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Abstract
Concurrent ML (CML) is a statically-typed higher-order concur-
rent language that is embedded in Standard ML. Its most notable
feature is its support for first-class synchronous operations. This
mechanism allows programmers to encapsulate complicated com-
munication and synchronization protocols as first-class abstrac-
tions, which encourages a modular style of programming where
the underlying channels used to communicate with a given thread
are hidden behind data and type abstraction.

While CML has been in active use for well over a decade,
little attention has been paid to optimizing CML programs. In
this paper, we present a new program analysis for statically-typed
higher-order concurrent languages that enables the compile-time
specialization of communication operations. This specialization
is particularly important in a multiprocessor or multicore setting,
where the synchronization overhead for general-purpose operations
are high. Preliminary results from a prototype that we have built
demonstrate that specialized channel operations are much faster
than the general-purpose operations.

Our analysis technique is modular (i.e., it analyzes and opti-
mizes a single unit of abstraction at a time), which plays to the mod-
ular style of many CML programs. The analysis consists of three
steps: the first is a type-sensitive control-flow analysis that uses the
program’s type-abstractions to compute more precise results. The
second is the construction of an extended control-flow graph using
the results of the CFA. The last step is an iterative analysis over
the graph that approximates the usage patterns of known channels.
Our analysis is designed to detect special patterns of use, such as
one-shot channels, fan-in channels, and fan-out channels. We have
proven the safety of our analysis and state those results.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages — Program
analysis; D.3.2 [Programming Languages]: Language classifica-
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1. Introduction
Concurrent ML (CML) [Rep91, Rep99] is a statically-typed
higher-order concurrent language that is embedded in Standard
ML [MTHM97]. CML extends SML with synchronous mes-
sage passing over typed channels and a novel abstraction mech-
anism, called first-class synchronous operations, for building syn-
chronization and communication abstractions. This mechanism
allows programmers to encapsulate complicated communication
and synchronization protocols as first-class abstractions, which
encourages a modular style of programming where the actual
underlying channels used to communicate with a given thread
are hidden behind data and type abstraction. CML has been
used successfully in a number of systems, including a multi-
threaded GUI toolkit [GR93], a distributed tuple-space implemen-
tation [Rep99], and a system for implementing partitioned applica-
tions in a distributed setting [YYS+01]. The design of CML has
inspired many implementations of CML-style concurrency primi-
tives in other languages. These include other implementations of
SML [MLt], other dialects of ML [Ler00], other functional lan-
guages, such as HASKELL [Rus01], SCHEME [FF04], and our own
MOBY language [FR99], and other high-level languages, such as
JAVA [Dem97].

While CML has been in active use for well over a decade, little
attention has been paid to optimizing CML programs. In this paper,
we present a new program analysis for statically-typed higher-order
concurrent languages that is a significant step toward optimization
of CML. Our technique is modular (i.e., it analyzes and optimizes
a single unit of abstraction at a time), which plays to the modular
style of many CML programs. The analysis consists of three steps.
The first is a new twist on traditional control-flow analysis (CFA)
that we call type-sensitive CFA [Rep06]. This analysis is a modular
0-CFA that tracks values of abstract type (i.e., types defined in the
module that are abstract outside the module) that escape “into the
wild.” Because of type abstraction, we known that any value of
an abstract type that comes in from the wild must have previously
escaped from the module. The second step is construction of an
extended control-flow graph (CFG) from the result of the CFA. This
extended CFG has extra edges to represent process creation, values
communicated by message-passing, and values communicated via
the outside world (a.k.a. the wild). The last step is an iterative
analysis of the CFG, which computes an approximation of the
number of processes that send or receive messages on the channel,
as well as an approximation of the number of messages sent on the
channel. This information allows us to detect special patterns of
use (or topologies), such as one-shot channels, fan-in channels, and
fan-out channels. These special patterns can then be exploited by
using more efficient implementations of channel primitives.

The paper has the following organization. In the next section,
we describe specific patterns of communication that are common
in message-passing programs. We also describe channel operations
that are specialized to these patterns and which have measurably



better performance than the general-purpose ones. We also present
an example of a prototypical server as is found in many CML ap-
plications and use it to illustrate the opportunities for specialized
communication. In Section 3, we define the small concurrent lan-
guage that we use to present our analysis and we give a dynamic
semantics for it. This semantics has the property that it explicitly
tracks the execution history of individual processes; we use these
execution histories to characterize the dynamic properties of chan-
nels that must be guaranteed to safely use the specialized forms.
The main technical content of the paper is the presentation of our
analysis, which we break up into four sections. In Section 4, we
present the type-sensitive CFA for our language. This analysis is
defined for a single unit of abstraction and its result allows us to
characterize a subset of the defined channels as known channels;
i.e., channels whose send and receive sites are all statically known.
We then present the construction of the extended CFG in Section 5.
The edges in this graph are labeled with the set of known chan-
nels that are live across the edge. In Section 6, we describe the
analysis of the CFG that results in an approximation of the mod-
ule’s communication topology and the static properties that allow
safe specialization of communication primitives. The final techni-
cal section outlines the proofs of correctness for our analysis (full
proofs can be found in the second author’s Master’s paper [Xia05]).
We discuss related work in Section 8 and the implementation status
and future work in Section 9. Finally we conclude in Section 10.

2. Specialization of communication primitives
Synchronous channels are the main communication and synchro-
nization mechanism of CML. The underlying protocols used to
implement these channels are necessarily general, since they must
function correctly and fairly in arbitrary contexts. Despite this gen-
erality, the existing implementation of CML is very efficient with
minimal overhead on concurrent operations [Rep99]. We believe
that this efficiency is important because it fosters a programming
style that uses thread abstraction freely without incurring a debili-
tating performance cost. One of the main reasons for this efficiency
is that there is only one underlying thread executing at any time,
which allows the implementation to easily single-thread critical re-
gions.

With the advent of inexpensive desktop multiprocessors and
with multicore processors appearing even in laptops, there is a real
need to port CML to a multiprocessor environment. Unfortunately,
implementing the CML primitives in a multiprocessor environment
incurs significant additional runtime overhead, since more compli-
cated protocols are required. The main motivation of the research
described in this paper is to develop compiler optimizations that
can reduce this overhead.

As might be expected, most uses of CML primitives fall into
one of a number of common patterns, which are amenable to more
efficient implementation. As is often the case, the hard part of
this optimization technique is developing an effective, but efficient,
analysis that identifies when it is safe to specialize. Furthermore,
we want this analysis to be modular so that it will easily scale to
larger systems. Fortunately, CML’s design emphasizes a modular
programming style based on user-defined concurrency abstractions.
While the motivation for this programming style is to promote more
robust software, it also provides an opportunity for optimization,
since the abstraction provided by first-class synchronous operations
allows modular analysis to determine the communication topology.

