available frbttp:
/lIwww.cs.cmu.edu/ +=scandal/nesl/algorithms.html

[79] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a uniped deadlock-free
construct for collective and point-to-point synchronization. I@ifA 08, pages 277288,
New York, NY, 2008. ACM.

134

[80] O. Shivers. Continuations and threads: Expressing machine concurrency directly in advanced
languages. ICW '97, New York, NY, Jan. 1997. ACM.

[81] B. So, A. Ghuloum, and Y. Wu. Optimizing data parallel operations on many-core platforms.
In STMCS ’06, 2006.

[82] D. SpoonhowerScheduling Deterministic Parallel Programs. PhD thesis, Carnegie Mellon
University, Pittsburg, PA, USA, 2010.

[83] E. Tick and X. Zhong. A compile-time granularity analysis algorithm and its performance
evaluation. INFGCS ’92, pages 271295, New York, NY, USA, 1993. Springer-Verlag.

[84] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm + strategy =
parallelism.JFP, 8(1):23D60, Jan. 1998.

[85] P. W. Trinder, K. Hammond, J. S. Mattson, Jr., A. S. Partridge, and S. L. Peyton Jones. Gum:
a portable parallel implementation of haskét.DI *96, 31(5):79D88, 1996.

[86] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. Lazy binary-splitting: a run-time
adaptive work-stealing scheduler. R®oPP ’10, pages 1799190, New York, NY, Jan. 2010.
ACM.

[87] R.von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio: Scalable threads
for internet services. ISOSP 03, pages 268281, Dec. 2003.

[88] T.von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mech-
anism for integrating communication and computation./a8A '09, pages 4300440, New
York, NY, 1998. ACM.

[89] M. Wand. Continuation-based multiprocessing.LIiP ’80, pages 19D28, New York, NY,
Aug. 1980. ACM.

[90] S. Weeks. Whole program compilation in MLton. Invited talk at ML ©06 Workshop, Sept.
2006. Invited talk; slides available &ttp://mlton.org/pages/References/
attachments/060916-mlton.pdf

135

