
Garbage Collection for Multicore NUMA Machines

Sven Auhagen
University of Chicago

sauhagen@cs.uchicago.edu

Lars Bergstrom
University of Chicago

larsberg@cs.uchicago.edu

Matthew Fluet
Rochester Institute of

Technolgy
mtf@cs.rit.edu

John Reppy
University of Chicago
jhr@cs.uchicago.edu

Abstract
Modern high-end machines feature multiple processor pack-
ages, each of which contains multiple independent cores and
integrated memory controllers connected directly to dedi-
cated physical RAM. These packages are connected via a
shared bus, creating a system with a heterogeneous memory
hierarchy. Since this shared bus has less bandwidth than the
sum of the links to memory, aggregate memory bandwidth is
higher when parallel threads all access memory local to their
processor package than when they access memory attached
to a remote package. This bandwidth limitation has tradition-
ally limited the scalability of modern functional language
implementations, which seldom scale well past 8 cores, even
on small benchmarks.

This work presents a garbage collector integrated with
our strict, parallel functional language implementation,
Manticore, and shows that it scales effectively on both a 48-
core AMD Opteron machine and a 32-core Intel Xeon ma-
chine.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General; D.3.2 [Programming Languages]:
Language Classifications—Concurrent, distributed, and
parallel languages; D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection)

General Terms Languages, Performance

Keywords garbage collection, parallelism, NUMA

1. Introduction
Inexpensive multicore processors and accessible multipro-
cessor motherboards have brought all of the challenges
inherent in parallel programming with large numbers of
threads with non-uniform memory access (NUMA) into the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MSPC’11, June 5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0794-9/11/06. . . $10.00

foreground. Functional programming languages are a par-
ticularly interesting approach to programming parallel sys-
tems, since they provide a high-level programming model
that avoids many of the pitfalls of imperative parallel pro-
gramming. But while functional languages may seem like
a better fit for parallelism due to their ability to compute
independently while avoiding race conditions and locality
issues with shared memory mutation, implementing a scal-
able functional parallel programming language is still chal-
lenging. Since functional languages are value-oriented, their
performance is highly dependent upon their memory system.

Our group has been working on the design and imple-
mentation of a parallel functional language to address the
opportunity afforded by multicore processors. In this pa-
per, we focus on the design of our memory system and
parallel garbage collector. This system is designed to min-
imize required synchronization and to maximize locality,
two features which have proven crucial to the scalability of
our system on larger machines. Recent work on other func-
tional languages has shown that the memory system is the
limiting factor to improved performance for many types of
code [MPS09, And10]. Our work has been guided by mea-
surements of a number of parallel benchmarks; we present
detailed results from a representative subset of these pro-
grams.

This paper makes the following contributions:

1. We demonstrate a modern functional language that
makes effective use of a large number of modern NUMA
multicore processors. The best recent work scales to no
more than 12 cores, and we demonstrate good utilization
of all available cores on both 32 and 48 core machines.
This scaling is demonstrated through a set of small but
representative benchmarks across a variety of physical
memory allocation strategies.

2. We describe our garbage collector, which provides excel-
lent performance on multicore, NUMA machines. While
some of the individual ideas in the garbage collector build
on classic work [App89, DL93, DG94], we present a
novel approach that, when combined with other aspects
of our runtime architecture designed to maximize local-
ity, avoids bottlenecks due to excessive memory traffic.

The remainder of the paper is organized as follows. In the
next section, we describe our language and runtime system.
Section 3 lays out the architecture of our garbage collector.
Section 4 contains a detailed evaluation of our implemen-
tation using some representative benchmarks. Due to length
constraints, a discussion of related work is omitted.

2. Manticore overview
The Manticore project encompasses both design and im-
plementation of parallel functional programming languages
on modern multicore and multiprocessor systems. In this
section, we give a brief overview of the features relevant
to threading and the garbage collector. More detail can be
found in our previous papers [FRR+07, FFR+07].