2.1 Common patterns of communication
Assuming that the basic communication primitive is a synchronous
channel, we consider the following possible communication pat-
terns:

number of
senders receivers messages topology
≤1 ≤1 ≤1 one-shot
≤1 ≤1 >1 one-to-one
≤1 >1 >1 one-to-many (fan-out)
>1 ≤1 >1 many-to-one (fan-in)
>1 >1 >1 many-to-many

In this table, the notation >1 denotes the possibility that more than
one thread or message may be involved and the notation≤1 denotes
that at most one thread or message is involved. For example, the
one-to-one pattern involves arbitrary numbers of messages, but at
most one sender and receiver. The many-to-many pattern is the
general case. An analysis of message-passing patterns is safe if
whenever it approximates the number of messages of threads as
≤1, then that property holds for all possible executions. It is always
safe to return an approximation of >1.

Another dimension of interest is whether a channel is used in
choice contexts, since there is additional overhead in the imple-
mentation of channels to support fairness and negative acknowl-
edgments in choice contexts. A channel that is not used in choice
contexts can have a simpler, and more efficient, implementation.
For the bulk of this paper, we restrict ourselves to a language with-
out choice, but we describe how our analysis can be extended to
handle choice in Section 9.

While programmers could specialize implementations by hand,
doing so would complicate the programming model and could lead
to less reliable software. Furthermore, correctness of a given proto-
col often depends on the properties of the primitives used to imple-
ment it. Changes to the protocol may require changes in the choice
of primitives, which makes the protocol harder to maintain. For
these reasons, we believe that an automatic optimization technique
based on program analysis and compiler transformations is neces-
sary.

2.2 Specialized channel operations
In general, a CML channel must support communication involv-
ing multiple sending and receiving processes transmitting multi-
ple messages in arbitrary contexts. This generality requires a com-
plicated protocol to implement with commiserate overhead.1 In
a multiprocessor setting, the protocol used to implement channel
communication involves multiple locks and other overhead. On the
other hand, if we know that a channel has a restricted pattern of use,
then we can design a more efficient implementation.

For example, consider a one-to-one channel; i.e., a channel that
has at most one sender and one receiver thread at any time and is
not used in a choice context. Such a channel can only be in one of
three distinct states:

EMPTY — neither thread is waiting for communication,
RECV — the receiver thread is waiting for the sender, or
SEND — the sender thread is waiting for the receiver.

Furthermore, the channel’s usage pattern means that its state tran-
sitions are restricted to the following state diagram:

SEND RECVEMPTY

recv recv

sendsend

Thus, the send operation can be implemented under the assump-
tion that the channel’s state must be either EMPTY or RECV,

1 Chapter 10 of Concurrent Programming in ML describes CML’s imple-
mentation, while Knabe has described a similar protocol in a distributed
setting [Kna92].



structure SimpleServ : SIMPLE_SERV =
struct

datatype serv = S of (int * int chan) chan

fun new () = let
val ch = channel()
fun server v = let

val (req, replCh) = recv ch
in
send(replCh, v);
server req

end
in

spawn (server 0);
S ch

end

fun call (S ch, v) = let
val replCh = channel()
in

send (ch, (v, replCh));
recv replCh

end
end

Figure 1. A simple service with an abstract client-server protocol

which means that a single atomic compare-and-swap instruction
can be used to test for the EMPTY state and, if EMPTY, set the
state to SEND. If the state was not EMPTY, then it must be RECV
and the send operation can be completed without further synchro-
nization.2

To understand the benefits of specialized channel operations in
the multiprocessor setting, we have developed a prototype imple-
mentation of CML channel operations that includes specialized
implementations for the patterns described in the previous section.
This prototype is written in C and assembly language and we have
tested it on both a dual single-core system and a quad dual-core
system. While a detailed description of this prototype is beyond
the scope of this paper, our preliminary results show that the spe-
cialized channels are significantly faster than the general-purpose
channels. For example, the one-to-one channel described above is
3-4 times faster than the general-purpose channel in our multipro-
cessor implementation and is as fast as the single-threaded CML
channel on the same hardware.

2.3 An example
To illustrate how the analysis and optimization might proceed,
consider the simple service implemented in Figure 1. This service
has the following abstract interface:3

signature SIMPLE_SERV =
sig

type serv
val new : unit -> serv
val call : (serv * int) -> int

end

The new function creates a new instance of the service by allo-
cating a new channel and spawning a new server thread to han-
dle requests on the channel. The representation of the service is
the request channel, but it is presented as an abstract type. The

2 Of course, there is also the need to schedule the receiver thread for
execution, but that cost would be required no matter how the channel
protocol is implemented.
3 To keep the example concise, we use direct operations on channels in-
stead of CML’s event operations, but event values can be handled without
difficulty (see Section 9).

Unknown
clients

fun new () = let
      val ch = channel()
      fun server v = let
            val (req, replCh) = recv ch
            in
              send(replCh, v);
              server req
            end
      in
        spawn (server 0);
        S ch
      end

fun call ( S ch , v) = let
      val replCh = channel()
      in
        send ( ch , (v, replCh));
        recv replCh
      end

Figure 2. Data-flow of the server’s request channel

structure SimpleServ : SIMPLE_SERV =
struct
datatype serv
= S of (int * int OneShot.chan) FanIn.chan

fun new () = let
val ch = FanIn.channel()
fun server v = let

val (req, replCh) =

FanIn.recv ch
in

OneShot.send(replCh, v);
server req

end
in

spawn (server 0);
S ch

end

fun call (S ch, v) = let
val replCh = OneShot.channel()

in
FanIn.send (ch, (v, replCh));

OneShot.recv replCh

end
end

Figure 3. A version of Figure 1 with specialized communication
operations

call function sends a request to a given instance of the service.
The request message consists of the request and a fresh channel
for the reply. Because the connection to the service is represented
as an abstract type, we know that even though it escapes out of
the SimpleServ module, it cannot be directly accessed by un-
known code. Figure 2 illustrates the data-flow of the service’s re-
quest channel. Specifically, we observe the following facts:

• For a given instance of the service, the request channel has a
many-to-one communication pattern.

• For a given client request, the reply channel has a one-to-one
communication pattern and is used at most once (i.e., it is a
one-shot channel).

We can exploit these facts to specialize the communication opera-
tions resulting in the optimized version of the service shown in Fig-
ure 3. We have highlighted the specialized code and have assumed
the existence of a module FanIn that implements channels spe-
cialized for the many-to-one pattern and a module OneShot that



is specialized for one-shot channels. In our prototype implementa-
tion, the specialized version of this service has 60% higher through-
put than the version implemented using general-purpose channels.
While the relative benefit for a more computationally intensive ser-
vice would be less, minimizing communication overhead encour-
ages the use of thread abstraction for encapsulating light-weight
state.

