
Status Report: The Manticore Project
http://manticore.cs.uchicago.edu

Matthew Fluet
Toyota Technological Institute at Chicago

fluet@tti-c.org

Nic Ford
Mike Rainey
John Reppy
Adam Shaw
Yingqi Xiao

University of Chicago
{nford,mrainey,jhr,adamshaw,xiaoyq}@cs.uchicago.edu

Abstract
The Manticore project is an effort to design and implement a
new functional language for parallel programming. Unlike many
earlier parallel languages, Manticore is a heterogeneous language
that supports parallelism at multiple levels. Specifically, we com-
bine CML-style explicit concurrency with fine-grain, implicitly
threaded, parallel constructs. We have been working on an imple-
mentation of Manticore for the past six months; this paper gives an
overview of our design and a report on the status of the implemen-
tation effort.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language classifications — Concurrent, distributed, and
parallel languages; Applicative (functional) languages; D.3.3
[Programming Languages]: Language Constructs and Features —
Concurrent programming structures; D.3.4 [Programming Lan-
guages]: Processors — Compilers; Run-time environments

General Terms Languages

Keywords ML, concurrent languages, data-parallel languages

1. Introduction
The laws of physics and the limitations of instruction-level paral-
lelism have forced microprocessor architects to develop new mul-
ticore processor designs. As a result, parallel computing is becom-
ing widely available on commodity hardware. Ideal applications
for this hardware, such as multimedia processing, computer games,
and small-scale simulations, can exhibit parallelism at multiple lev-
els with different granularities, which means that a homogeneous
language design will not take full advantage of the hardware re-
sources. For example, a language that provides data parallelism but
not explicit concurrency will be inconvenient for the development
of the networking and GUI components of a program. On the other
hand, a language that provides concurrency but not data parallelism

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ML’07, October 5, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-676-9/07/0010. . . $5.00.

will be ill-suited for the components of a program that demand fine-
grain SIMD parallelism, such as image processing and particle sys-
tems.

Our thesis is that parallel programming languages must provide
mechanisms for multiple levels of parallelism, both because ap-
plications exhibit parallelism at multiple levels and because hard-
ware requires parallelism at multiple levels to maximize perfor-
mance. For example, consider a networked flight simulator. Such an
application might use data-parallel computations for particle sys-
tems [Ree83] to model natural phenomena such as rain, fog, and
clouds. At the same time it might use parallel threads to preload
terrain and compute level-of-detail refinements, and use SIMD par-
allelism in its physics simulations. The same application might also
use explicit concurrency for user interface and network compo-
nents. Programming such applications will be challenging without
language support for parallelism at multiple levels.

This paper is a status report on the Manticore project at the
University of Chicago and TTI-C, which addresses the topic of
language design and implementation for multicore processors. As
described above, our emphasis is on applications that might run
on commodity multicore processors – applications that can exhibit
parallelism at multiple levels with different granularities. To meet
the demands of such applications, we propose a heterogeneous
parallel language, that combines support for parallel computation at
different levels into a common linguistic and execution framework.

We envision a high-level parallel programming language tar-
geted at what we expect to be a typical commodity microprocessor
in 2012. While predicting the future is always fraught with dan-
ger, we expect that these processors will have 8 or more general-
purpose cores (e.g., x86-64 processors) with SIMD instructions and
2–4 hardware thread contexts [OH05]. It is quite likely that these
processors will also have special-purpose vector units, similar to
those of the IBM Cell processor [Hof05]. Furthermore, since it is
unlikely that shared caches will scale to large numbers of cores, we
expect a non-uniform or distributed-memory architecture inside the
processor.

The problem posed by such processors is how to effectively ex-
ploit the different forms of parallelism provided by the hardware.
We believe that mechanisms that are well integrated into a program-
ming language are the best hope for achieving parallelism across a
wide range of applications, which is why we are focusing on lan-
guage design and implementation.

In the Manticore project, we are designing and implementing
a parallel programming language that supports a range of parallel
programming mechanisms. These include explicit threading with



message passing to support both concurrent systems programming
and coarse-grain parallelism, and nested-data parallelism mecha-
nisms to support fine-grain computations.