2.1 Programming model
Parallel ML (PML) is the programming language supported
by the Manticore system. Our programming model is based
on a strict, but mutation-free, functional language (a sub-
set of Standard ML [MTHM97]), which is extended with
support for multiple forms of parallelism. This subset in-
cludes most of the core features of SML as well as a sim-
ple module system. PML differs from SML primarily by
lacking mutable data (i.e., reference cells and arrays), but it
does include exceptions. PML extends this sequential core
with both fine-grained implicitly-threaded and coarse-grain
explicitly-threaded [RRX09] parallel-programming mecha-
nisms. The implicitly-threaded mechanisms include a vari-
ety of lightweight syntactic forms that allow the program-
mer to suggest to the compiler and runtime system that par-
allelism would be beneficial [FRRS08]; because the threads
used to evaluate these constructs are not visible at the lan-
guage level, the constructs are termed implicitly threaded.
The explicitly-threaded mechanisms include language-level
visible threads and synchronous message passing, providing
a parallel implementation of Concurrent ML’s concurrency
primtives [RRX09].

2.2 The Manticore runtime system
The Manticore runtime system consists of a hardware ab-
straction level, which is written in C, that supports virtual
processors (vproc), basic system services, such as I/O and
networking, and a parallel garbage collector. A vproc is an
abstraction of a computational resource, and is used to exe-
cute code and balance work across the system. Each vproc
is hosted by its own pthread [But97], which is pinned to a
physical node. When there are less vprocs than processors,
they are assigned sparsely across the nodes to minimize con-
tention on the node-shared L3 cache.

2.3 Execution of parallel work and locality
All of the implicitly threaded parallelism language features
work by pushing units of parallel work (in the form of con-
tinuations) onto a vproc-local work queue and then begin-
ning execution of the first unit of work. If a vproc has no

work to perform, then it uses work-stealing to find a unit
of pending work on another vproc and begins executing it.
This strategy is designed to keep memory and computation
local to the thread that began the work whenever possible
and leads to one of the key invariants provided by our run-
time system and used by our garbage collector — all data is
local to a processor unless it was either captured in a closure
and stolen by another processor or it is passed in a message
by the CML explicit threading features. At these two points,
the runtime and basis library handle copying data out of the
local heap and into the global space, as we describe in Sec-
tion 3.1. This invariant means that:

1. There are no pointers from one vproc’s local heap to
another’s.

2. There are no pointers from the global heap into any
vproc’s local heap.

Many related collectors require these properties to obtain
concurrency or parallelism. Our approach differs from theirs
by requiring neither write barriers nor static analysis to
maintain these properties.

3. GC and heap
Our garbage collector is based on a novel combination of the
Doligez-Leroy-Gonthier (DLG) parallel collector [DL93,
DG94] and the Appel semi-generational collector [App89].
This design allows us to minimize GC synchronization be-
tween vprocs and to preserve locality.

3.1 Heap architecture
We use the DLG heap architecture of per-vproc local heaps
combined with a global heap. As in the DLG collector, we
maintain the invariant that there are no pointers between
local heaps or from the global heap into the local heap.
This invariant means that for one vproc to communicate
an object to another, we must first promote the object to
the global heap. The cost of promotion can be a significant
burden, so we have developed a number of techniques for
reducing the amount of promoted data. These include a lazy
promotion scheme for work stealing [Rai10] and the use of
object proxies.1

Functional-language implementations are notorious for
their high rate of memory allocation. Fortunately, most
of this data is ephemeral and so generational techniques
are quite effective. To this end, we use Appel’s semi-
generational heap architecture for the local heaps. The local
heaps are fixed size that is chosen so that the local heaps will
fit into the L3 cache.

The global heap is organized into a collection of chunks.
Each vproc has a current chunk that it uses when it needs
to allocate in or promote an object to the global heap. In a

1 Object proxies are a special kind of object that is used to allow references
from the global heap back into the local heap. We use them in the imple-
mentation of our explicit concurrency constructs.