Because of the signature ascription, we know all of the send and
receive sites for the ch and replCh channels, but if we added the
function

fun reveal (S ch) = ch

to the service’s interface, then the above transformation would no
longer be safe, since clients could use the reveal function to gain
access to the server’s request channel and use it to send and receive
messages in ways not supported by the specialized channels. The
technical challenge is to develop program analyses that can detect
the patterns described in Section 2.1 automatically when they are
present, but also recognize the situation where access to the channel
is not limited (as with the reveal function). Another issue that the
analysis must address is distinguishing between multiple threads
that are created at the same spawn point. For example, say we have

fun twice f = (f(); f())

and we create two servers sharing a common request channel using
the code

twice (fn () => spawn(server 0));

Then our analysis should detect that the request channel ch is not
a fan-in channel. Note, however, that replCh is still a one-shot
channel.

3. A concurrent language
We present our algorithm in the context of a small statically-typed
concurrent language. This language is a monomorphic subset of
Core SML [MTHM97] with explicit types and concurrency prim-
itives. Standard ML and other ML-like languages use modules to
organize code and signature ascription to define abstraction, but use
the abstype declaration to define abstractions in lieu of modules.
We further simplify this declaration form to only have a single data
constructor. Figure 4 gives the abstract syntax for this simple lan-
guage. A program p is a sequence of zero or more abstype declara-
tions followed by an expression. The analysis that we present below
is modular and can be applied to each abstype declaration (d) inde-
pendently. Each abstype definition defines a new abstract type (T )
and corresponding data constructor (D) and a collection of func-
tions (fbi). Outside the abstype declaration, the type T is abstract
(i.e., the data constructor D is not in scope). The sequential expres-
sion forms include let-bindings, nested function bindings, function
application, data-constructor application and deconstruction,4 and
pair construction and projection. In addition, there are four concur-
rent expression forms: channel definition, process spawning, mes-
sage sending, and message receiving. Types include abstract types
(T), function types, pair types, and channel types. Abstract types
are either predefined types (e.g., unit, int, bool, etc.) or are
defined by an abstype declaration.

This language does not include CML’s event types or the cor-
responding event combinators, but based on experience with our
prototype implementation, we believe that it is straightforward to
add these to the analysis framework, so we omit them to keep the
presentation more compact.

4 In a language with sum types, deconstruction would be replaced by a case
expression.

p ::= e
| d p

d ::= abstype T = D of τ with fb1 · · · fbn end

fb ::= fun f (x) = e

e ::= x
| •
| let x = e1 in e2

| fun f (x) = e1 in e2

| e1 e2

| D e
| let D x = e1 in e2

| 〈e1, e2〉
| #i e where i ∈ {1, 2}
| chan c in e
| spawn e
| send(e1, e2)
| recv e

τ ::= T
| τ1 → τ2

| τ1 × τ2

| chan τ

Figure 4. A simple concurrent language

We assume that variables, data-constructor names, and abstract-
type names are globally unique. We also assume that variables and
constructors are annotated with their type. We omit this type in-
formation most of the time for the sake of brevity, but, when nec-
essary, we write it as a superscript (e.g., xτ ). One should think of
this language as a compiler’s intermediate representation following
typechecking.

We use LVAR to denote the set of variables defined in the cur-
rent abstype declaration, GVAR to denote variables defined else-
where, and VAR = LVAR∪GVAR for all variables defined or men-
tioned in the program. We denote the known function identifiers by
FUNID ⊂ LVAR (i.e., those variables that are defined by function
bindings) and the known channel identifiers by CHANID ⊂ LVAR
(i.e., those variables that are defined by channel bindings). The set
ABSTY is the set of abstract type names and DATACON is the set
of data constructors.

3.1 Dynamic semantics
Following Colby [Col95], the semantics for our language tracks
execution history on a per-process basis. This information is neces-
sary to characterize the dynamic usage of channels. Since abstype
declarations do not play a rôle in the dynamic semantics of the
language, we think of a program as a sequence of nested function
bindings. For example,

abstype T = D of τ with
fun f (x) = e1

fun g (y) = e2

end
e3

is treated as

fun f (x) = e1 in fun g (y) = e2 in e3

For a given program p, we assume that each expression in p is
labeled with a unique program point a ∈ PROGPT. We write a : e
to denote that e is the expression at program point a. Furthermore,



we assume that for each a ∈ PROGPT, there is a ā ∈ PROGPT. The
ā labels are not used to label expressions, but serve to distinguish
between parent and child threads in control paths. A control path
is a finite sequence of program points: CTLPATH = PROGPT∗.
We use π to denote an arbitrary control path and juxtaposition
to denote concatenation. We say that π � π′ if π is a prefix of
π′. Control paths are used to uniquely label dynamic instances of
channels, which we write c@π, where c ∈ CHANID. We also use
k to denote dynamic channel values, and K to denote the set of
dynamic channel values.

Evaluation of the sequential features of the language fol-
lows a standard small-step presentation based on evaluation con-
texts [FF86]. We modify the syntax of expression terms to distin-
guish values as follows:

v ::= •
| (fun f (x) = e)
| k
| 〈v1, v2〉

e ::= v
| · · ·

The unit value (•) was already part of the syntax, but we add
function values, dynamic channel values, and pairs of values. With
these definitions, we can define the sequential evaluation relation
e  e′ by the rules in Figure 5. Evaluation contexts are defined
in the standard call-by-value way and are used in the definition of
concurrent evaluation.

E ::= [ ]
| let x = E in e | let D x = E in e
| E e | v E | D E
| send(E, e) | send(v, E) | recv E
| 〈E, e〉 | 〈v, E〉 | #i E

For the semantics of concurrent evaluation, we represent the
state of a computation as a tree, where the nodes of the tree are
labeled with expressions representing process states and edges are
labeled with the program point corresponding to the evaluation step
taken from the parent to the child. The leaves of the tree represent
the current states of the processes in the computation. Because a
tree captures the history of the computation as well as its current
state, we call it a trace. Nodes in a trace are uniquely named by
control paths that describe the path from the root to the node. In
defining traces, it is useful to view them as prefix-closed finite
functions from control paths to expressions. If t is a trace, then
we write t.π to denote the node one reaches by following π from
the root, and if t.π is a leaf of t, a is a program point, and e an
expression, then t ∪ {πa 7→ e} is the trace with a child e added
to t.π with the new edge labeled by a. For a program p, the initial
trace will be the map {ε 7→ p}, where ε is the empty control path.