The Manticore language is rooted in the family of statically-
typed strict functional languages such as OCAML and SML. We
make this choice because functional languages emphasize a value-
oriented and mutation-free programming model, which avoids en-
tanglements between separate concurrent computations [Ham91,
Rep91, JH93, NA01]. We choose a strict language, rather than a
lazy or lenient one, because we believe that strict languages are eas-
ier to implement efficiently and accessible to a larger community
of potential users. On top of the sequential base language, Manti-
core provides the programmer with mechanisms for explicit con-
currency, coarse-grain parallelism, and fine-grain parallelism.

Manticore’s concurrency mechanisms are based on Concurrent
ML (CML) [Rep99], which provides support for threads and syn-
chronous message passing. Manticore’s support for fine-grain par-
allelism is influenced by previous work on nested data-parallel lan-
guages, such as NESL [BCH+94, Ble96, BG96] and Nepal [CK00,
CKLP01, LCK06].

In addition to language design, we are exploring a unified run-
time framework, capable of handling the disparate demands of the
various heterogeneous parallelism mechanisms exposed by a high-
level language design and capable of supporting a diverse mix of
scheduling policies. It is our belief that this runtime framework will
provide a foundation for rapidly experimenting with both existing
parallelism mechanisms and additional mechanisms not yet incor-
porated into high-level language designs for heterogeneous paral-
lelism.

Our runtime framework consists of a collection of runtime-
system and compiler features. It supports a small core of primi-
tive scheduling mechanisms, such as virtual processors, preemp-
tion, and computation migration. Our design favors minimal, light-
weight representations for computational tasks, borrowing from
past work on continuations. On top of this substrate, a language
implementor can build a wide range of parallelism mechanisms
with complex scheduling policies. By following a few simple rules,
these schedulers can be implemented in a modular and nestable
manner.

In the remainder of this paper, we describe the current status
of the Manticore project. We sketch the design of the Manticore
language in Section 2. In Section 3, we give an overview of our
implementation effort, which we then examine in more detail:
the Manticore compiler (Section 4), the infrastructure for nested
schedulers (Section 5), and the runtime system (Section 6).

2. The Manticore language
Parallelism mechanisms can be roughly grouped into three catagories:

• implicit parallelism, where the compiler and runtime system
are responsible for partitioning the computation into paral-
lel threads. Examples of this approach include Id [Nik91],
pH [NA01], and Sisal [GDF+97].

• implicit threading, where the programmer provides annotations
(or hints) to the compiler as to which parts of the program
are profitable for parallel evaluation, but mapping onto parallel
threads is left to the compiler and runtime system. Examples of
this approach include Nesl [Ble96] and Nepal [CKLP01].

• explicit threading, where the programmer explicitly creates par-
allel threads. Examples of this approach include CML [Rep99]
and Erlang [AVWW96].

These different design points represent a trade-off between pro-
grammer effort and programmer control. Automatic techniques for
parallelization have proven effective for dense regular parallel com-

putations (e.g., dense matrix algorithms), but have been less suc-
cessful for irregular problems. In Manticore, we have both implic-
itly threaded parallel mechanisms and explicitly threaded mecha-
nisms. We see the former as supporting fine-grained parallel com-
putation, whereas the latter are for coarse-grain parallel tasks and
explicit concurrent programming. These parallelism mechanisms
are built on top of a sequential functional language. In the sequel,
we discuss each of these in turn, starting with the sequential base.

2.1 Sequential programming
Manticore is based on a subset of Standard ML (SML). The main
difference is that Manticore does not have mutable data (i.e., ref-
erence cells and arrays). Manticore does, however, have the func-
tional elements of SML (datatypes, polymorphism, type inference,
and higher-order functions) as well as exceptions. The inclusion of
exceptions has interesting implications for our implicitly threaded
primitives, which we discuss below, but we believe that some
form of exception mechanism is necessary for systems program-
ming. As many researchers have observed, using a mutation-free
computation language greatly simplifies the implementation and
use of parallel features [Ham91, Rep91, JH93, NA01, DG04]. In
essence, successful parallel languages rely on notions of separa-
tion; mutation-free functional programming gives data separation
for free.

While SML does have its warts, our research focus is on parallel
computation, so we have resisted tinkering with the sequential lan-
guage. The Manticore Basis, however, differs significantly from the
SML Basis [GR04]. For example, we have a fixed set of numeric
types — int, long, integer, float, and double — instead
of SML’s families of numeric modules. In our current implemen-
tation, we have further restricted the language to a subset of Core
SML (i.e., SML without modules).