1ID (15 bits)Object length (48 bits)

Figure 1. The header word of mixed-type, raw, and vector
heap objects

NUMA system, each node has its own bank of memory with
the property that access from a node to its own memory is
faster than access to memory on other nodes. For this reason,
our memory system tracks the node on which a chunk is
allocated and preserves node affinity when reusing chunks.

The main advantage of the DLG split-heap architec-
ture is that it requires little or no synchronization between
vprocs for most garbage collection activity. Our system has
three different garbage-collection phases: minor, major, and
global. The former two correspond to Appel’s minor and
major collections and are used to reclaim space in the lo-
cal heap. The global collection is a parallel stop-the-world
collector. We describe these in more detail below.

3.2 Object representation and scanning
The Manticore memory system supports three basic kinds
of heap objects: raw-data objects (e.g., strings), vectors of
pointers, and mixed-type objects, which contain both pointer
and non-pointer data. Heap objects have a 64-bit header
word as shown in Figure 1. The lowest bit is always 1,
which distinguishes headers from forward pointers. The rest
of the header word consists of a 15-bit ID and a 48-bit
length. We reserve two IDs for raw and vector data. For
mixed objects, the ID is an index into an object-descriptor
table that is generated by the compiler. The object-descriptor
table includes pointers to object-scanning and forwarding
functions, which are also generated by the compiler.

Each garbage-collection function in the table is specifi-
cally created for the structure of the corresponding mixed-
type object. This approach allows the garbage collector to
avoid scanning each field of an object at runtime and instead
to generate code during compilation that processes only the
pointer fields of each object. We follow this approach for all
mixed-type objects, though the garbage collector still distin-
guishes raw and vector objects and handles them directly to
avoid a pointer lookup in the object table.

3.3 Minor and major collections
Following Appel, we divide a vproc’s local heap into two
separate spaces: the nursery area and the old-data area. New
objects are allocated in the nursery area until it is full and
a minor garbage collection is triggered. The minor garbage
collector copies all live data from the nursery area to the
old-data area of the local heap. After this minor garbage col-
lection finishes, the remaining free space in the local heap
is divided in half and the upper half will be used as the new
nursery area. This process is illustrated in Figure 2. Because
there are no pointers into the local heap from outside (other

Newly
allocated

data

Old data

Garbage

Old data

Live data

Old data

Nursery

copy live data reclaim space

Local
Heap

Figure 2. A minor garbage collection in Manticore

Old data

Young
data

Nursery

Old data

Young
data

Garbage

Move

Global
Heap

Local
Heap

copy live data reclaim space

Figure 3. A major garbage collection in Manticore

than the roots), minor collections require no synchroniza-
tion. A minor garbage collection triggers a major garbage
collection when the size of the new nursery area falls below
a certain threshold or if a global garbage collection is pend-
ing.

The major garbage collection copies the live objects from
the old-data area in a vproc’s local heap to its dedicated
memory chunk in the global heap. To avoid premature pro-
motion, we partition the old-data area into data that was just
copied in the previous minor collection (called young data)
and the data that was copied earlier. The young data are guar-
anteed to be live (because a minor collection always imme-
diately precedes this major collection) and we do not copy it
to the global heap. Figure 3 illustrates this process.

Major collections only require synchronization when the
vproc’s current memory chunk is exhausted, since, in that
case, the vproc needs to allocate a new chunk of global
memory. This synchronization is either node-local because
it involves the reuse of a chunk of memory or global if a new
chunk needs to be requested from the system and registered
with the runtime.

In addition to minor and major collections, the runtime
system also implements object promotion, which is required
when an object is to be shared with other vprocs. Promo-
tion is essentially a major collection, where the root set is a
pointer to the promoted object, and the synchronization re-
quirements are the same as for major collection.

3.4 Global collection
Global collection is triggered when the size of global heap
chunks allocated exceeds a threshold.2 The vproc that de-
termines that a global collection first attempts to trigger a
global collection. After the collection is triggered, one vproc
is assigned the leadership role and performs the following
actions.