We define concurrent evaluation as the smallest relation (⇒)
between traces satisfying the following four rules. The first rule
lifts sequential evaluation to traces.

t.π = E[a : e] is a leaf e e′

t ⇒ t ∪ {πa 7→ E[e′]}

The second rule deals with channel creation.

t.π = E[a : chan c in e] is a leaf
t ⇒ t ∪ {πa 7→ E[e[c 7→ c@πa]]}

The third rule deals with process creation.

t.π = E[a : spawn e] is a leaf
t ⇒ t ∪ {πa 7→ E[•], πā 7→ e}

The last rule deals with communication.
t.π1 = E1[a1 : send(k, v)] is a leaf

t.π2 = E2[a2 : recv k] is a leaf
t ⇒ t ∪ {π1a1 7→ E1[•], π2a2 7→ E2[v]}

The set of traces of a program represents all possible executions
of the program. It is defined as

Trace(p) = {t | {ε 7→ p} ⇒∗ t}

3.2 Properties of traces
Let p be a program and let c be a channel identifier in p. For any
trace t ∈ Trace(p) and k = c@π occurring in t, we define the
dynamic send and receive sites of k as follows:

Sendst(k) = {π | t.π = E[send(k, v)]}
Recvst(k) = {π | t.π = E[recv k]}

We say that c has the single-sender property if for any t ∈
Trace(p), k = c@π occurring in t, and π1, π2 ∈ Sendst(k),
either π1 � π2 or π2 � π1. The intuition here is that if π1 � π2

then the sends can not be concurrent. On the other hand, if π1 and
π2 are not related by�, then they may be concurrent.5 Note that the
single-sender property allows multiple processes to send messages
on a given channel, they are just not allowed to do it concurrently.
Likewise, we say that c has the single-receiver property if for any
t ∈ Trace(p), k = c@π occurring in t, and π1, π2 ∈ Recvst(k),
either π1 � π2 or π2 � π1.

We can now state the special channel topologies from Sec-
tion 2.1 as properties of the set of traces of a program. For a channel
identifier c in a program p, we can classify its topology as follows:

• The channel c is a one-shot channel if for any t ∈ Trace(p) and
k = c@π occurring in t, |Sendst(k)| ≤ 1.

• The channel c is point-to-point if it has both the single-sender
and single-receiver properties.

• The channel c is a fan-out channel if it has the single-sender
property, but not the single-receiver.

• The channel c is a fan-in channel if it has the single-receiver
property, but not the single-sender.

Our analysis computes safe approximations of these properties,
which are described in Section 6.1.

4. Type-sensitive control-flow analysis for CML
The first step of our analysis is a standard abstract-interpretation-
style control-flow analysis of the program [Shi91, Ser95]. The goal
of this analysis is two-fold: first we need to determine the control-
flow and data-flow of the program, but we also want to identify
known channels (i.e., channels for which we know the creation
site and all use sites). One might use a whole-program analysis for
this purpose, but we have developed a modular CFA instead. This
CFA is based on Serrano’s version of 0-CFA [Ser95], but with a
couple of important differences. First, our source language is stat-
ically typed and has concurrency operations. Second, our analy-
sis exploits the type abstraction in the program, such as provided
by ML signature ascription or abstype definitions, to improve the
quality of the results. We call our analysis “Type-sensitive CFA.”
A detailed description of this algorithm can be found in a recent
paper [Rep06], but we sketch the technique here.

The basic intuition behind our approach is that if a value’s type
is abstract outside the scope of a module, then any value of that
type can only be allocated by code that is inside the module and

5 There may be other causal dependencies, such as synchronizations, that
would order π1 and π2, but our model does not take these into account.



let x = v in e  e[x 7→ v]

let D x = D v in e  e[x 7→ v]

fun f (x) = e1 in e2  e2[f 7→ (fun f (x) = e1)]

(fun f (x) = e) v  e[f 7→ (fun f (x) = e), x 7→ v]

#i 〈v1, v2〉  vi

Figure 5. Sequential evaluation

any operation on the value’s representation must also be inside the
module. We reflect this intuition by computing a mapping from the
abstract types of a module to an approximation of the values of
that type that have escaped into the wild. The analysis then uses
this mapping to approximate any unknown values of abstract type
that might flow into the module. Note that our approach should
apply to any language that has data abstraction mechanisms. In the
remainder of this section, we discuss those aspects of our CFA that
are important to the analysis of CML code.

4.1 Approximate values
The analysis computes a mapping from variables to approximate
values (ABSVAL), which are given by the following grammar:

bv ::= ⊥
| D bv | • | 〈bv1, bv2〉
| F | C

| bT | ĉhan τ | ̂τ1 → τ2

| >

where D ∈ DATACON, F ∈ 2FUNID, C ∈ 2CHANID, and T ∈
ABSTY. We use⊥ to denote undefined or not yet computed values,
D bv for an approximate value constructed by applying D to bv,
〈bv1, bv2〉 for an approximate pair, F for a set of known functions,
and C for a set of known channels. Our analysis will only compute
sets of functions and sets of channels where all the members have
the same type (see [Rep06] for a proof of this property) and so we
extend our type annotation syntax to include such sets. In addition
to the single top value found in most presentations of CFA, we have
a family of top values (bτ ) indexed by type. The value bτ represents
an unknown value of type τ (where τ is either a function or abstract
type). We define the ∨ operation in the standard way to combine
two approximate values.

4.2 Type-sensitive CFA
Our analysis algorithm iteratively computes a 4-tuple of approxi-
mations: A = (V, C,R, T ), where

V ∈ VAR → ABSVAL variable approximation
C ∈ CHANID → ABSVAL channel-message approximation
R ∈ FUNID → ABSVAL function-result approximation
T ∈ ABSTY → ABSVAL escaping abstract-value

approximation

Our V approximation corresponds to Serrano’s A; C is an ap-
proximation of the messages sent on a given known channel; R
records an approximation of function results for each known func-
tion, which is used in lieu of analyzing a function’s body when the
function is already being analyzed, and T records escaping values
and is used to interpret abstract values of the form bT .

The main workhorse of our CFA is the function cfa that takes
an expression e and an approximation A and computes the approx-
imate value of e and a, possibly different, approximation.

4.3 Analysis of message-passing operations
When analyzing message send and receive operations, we use the
C approximation to connect the send and receive sites for a given
channel. For example, when computingcfa([[recv e]], A) we first
compute

(bv,A′) = cfa([[e]], A)

If bv is of the form C, then the approximate result of the receive
operation is the join of the approximate values carried by all of the
channels in C: _

c∈C

C(c)

Otherwise, bv is a top value, but if its type is chanT , we can use
T (T ) for the approximation of the receive operation.

For send operations, if C is the approximation of the first argu-
ment and bv2 is the approximation of the second, then we replace
the C component of A with C′, which is defined to be

C′(c) =


C(c) ∨ bv2 if c ∈ C
C(c) otherwise

In this way, the CFA is able to propagate approximations from send
sites to receive sites.