1. Set a global flag that a global garbage collection is in
progress and mark this vproc the leader.

2. Signal all of the other vprocs to enter garbage collection
code by setting their allocation limit pointer to zero. This
strategy allows the runtime to know that all vprocs will
be at a safe execution point with known roots.

3. Wait for all of the other vprocs to enter the global collec-
tion, which requires first performing their parallel minor
and major collections.

At this point, every vproc will be in the state shown
at the end of Figure 3. Everything pointed to by the roots
and local heap will be present either elsewhere in the local
heap or in a global heap chunk. These global heap chunks
are gathered on a per-node basis and placed into a list of
from-space chunks. Each vproc then obtains a new global
heap chunk and scans the vproc’s roots and local heap,
placing any objects pointed-to into this new to-space chunk.
In parallel with one another, the vprocs obtain chunks on a
per-node basis from either the from-space list or the list of
to-space chunks that have not been scanned. Each of these
chunks are removed and scanned until no chunks remain
on the local node. Once all of the vprocs across all nodes
have completed, the old from-space chunks are returned to
the free-space chunk pool and execution of the program
resumes.

4. Evaluation
Our 32 core Intel and 48 core AMD hardware is described
in detail in Appendix A.

4.1 Benchmarks
For our empirical evaluation, we use five benchmark pro-
grams from our benchmark suite and one synthetic bench-
mark. Each benchmark is written in a pure, functional style
and was originally written by other researchers and ported to
our system. We ran each experiment 10 times and we report
the average performance results in our graphs and tables.

2 Currently, this threshold is the number of vprocs times 32MB.

Threads

S
pe

ed
up

1 4 8 12 16 24 32
0

5

10

15

20

25

30

0

5

10

15

20

25

30
Ideal Speedup
Dense−Matrix−Multiply
Raytracer
Quicksort
Barnes−Hut
SMVM

Figure 4. Comparative speedup plots for five benchmarks
on Intel hardware.

The Barnes-Hut benchmark [BH86] is a classic N-body
problem solver. Each iteration has two phases. In the first
phase, a quadtree is constructed from a sequence of mass
points. The second phase then uses this tree to accelerate
the computation of the gravitational force on the bodies in
the system. Our benchmark runs 20 iterations over 400,000
particles generated in a random Plummer distribution. Our
version is a translation of a Haskell program [GHC].

The Raytracer benchmark renders a 512 × 512 image in
parallel as two-dimensional sequence, which is then written
to a file. The original program was written in ID [Nik91] and
is a simple ray tracer that does not use any acceleration data
structures. The sequential version differs from the parallel
code in that it outputs each pixel to the image file as it is
computed, instead of building an intermediate data structure.

The Quicksort benchmark sorts a sequence of 10,000,000
integers in parallel. This code is based on the NESL version
of the algorithm [Sca].

The SMVM benchmark is a sparse-matrix by dense-
vector multiplication. The matrix contains 1,091,362 ele-
ments and the vector 16,614.

The DMM benchmark is a dense-matrix by dense-matrix
multiplication in which each matrix is 600× 600.

4.2 Performance
As shown in Figure 4, on the Intel machine, the dense-matrix
multiplication (DMM) and raytracer benchmarks have abun-
dant, independent parallelism and our compiler and run-
time exploit them, demonstrating nearly ideal speedup over
the baseline single-processor performance up to the max-
imum number of cores. Quicksort, barnes-hut, and spare-
matrix multiplication (SMVM) all see reducing speedups
past 16 threads, but continue to steadily improve perfor-
mance as more threads are added.

On the AMD machine, shown in Figure 5, DMM and
the raytracer benchmarks perform well. But, both quicksort
and barnes-hut scale nicely to 36 threads but then only take

Threads

S
pe

ed
up

1 4 8 12 24 36 48

0

10

20

30

40

0

10

20

30

40

Ideal Speedup
Dense−Matrix−Multiply
Raytracer
Quicksort
Barnes−Hut
SMVM

Figure 5. Comparative speedup plots for five benchmarks
on AMD hardware using local memory allocation.

Threads

S
pe

ed
up

1 4 8 12 24 36 48

0

10

20

30

40

0

10

20

30

40

Ideal Speedup
Dense−Matrix−Multiply
Raytracer
Quicksort
Barnes−Hut
SMVM

Figure 6. Comparative speedup plots for five benchmarks
on AMD hardware with interleaved memory allocation.

Threads

S
pe

ed
up

1 4 8 12 24 36 48

0

10

20

30

40

0

10

20

30

40

Ideal Speedup
Dense−Matrix−Multiply
Raytracer
Quicksort
Barnes−Hut
SMVM

Figure 7. Comparative speedup plots for five benchmarks
on AMD hardware with socket zero memory allocation.

slight advantage of additional threads. In barnes-hut, we
believe that this behavior is due to the sequential portion.
Quicksort also is limited by its fork-join parallelism, and
without significantly increasing the size of the underlying
dataset, it is difficult to take advantage of the additional
available parallelism.

Sparse-matrix multiplication provides the least scalability
for the AMD system. We believe that this is due to a large
amount of available execution parallelism but a relatively
small amount of data. Unless this data is either perfectly di-
vided between the nodes or replicated to each location, this
benchmark fails to take much advantage of greater than even
24 threads. We believe that the Intel machine’s greater per-
formance, particularly on SMVM, is due to a smaller NUMA
penalty when accessing the relatively smaller amount of
shared data, much of which resides on only one node. Addi-
tionally, with only four nodes on the Intel machine, threads
are twice as likely to be located near data even if that data
was placed randomly.

Benchmarks such as dense-matrix multiplication and ray-
tracer, with excellent locality and almost no shared data can
scale nearly perfectly if all of their data is kept locally. The
other benchmarks, which feature either heavily shared data
or significant points that sequentially merge data before cre-
ating more parallel work show diminished improvements. In
all cases, poor locality negatively affects performance, par-
ticularly on machines with multiple processor packages and
relatively large numbers of cores — in our experience, be-
tween 24 and 36.

4.3 Effect of allocation location
By default, we allocate memory pages on the same node as
the pinned vproc that required additional memory. As a fur-
ther test of locality, we modified the allocator for our garbage
collector with two alternative strategies that are similar to
those of other functional language single-threaded and par-
allel garbage collectors. In Figure 6, we use an allocation
strategy that balances physical page assignments between
the hardware packages. This strategy is currently used in
the Glasgow Haskell Compiler (GHC). In Figure 7, the al-
location strategy defaults to a single node for all allocations,
which is the default NUMA behavior encountered by single-
threaded garbage collectors. These speedup graphs are both
plotted relative to the single-processor performance for the
AMD machine in Figure 5.

Our strategy, which allocates pages local to the pinned
vproc that requests and used the data, provides slightly
better absolute performance at all processor counts on all
benchmarks except for SMVM in the interleaved strategy at
greater than 24 cores. In that benchmark, there is a small por-
tion of data (the vector) that is accessed by all of the threads.
Our default implementation encounters bus saturation on the
AMD machine at larger numbers of processors, as all nodes
are attempting to access data located in the same package.

The single-node allocation strategy shows reasonable
scalability until 12 cores. But, this strategy fails after that
point, and we expect all collectors using this approach to re-
quire NUMA allocation tuning.3

5. Conclusion
We have demonstrated a garbage collector designed to make
effective use of the memory hierarchy and that scales very
well on a large number of processor cores. Keys to this de-
sign are private minor heaps that are collected concurrently
with program execution and in parallel with one another
and a major heap architecture that allows parallel collections
while avoiding increasing traffic on the memory bus. Though
some aspects of our system would need to be enhanced, for
example with write barriers or static analysis, in the context
of systems that permit and encourage frequent unrestricted
memory mutation, we believe that these techniques are read-
ily applicable to other runtimes.

Acknowledgments Thanks to Bradford Beckmann for re-
viewing the breakdown of the AMD G34 socket. This ma-
terial is based upon work supported by the National Science
Foundation under Grants CCF-0811389 and CCF-1010568.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of these organizations or the U.S. Gov-
ernment.