4.4 Escaping abstract values
In Serrano’s analysis (and any other modular CFA that we are
aware of), escaping values are treated conservatively. For example,
the analysis assumes that any escaping function can be called on
any value, so the functions parameters are approximated as >.
For escaping channels, this would mean assuming arbitrary senders
and receivers and arbitrary messages, which would make modular
analysis of typical CML modules, such as our example, useless. To
avoid this problem, our analysis tracks escaping values of abstract
type by recording them in the T approximation. In turn, T is used
to approximate values of abstract type that come in from the wild.

4.5 Known channels
Our CFA allows one to compute certain static approximations of
the dynamic properties described in Section 3.2. Figure 6 gives the
approximation of the send and receive sites for a given channel. If
the channel escapes (denoted Esc(c)), then we use > to denote the
set. A channel for which we know all of the send and receive sites
is called a known channel.

4.6 An example
To illustrate our type-sensitive CFA, we revisit the example of
Figure 1, but recast in the notation of our simple language (with a
few syntactic liberties). Figure 7 shows the example with program-
point labels included. Our CFA produces the following information
for this example:

̂SendSites(ch) = {a13}
̂RecvSites(ch) = {a4}

̂SendSites(replCh) = {a5}
̂RecvSites(replCh) = {a14}

Thus, both ch and replCh are known channels.



̂SendSites(c) =


{a | a : send(e1, e2) ∈ p ∧ c ∈ A(e1)} if ¬Esc(c)
> if Esc(c)

̂RecvSites(c) =


{a | a : recv e ∈ p ∧ c ∈ A(e)} if ¬Esc(c)
> if Esc(c)

Figure 6. Approximation of channel send and receive sites

a1 : fun new () = (
a2 : chan ch in
a3 : fun server v = (
a4 : let (w’, replCh’) = recv ch in
a5 : send (replCh’, v);
a6 : server w’)

in
a7 : spawn (a8 : server 0);
a9 : S ch)

a10 : fun call (s, w) = (
a11 : let S ch’ = s in
a12 : chan replCh in
a13 : send (ch’, (w, replCh));
a14 : recv replCh)

Figure 7. The simple service in our simple language

5. The extended CFG
With the information from the CFA in hand, the next step of our
analysis is to construct an extended control-flow graph (CFG) for
the module that we are analyzing. We then use this extended CFG
to compute approximate trace fragments that can be used to analyze
the topology of the program.

There is a node in the graph for each program point; in addition,
there is an entry and exit node for each function definition. A node
with a label a corresponds to the point in the program’s execution
where the next redux is labeled with a. The graph has four kinds of
edges. The first two of these represent control flow, while the other
two are used to track the flow of values outside the module.

1. Control edges represent normal sequential control-flow.
2. Spawn edges represent process creation. If there is an expres-

sion a1 : spawn e and a2 is the label of the first redux in e,
then there will be a spawn edge from a1 to a2.

3. Message edges are added from send sites to receiver sites for
known channels.

4. Wild edges are added to represent the potential flow of abstract
values from one function in the module to another.

The graph is constructed such that a control edge from a1 to a2

corresponds to a trace edge labeled with a1 that leads to a trace
node labeled by a2. Similarly, a spawn edge from a1 to a2 in the
CFG corresponds to ā1 in a trace. More formally, the sets of nodes
and edges are defined to be

n ∈ NODE = PROGPT ∪ (FUNID × {entry, exit})
EGLABEL = {ctl, spawn,msg,wild}

EDGE = NODE × EGLABEL × NODE

G ∈ GRAPH = 2NODE × 2EDGE

The successors of a node n in a graph G are defined to be
SuccG(n) = {n′ | (n, l, n′) is an edge in G}.

Constructing the CFG is done in three steps. First we create the
basic graph with control and spawn edges in the obvious way. One
important point is that we use the results of the CFA to determine
the edges from call sites to known functions. Note that because we
are only interested in tracking known channels, which by definition
cannot have escaped the module, we can ignore calls to unknown
functions when constructing the graph. Message edges are added
in much the same way as control edges for known function calls.
Let a : send(e1, e2) be a send in the program and assume that
the CFA computed C as the approximation of e1. Then for each
channel c ∈ C and a′ ∈ ̂RecvSites(c), we add a send edge from
a to a′ to the graph. We add wild edges from any site where an
abstract value escapes the module to any site where such a value can
return from the wild. Once we have constructed the graph, we use a
liveness analysis to label the edges with the set of known channels
that are live across the edge. As described in the next section, we
use these edge labels to limit the scope of the analysis on a per-
channel basis.

5.1 An example
Figure 8 give the extended control-flow graph for our running
example. We have labeled each edge with the set of known channels
that are live across the edge. This graph illustrates the three ways
that a channel can be shared among multiple threads (and thus have
multiple senders/receivers):

1. A process is spawned that has the channel in its closure. This is
represented by the channel being in the label of the spawn edge
(e.g., ch on the edge from a7 to a8).

2. The channel is sent in a message from one process to another.
This is represented by the channel being in the label of the
message edge (e.g., replCh on the edge from a13 to a4).

3. The channel escapes into the wild and then returns as the argu-
ment to an exported function. This is represented by the channel
being in the label of a wild edge from the exit of one function to
the entry of another (e.g., ch on the edge from the exit of new
to the entry of call).

6. Analyzing the CFG
The final stage of our analysis involves using the CFG to deter-
mine the communication topology. We do this step independently
for each known channel in the module. Because the analysis is con-
cerned with only a single channel c at a time, we can ignore those
parts of the graph where c is not live (essentially remove any edge
that does not contain c in its label set). The analysis computes a
finite map bP that maps program points to an approximation of the
possible control paths that execution follows to get to the program
point. bP ∈ ̂PATHTO = PROGPT

fin→ 2
̂CTLPATH

where the set of abstract control paths is defined by the syntaxbπ ::= ∗:π
| π1:π2
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Figure 8. The CFG for the example

For an approximate control paths bπ, we split the path into a process
ID part (the part before the ‘:’) and a path. The process ID can either
be ‘∗’, which is used to represent an unknown set of processes, or
a path that uniquely identifies the process. We define an ordering
v on abstract control paths as follows: π1:π

′
1 v π2:π

′
2 if π1 = π2

and π′1 � π′2. In other words, bπ1 v bπ2 if they are paths in the same
process and if bπ1 is a prefix of bπ2. The following notation is used
to project the process ID part from an approximate control path:

P̂roc(∗:π2) = ∗
P̂roc(π1:π2) = π1

We lift P̂roc to sets of control paths in the standard way. If A is
a set of approximate control paths, then we define the number of
distinct processes in A as follows:

̂NumProcs(A) = ∞ if ∗ ∈ P̂roc(A)

̂NumProcs(A) = |P̂roc(A)| otherwise

The analysis of a CFG G is defined by a pair of mutually
recursive functions:

N c
G : NODE → ̂CTLPATH → ̂PATHTO → ̂PATHTO

Ec
G : EDGE → ̂CTLPATH → ̂PATHTO → ̂PATHTO

The definition of these functions can be found in Figure 9, wherebP∅ = {a 7→ ∅ | a ∈ PROGPT} is the finite map that assigns the
empty path set to every program point.