Access to the Intel machine was provided by Intel Re-
search. Thanks to the management, staff, and facilities of the
Intel Manycore Testing Lab.4

References
[And10] Anderson, T. A. Optimizations in a private nursery-

based garbage collector. In ISMM ’10, Toronto, On-
tario, Canada, 2010. ACM, pp. 21–30.

[App89] Appel, A. W. Simple generational garbage collection
and fast allocation. SP&E, 19(2), 1989, pp. 171–183.

[BH86] Barnes, J. and P. Hut. A hierarchical O(N logN)
force calculation algorithm. Nature, 324, December
1986, pp. 446–449.

[But97] Butenhof, D. R. Programming with POSIX Threads.
Addison-Wesley, Reading, MA, 1997.

[Car] Carver, T. Magny-cours and direct
connect architecture 2.0. Available
from http://developer.amd.com/
documentation/articles/pages/
Magny-Cours-Direct-Connect-Architecture-2.
0.aspx.

3 The current garbage collector for the Glasgow Haskell Compiler (GHC)
recently required exactly this change in order to scale to even 7 processors
across two sockets.
4 Manycore Testing Lab Home:
http://www.intel.com/software/manycoretestinglab
Intel Software Network:
http://www.intel.com/software

[CKD+10] Conway, P., N. Kalyanasundharam, G. Donley,
K. Lepak, and B. Hughes. Cache hierarchy and mem-
ory subsystem of the AMD Opteron processor. Micro,
30, 2010, pp. 16–29.

[DG94] Doligez, D. and G. Gonthier. Portable, unobtrusive
garbage collection for multiprocessor systems. In
POPL ’94, Portland, Oregon, United States, January
1994. ACM, pp. 70–83.

[DL93] Doligez, D. and X. Leroy. A concurrent, generational
garbage collector for a multithreaded implementation
of ML. In POPL ’93, Charleston, South Carolina,
United States, January 1993. ACM, pp. 113–123.

[FFR+07] Fluet, M., N. Ford, M. Rainey, J. Reppy, A. Shaw, and
Y. Xiao. Status Report: The Manticore Project. In ML
’07. ACM, October 2007, pp. 15–24.

[FRR+07] Fluet, M., M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Manticore: A heterogeneous parallel language. In
DAMP ’07. ACM, January 2007, pp. 37–44.

[FRRS08] Fluet, M., M. Rainey, J. Reppy, and A. Shaw.
Implicitly-threaded parallelism in Manticore. In ICFP
’08, Victoria, BC, Candada, September 2008. ACM,
pp. 119–130.

[GHC] GHC. Barnes Hut benchmark written in Haskell.
Available from http://darcs.haskell.org/
packages/ndp/examples/barnesHut/.

[Int] Intel. Intel Xeon Processor X7560. Specifications
at http://ark.intel.com/Product.aspx?
id=46499.

[MPS09] Marlow, S., S. Peyton Jones, and S. Singh. Runtime
support for multicore Haskell. In ICFP ’09. ACM,
August–September 2009, pp. 65–77.

[MTHM97] Milner, R., M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). The MIT
Press, Cambridge, MA, 1997.

[Nik91] Nikhil, R. S. ID Language Reference Manual. Lab-
oratory for Computer Science, MIT, Cambridge, MA,
July 1991.

[QSS] QSSC. QSSC-S4R Technical Product Specification.
Available from http://www.qsscit.com/
language_config/down.php?hDFile=
S4R_TPS_1.0.pdf.

[Rai10] Rainey, M. Effective Scheduling Techniques for High-
Level Parallel Programming Languages. Ph.D. dis-
sertation, University of Chicago, August 2010. Avail-
able from http://manticore.cs.uchicago.
edu.

[RRX09] Reppy, J., C. Russo, and Y. Xiao. Parallel Concurrent
ML. In ICFP ’09, Edinburgh, Scotland, UK, August–
September 2009. ACM, pp. 257–268.

[Sca] Scandal Project. A library of parallel algorithms writ-
ten NESL. Available from http://www.cs.cmu.
edu/˜scandal/nesl/algorithms.html.