The N c
G function is defined by case analysis. For a function

f ’s entry it follows the unique control edge to the first program
point of f . For the exit of f , it computes the union of the analysis
for all outgoing edges. These edges will either be control edges
to f ’s call sites, when f is a known function, or wild edges,
when f is an escaping function. For program-point nodes, we

have three subcases. If the approximation bP already contains a
path pid :π1aπ2 that precedes bπ and pid :π1 ∈ bP (a), then we
have looped (the loop is a→π2→a) and can stop. If the number
of processes that can reach the program point a is greater than
one, then we stop.6 Otherwise, we record the visit to a in bP ′ and
compute the union over the outgoing edges.

The Ec
G function is also defined by cases. When the edge is

a control edge labeled by a, we analyze the destination node by
passing in the extended path bπa. When the edge is a spawn edge,
we analyze the destination node by passing in a new process ID
paired with the empty path. For message edges, we analyze the
receive site using the send-site program point as a new process ID.
This choice of process ID distinguishes the send from other sends
that target the same receive sites, but it conflates multiple receive
sites that are targets of the same send, which is safe since only one
receive site can actually receive the message. For wild edges, we
analyze the destination node using ‘∗’ as the process ID, since any
number of threads might call the target of the wild edge with the
same dynamic instance of the channel c.

6.1 Static classification of channels
For a known channel c that is defined at a : chan c in e, we
can statically classify c by examining cPc = N c

G[[a]]ε:ε bP∅. First we
define the approximate send and receive contexts for c as follows:

cSc =
[

a∈ ̂SendSites(c)

cPc(a)

cRc =
[

a∈ ̂RecvSites(c)

cPc(a)

These are the static approximations of the Sends and Recvs sets
from Section 3.2. We say that a known channel c has the static
single sender (resp. static single receiver) property if it is the case
that ̂NumProcs(cSc) ≤ 1 (resp. ̂NumProcs(cRc) ≤ 1). The static
classification of channels then follows the dynamic classification
from Section 3.1.

• If ̂NumProcs(cSc) ≤ 1 and 6 ∃bπ1, bπ2 ∈ cSc with bπ1 6= bπ2 andbπ1 v bπ2, then c is a one-shot channel.
• If c has both the static single-sender and static single-receiver

properties, then it is a point-to-point channel.
• If c has the static single-sender property, but not the static

single-receiver, then it is a fan-out channel.
• If c has the static single-receiver property, but not the static

single-sender, then it is a fan-in channel.

6.2 An example
Once again, we turn to our running example to illustrate the intu-
ition behind our analysis. Recall that we have two known channels:
ch, which is created at a2, and replCh, which is created at a12.

We first consider replCh. Figure 10 give the restriction of
the CFG from Figure 8 to the subgraph in which replCh is live.
Notice that although replCh is received by the server in its loop,
the fact that replCh is not live after node a5 means that we do
not analyze the loop and thus avoid confusing different instances
of replCh with each other. Computing

P̂replCh = N replCh
G [[a11]]ε:ε bP∅

6 Recall that we are interested in channels that have single senders or
receivers.



N c
G[[(f, entry)]]bπ bP = N c

G[[a′]]bπ bP where SuccG(f, entry) = {a′}

N c
G[[(f, exit)]]bπ bP = bP ∪

0@ [
e∈EdgeG(a)

Ec
G[[e]]bπ bP

1A
N c

G[[a]]bπ bP = bP if ∃pid :π1aπ2 ∈ bP (a) such that pid :π1aπ2 v bπ and pid :π1 ∈ bP (a).

= bP if ̂NumProcs( bP (a)) ≥ 2

= bP ′ ∪

0@ [
e∈EdgeG(a)

Ec
G[[e]]bπ bP ′

1A where bP ′ = bP ∪ {a 7→ bP (a) ∪ {bπ}}
Ec

G[[(a, ctl, n)]]bπ bP = N c
G[[n]]bπa bP

Ec
G[[(a, spawn, n)]]bπ bP = N c

G[[n]]bπ′ bP where bπ′ =


∗:ε if bπ = ∗:π
π1π2ā:ε if bπ = π1:π2

Ec
G[[(a,msg, n)]]bπ bP = N c

G[[n]]bπ′ bP∅ where bπ′ =


∗:ε if bπ = ∗:π
a:ε otherwise

Ec
G[[(a,wild, n)]]bπ bP = N c

G[[n]]∗:ε bP∅
Figure 9. Analyzing the CFG G for channel c

a4

a5

a13

a14

a12

{replCh}

{ch, replCh}

{ch, replCh}

{replCh}

Figure 10. The sub-CFG for replCh

results in the following mapping:

P̂replCh(a12) = {ε:ε}
P̂replCh(a13) = {ε:a12}
P̂replCh(a14) = {ε:a12a13}
P̂replCh(a4) = {a12ā13:ε}
P̂replCh(a5) = {a12ā13:a4}

From this map, we see that replCh is a one-shot channel.
The analysis for ch is more interesting, since it involves spawn-

ing, loops, and wild edges. Applying the analysis algorithm to the
relevant subgraph produces the following approximation:dPch(a2) = {ε:ε}dPch(a3) = {ε:a2}dPch(a7) = {ε:a2a3}dPch(a8) = {π:ε}

dPch(a4) = {π:a8, π:a8a4a5a6}dPch(a5) = {π:a8a4, π:a8a4a5a6a4}dPch(a6) = {π:a8a4a5, π:a8a4a5a6a4a5}dPch(a9) = {ε:a2a3a7}dPch(a11) = {∗:ε}dPch(a12) = {∗:a11}dPch(a13) = {∗:a11a12}

where π = a2a3ā7. From this map, we see thatcSch = {∗:a11a12}dRch = {π:a8, π:a8a4a5a6}

and thus ch is a fan-in channel.

7. Correctness of the analysis
In this section, we show that the static classification of channels
from Section 6 correctly follows the dynamic classfication from
Section 3.2. In other words, our analysis computes safe approxi-
mations of the properties from Section 3.2. The full details of the
proofs can be found in the second author’s Master’s paper [Xia05];
here we cover the ideas underlying the proofs.

First we introduce some notation. We use π(i) to denote the i-th
program point in π from left, and π(−i) to denote the i-th program
point in π from right. Let p be a program and c be a channel
identifier in p.

To prove our correctness results, we need to instrument our se-
mantics to record the communication history between the dynamic
send and receive sites. A communication history H is a subset

H ⊂ {(π1, k, π2) | π1, π2 ∈ CTLPATH, k ∈ K}

where (π1, k, π2) ∈ H if there is communication between the
dynamic send site π1 and receive site π2 on channel instance k
in some trace t. For a program p, the initial communication history
H will be the empty set. We extend the⇒ relation on traces to also
track the communication history. This change only affects the rule



for communication, which becomes

t.π1 = E1[a1 : send(k, v)] is a leaf
t.π2 = E2[a2 : recv k] is a leaf

H, t ⇒ H ′, t ∪ {π1a1 7→ E1[•], π2a2 7→ E2[v]}
where H ′ = H ∪ {(π1, k, π2)}

For the other evaluation rules, the history does not change; i.e., if
t ⇒ t′ then H, t ⇒ H, t′. We also extend the definition of the
traces of a program:

TraceH(p) = {H, t | {}, {ε 7→ p} ⇒∗ H, t}
Because our analysis is concerned with only a single channel at

a time, we can ignore those parts of the trace where the channel is
not live. We formalize this notion in the following definitions.

Definition 1 For any channel instance k of c in trace t ∈ Trace(p),
the live projection of trace t on k, denoted by t↓k, is the forest cre-
ated by removing all the nodes from t in which k does not occur.

Definition 2 Given a trace t ∈ Trace(p), a channel instance k in
t, and a control path π in t, the live projection of π on k is defined
to be

π↓k =


π1 where π = π2aπ1, π1 ∈ t↓k, aπ

(1)
1 /∈ t↓k

π otherwise

Because our analysis is designed to modular, given any path π
in t ∈ Trace(p), π may contain program points outside of the
module being analyzed. But the following definitions show that for
any path in the live projection of a trace, we can approximate the
path by collapsing nodes outside the extended CFG into wild edges.

Definition 3 Let G be an extended CFG for some module in a
program p and let π be a path in t ∈ Trace(p). Then, we say
that π ∈ G, if for any two adjacent program points π(i), π(i+1) in
π, there is an edge from π(i) to π(i+1) in G, and we say that π t G
if there is no π(i) in the nodes of G.

The function Partition : CTLPATH → CTLPATH∗ partitions a
path π into maximal sub-paths that are either in the module or in
the wild.

Definition 4 Let G be the extended CFG for a module and let π be
a path in t ∈ Trace(p), then

PartitionG(π) = 〈π1, π2, ..., πm〉
where π1π2...πm = π and for any πi ∈ Partition(π), πi is the
longest sub-path in π such that πi ∈ G or π t G.

Definition 5 Let G be the extended CFG for a module and let π be
a path in t ∈ Trace(p), then for any πi ∈ PartitionG(π),

ApproxPathG(πi) =


πi if πi ∈ G
ε if πi t G

The following lemma asserts that for any path in the live projection
of a trace, we can approximate the path by collapsing nodes outside
the extended CFG into wild edges.

Lemma 1 Let cGc be an extended CFG and k = c@π′ a channel
instance in t ∈ Trace(p), then for any π ∈ t↓k, there exists abπ ∈ cGc, such thatbπ = ApproxPath cGc

(π1) · · ·ApproxPath cGc
(πm)

where 〈π1, ..., πm〉 = Partition cGc
(π)

Recall that the approximate paths used to name send/receive
sites start from channel creation sites, while the dynamic send/receive
sites are labeled by paths starting from the trace root. The next def-
inition and lemma show that for each dynamic send/receive site of
any channel instance, there is a corresponding approximate path in
the extended CFG, which starts from the channel’s creation site.

Given any trace t of program p and channel instance k occur-
ring in t, for any dynamic send/receive sites of k, the following
definition of PathH tk : CTLPATH → CTLPATH∗ gives us a list
of paths that is a flow history and shows how channel instance k
flows from its creation site to its send/receive sites. For example,
let π ∈ Sendst(k) and PathH tk(π) = 〈π1, π2〉. This means that
π

(1)
1 is the creation site of k, k flows through π1 and then is sent as

a message from π
(−1)
1 to π

(1)
2 on some channel instance, and some

value is sent on k at π
(−1)
2 .

Definition 6 Given any H, t ∈ Trace(p) and k = c@π′, for any
π ∈ Sendst(k) ∪ Recvst(k), we define

PathH tk(π) =


〈π′′〉 if π′′(1) = π′(−1)

〈π1, π2, ..., πm〉 otherwise

where π = π′′′π′′, π′′ = π↓k, π
′
m = π′′′π′′(1), πm = π′′,

(π′i, ki, π
′
i+1) ∈ H , πi = π′i↓k, and π

(1)
1 = π

′(−1).

Lemma 2 Given any t ∈ Trace(p) and k = c@π′, let the ex-
tended CFG be cGc. Then for any π ∈ Sendst(k) ∪ Recvst(k),
∃ bπ ∈ cGc, and bπ = cπ1cπ2... cπm, where PathH tk(π) = 〈π1, ..., πm〉.

This lemma shows that, for any dynamic send/receive site, our
analysis computes the approximation of its channel instance flow
history in the extended CFG.

The final step is to show that our static classification of channels
is safe with respect to the dynamic classification, which we do in
the following theorems.

Theorem 3 ONE-SHOT SOUNDNESS
Let c be a known channel in a module of p. Then, if there exists
a trace t ∈ Trace(p) and instance k = c@π in t, such that
|Sendst(k)| > 1, then ∃cπ1, cπ2 ∈ cSc such that cπ1 6= cπ2, or

̂NumProcs(cSc) > 1.

Theorem 3 shows that if there is only one approximate send path,
there cannot be more than one dynamic send site for any channel
instance k of c. The idea underlying the proof is that two different
dynamic send sites have different channel instance flow histories. In
the extended CFG, they either have two different approximate paths
or have the same approximate path. From Definition 5, we know
that if two different flow histories have the same approximation,
then the channel instance must escape from the module into the
wild. In either case, the number of approximate send paths is more
than one. Thus our analysis is sound for the one-shot case.

Theorem 4 SINGLE-SENDER SOUNDNESS
If ∃ t ∈ Trace(p), ∃c@π in t, and ∃ π1, π2 ∈ Sendst(c@π), such
that Proc(π1) 6= Proc(π2), then ̂NumProcs(cSc) > 1.

Theorem 4 shows that if there is only one process in the approx-
imate send set, there cannot be more than one process in the dy-
namic send sites. The idea underlying the proof is again to consider
the channel instance flow history for each dynamic send site. In
the channel-instance flow history, the channel instance either stays
in the module, escapes into the wild, or is sent as a value to an-
other process. If in any of the above cases the number of processes



involved in the dynamic send sites is more than one, then the ap-
proximate paths of flow history have at least two different process
ID parts. Thus our analysis is sound for single-sender case.

Theorem 5 SINGLE-RECEIVER SOUNDNESS
If ∃ t ∈ Trace(p), ∃c@π in t, and ∃ π1, π2 ∈ Recvst(c@π), such
that Proc(π1) 6= Proc(π2), then ̂NumProcs(cRc) ≥ 2.