RAM

RAM

Processor 0

Node 0, 6 cores

Node 1, 6 cores

DDR3
Dual-Channel

DDR3
Dual-Channel

x8 HT3
to P2

x8 HT3
to P3

x8 HT3
to P1

x16 HT3 x8 HT3

x16 HT3
to I/O

x16 HT3
to I/O

x8 HT3
to P2

x8 HT3
to P3

x8 HT3
to P1

Figure 8. Interconnects for one processor in a quad AMD
Opteron machine.

A. Hardware
A.1 AMD Hardware
Our AMD benchmark machine is a Dell PowerEdge R815
server, outfitted with 48 cores and 128 GB physical mem-
ory. This machine runs x86 64 Ubuntu Linux 10.04.2 LTS,
kernel version 2.6.32-27. The 48 cores are provided by
four AMD Opteron 6172 “Magny Cours” processors [Car,
CKD+10], each of which fits into a single G34 socket. Each
processor contains two nodes, and each node has six cores.
The 128 GB physical memory is provided by thirty-two
4 GB dual ranked RDIMMs, evenly distributed among four
sets of eight sockets, with one set for each processor. As
shown in Figure 8, these nodes, processors, and RAM chips
form a hierarchy with significant differences in available
memory bandwidth and number of hops required, depend-
ing upon the source processor core and the target physical
memory location. Each 6 core node (die) has a dual-channel
double data rate 3 (DDR3) memory configuration running
at 1333 MHz from its private memory controller to its own
memory bank. There are two of these nodes in each proces-
sor package.

Bandwidth between each of the nodes and I/O devices
is provided by four 16-bit HyperTransport 3 (HT3) ports,
which can each be separated into two 8-bit HT3 links. Each
8-bit HT3 link has 6.4 GB/s of bandwidth. The two nodes
within a package are configured with a full 16-bit link and
an extra 8-bit link connecting them. Three 8-bit links connect
each node to the other three packages in this four package
configuration. The remaining 16-bit link is used for I/O.
Table 1 shows the bandwidth available between the different
elements in the hierarchy.

Each core operates at 2.1 GHz and has 64 KB each of
instruction and data L1 cache and 512 KB of L2 cache.
Each node has 6 MB of L3 cache physically present, but,
by default, 1 MB is reserved to speed up cross-node cache
probes.

AMD (GB/s) Intel (GB/s)
Local Memory 21.3 17.1

Node in same package 19.2 n/a
Node on another package 6.4 25.6

Table 1. Theoretical bandwidth available between a single
node and the rest of the system.

RAM
Riser

0

RAM
Riser

1

Processor/Node 0
8 cores

DDR3
Dual-Channel

DDR3
Dual-Channel

QPI
to I/O

QPI
to P2

QPI
to P3

QPI
to P1

Figure 9. Interconnects for one processor in a quad Intel
Xeon machine.

A.2 Intel Hardware
The Intel benchmark machine is a QSSC-S4R server with
32 cores and 256 GB physical memory. This machine runs
x86 64 RedHat Enterprise Linux, kernel version 2.6.18-
194.11.4.el5. The 32 cores are provided by four Intel
Xeon X7560 processors [Int, QSS]. Each processor contains
8 cores, which can be but are not configured to run with 2 si-
multaneous multithreads (SMT). As shown in Figure 9, these
nodes, processors, and RAM chips form a hierarchy, but this
hierarchy is more uniform than that of the AMD machine.

Each of the nodes is connected to two memory risers,
each of which has a dual-channel DDR3 1066 MHz con-
nection. The 4 nodes are fully connected by full-width Intel
QuickPath Interconnect (QPI) links. Table 1 shows the band-
width available between the different elements in the hierar-
chy.

Each core operates at 2.266 GHz and 32 KB each of
instruction and data L1 cache and 256 KB of L2 cache.
Each node has 24 MB of L3 cache physically present but,
by default, 3 MB is reserved to speed up both cross-node
and cross-core caching.