Theorem 5 shows that if there is only one process in the approxi-
mate receive set, then there cannot be more than one process in the
dynamic receive sites. The idea underlying the proof is similar to
the one in Theorem 4.

8. Related work
There are a number of papers that describe various program anal-
yses for message-passing languages such as CSP [Hoa78] and
CML. We organize our discussion of these analyses by the tech-
niques used.

A number of researchers have used effect-based type systems
to analyze the communication behavior of message-passing pro-
grams. Nielson and Nielson developed an effects-based analysis
for detecting when programs written in a subset of CML have fi-
nite topology and thus can be mapped onto a finite processor net-
work [NN94]. Debbabi et al. developed a type-based control-flow
analysis for a CML subset [DFT96], but did not propose any appli-
cations for their analysis.

In addition to being used as the basis for analysis algorithms,
type systems have been proposed that can be used to specify and
verify properties of protocols. For example, Vasconcelos et al.
have proposed a small message-passing language that uses ses-
sion types to describe the sequence of operations in complex pro-
tocols [VRG04]. While this approach is not a program analysis,
session types may be a useful way to represent behaviors in an anal-
ysis. In particular, they might provide an alternative to our sets of
approximate control paths.

There have also been a number of abstract-interpretation-style
analyses of concurrent languages that are closer in flavor to the
analysis we described in Section 4. Mercouroff designed and im-
plemented an abstract-interpretation style analysis for CSP pro-
grams [Mer91] based on an approximation of the number of mes-
sages sent between processes. While this analysis is one of the ear-
liest for message-passing programs, it is of limited utility for our
purposes, since it is limited to a very static language. Jagannathan
and Weeks proposed an analysis for parallel SCHEME programs
that distinguishes memory accesses/updates by thread [JW94]. Un-
fortunately, their analysis is not fine-grained enough for our prob-
lem since it collapses multiple threads that have the same spawn
point to a single approximate thread. Marinescu and Goldberg have
developed a partial evaluation technique for CSP [MG97]. Their
algorithm can eliminate redundant synchronization, but, like Mer-
couroff’s work, it is limited to programs with static structure. Mar-
tel and Gengler have developed a control-flow analysis that de-
termines an approximation of a CML program’s communication
topology [MG00]. The analysis uses finite automata to approxi-
mate the synchronization behavior of a thread and then extracts the
topology from the product automata.

Other researchers have used data-flow techniques to analyze
concurrent programs. Some of the earlier work was by Reif,
who applied data-flow analysis to an asynchronous CSP-like lan-
guage [Rei79]. His analysis produced an event spanning graph,
which is similar to our extended CFG in that it includes edges
from send sites to receive sites to track the flow of data between
processes. He used these graphs to compute an approximation
of reachability for concurrent programs. More recent work by

Carlsson et al. uses data-flow analysis to determine whether heap-
allocated values are sent to other processes (or not) [CSW03]. This
information is used to specialize allocations to either the local (per-
process) or global heap, which reduces message copying. Their
analysis, like ours, starts with 0-CFA to determine the control-flow
graph. They then run a first-order data-flow analysis to track the
flow of data values from their construction sites to where they are
sent as messages.

Colby’s abstract-interpretation for a subset of CML is probably
the closest to ours [Col95]. His analysis is based on a semantics
that uses control paths (i.e., an execution trace) to identify threads.
Unlike using spawn points to identify threads (as in [JW94]), con-
trol paths distinguish multiple threads created at the same spawn
point, which is a necessary condition to understand the topology
of a program. The method use to abstract control-paths is left as
a “tunable” parameter in his presentation, so it is not immediately
obvious how to use his approach to provide the information that we
need. His analysis is also a whole-program analysis.

In addition to our prototype implementation of specialized
channel operations, there is other evidence that specialized opera-
tions are significantly faster than the general-purpose operations.
Experience with the existing CML implementation has shown that
even in the single-threaded implementation, specialized channel
operations can have significant impact on communication over-
head. For example, CML provides I-variables, which are a form of
synchronous memory that supports write-once semantics [ANP89].
Using I-variables in place of channels for one-shot communi-
cations can reduce synchronization and communication costs by
35% [Rep99]. In the distributed setting, Demaine describes a pro-
tocol for the efficient implementation of a generalized choice con-
struct, where fan-out and fan-in channel operations can be imple-
mented with fewer network messages per user-level communica-
tion than many-to-many channel operations [Dem98].

9. Status and future work
The analysis presented in the paper does not include a number
of important CML features, such as non-deterministic choice and
event combinators. It turns out that to add these features to the anal-
ysis is mainly an issue of enriching the CFA to include a represen-
tation of approximate event values. We can then further refine our
characterization of known channels to distinguish between those
that appear in a choice context versus those that do not. The ex-
tended CFA analysis also enables other CML optimizations, such
as inlining wrapper functions.

We have also considered the question of modelling asyn-
chronous (or buffered) message passing. Our dynamic semantics
would have to be extended with a mechanism to track “in-flight”
messages, but this extension is not difficult. We believe that our
analysis is already correct for buffered channels, since it is not
sensitive to the order of messages.

We have prototyped the analysis for a language that is slightly
larger than the one in the paper (it has tuples, basic values, con-
ditionals, and a subset of the CML event combinators). The next
step will be to extend the analysis to the full set of CML primitives
and SML features, such as modules, datatypes, and polymorphism
(see [Rep06] for a discussion of the latter). Eventually, we plan to
implement the analysis and optimization as a source-to-source tool
for optimizing CML modules.

10. Conclusion
We have presented a new analysis technique for analyzing con-
current languages that use message passing, such as CML. Our
technique is designed to be applied on individual units of abstrac-
tion (e.g., modules). For a given module it determines an approx-



imation of the communication topology for the channels defined
in the module. We have shown how this information can be used
to replace general-purpose channel operations with more special-
ized ones. We have also described preliminary results from a pro-
totype implementation of CML primitives in a multiprocessor set-
ting. These results demonstrate that the specialized operations have
significantly higher throughput than the general-purpose operations
(as much as a factor of 3-4 in some cases).

Our analysis consists of three steps. The first is a new variation
of control-flow analysis that we call type-sensitive CFA. The type
sensitivity of the analysis is what allows us to effectively analyze
modules independently of their use. The second step constructs an
extended CFG from the CFA results. And the third step analyses
the CFG to approximate the numbers of messages and processes
involved in communicating through known channels. An impor-
tant property of this analysis is that it distinguishes between the
situation of multiple threads using the same channel and multi-
ple threads using distinct channels. This distinction is key to en-
abling the specialization of communication primitives. We have
also stated and sketched the proof of correctness for our analysis.

We have presented the analysis for a simple concurrent lan-
guage, but we expect that it will be straightforward to extend to
richer languages. The analysis may also be useful for statically de-
tecting other properties of concurrent programs (e.g., deadlock), but
we have not explored this direction yet.
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