2.2 Implicitly threaded parallelism
Manticore provides implicitly-threaded parallel versions of a num-
ber of sequential forms. These constructs can be viewed as hints
to the compiler about which computations are good candidates for
parallel execution; the semantics of these constructs is sequential
and the compiler and/or runtime system may choose to execute
them in a single thread.1

Having a sequential semantics is useful in two ways: it provides
the programmer with a deterministic programming model and it
formalizes the expected behavior of the compiler. Specifically, the
compiler must verify that the individual sub-computations in a par-
allel computation do not send or receive messages before execut-
ing the computation in parallel. Furthermore, if a sub-computation
raises an exception, the runtime code must delay delivery of that
exception until it has verified that all sequentially prior computa-
tions have terminated. Both of these restrictions require program
analysis to implement efficiently.

Parallel arrays Support for parallel computation on arrays and
matrices is common in parallel languages. In Manticore, we sup-
port such computations using the nested parallel-array mechanism
inspired by NESL [Ble96] and Nepal [CKLP01]. A parallel-array
expression has the form

[|e1, . . ., en|]
which constructs an array of n elements. “[| |]” brackets tell the
compiler that the ei may be evaluated in parallel.

Parallel-array values may also be constructed using a parallel
comprehension syntax, which provides a concise description of a
parallel loop. A comprehension has the general form

1 Shaw’s Master’s paper [Sha07] provides a rigorous account of the seman-
tics of these mechanisms.



[| e | x1 in e1, . . ., xn in en where p |]

where e is the expression that computes the elements of the array,
the ei are array-valued expressions used as inputs to e, and p is an
optional boolean-valued expression that filters the input. If the input
arrays have different lengths, they are truncated to the length of the
shortest input.2 Comprehensions can be used to specify both SIMD
parallelism that is mapped onto vector hardware (e.g., Intel’s SSE
instructions) and SPMD parallelism where parallelism is mapped
onto multiple cores. For example, to double each positive integer
in a given parallel array of integers nums, one would use the
following parallel comprehension:

[| 2 * n | n in nums where n > 0 |]
This expression can easily be evaluated using vector instructions.
Another example is the definition of a parallel map combinator
that maps a function across an array in parallel.

fun mapP f xs = [| f x | x in xs |]
The computation of elements in a comprehension can themselves
be defined by comprehensions. For example, the main loop of a ray
tracer can be written as

[| [| trace(i, j) | j in [| 0 to wid-1 |] |]
| i in [| 0 to ht-1 |] |]

The syntax
[| e1 to en |]

defines an array initialized to a sequence of integer values. Using
this notation, we can define a parallel tabulate function:

fun tabulateP (n, f) =
[| f(i) | i in [| 0 to n-1 |] |]

The sequential semantics of parallel arrays is defined by map-
ping them to lists (see [FRR+07] or [Sha07] for details). The main
subtlety in the parallel implementation is that if an exception is
raised when computing the ith element, then we must wait until
all preceding elements have been computed before propagating the
exception.

Parallel tuples Just as parallel arrays provide a hint to the com-
piler that evaluating the elements of an array in parallel can be pro-
ductive, a parallel tuple hints that the elements of a tuple can be
evaluated in parallel. The basic form is

(|e1, . . ., en|)
which describes a fork-join evaluation of the ei in parallel. The
result is a normal tuple value. For example, here is a parallel
summing of the leaves of a binary tree:

datatype tree = LF of int | ND of tree * tree
fun treeAdd (LF n) = n

| treeAdd (ND(t1, t2)) =
(op +)(|treeAdd t1, treeAdd t2|)

While this example could have been coded using parallel arrays,
it is slightly more convenient to use parallel tuples. Parallel tuples
also have the advantage that the individual subcomputations can
have different types.

The sequential semantics of parallel tuples is trivial: they are
just evaluated as tuples. The implication for the sequential seman-
tics is similar to that for parallel arrays: if an exception is raised in
some element of the tuple, we must wait until all elements to the
left have been computed prior to raising the exception.

Parallel bindings Parallel arrays and tuples provide a fork-join
pattern of computation, but in some cases we want more scheduling
flexibility. In particular, we may choose to execute some computa-
tions speculatively. Manticore has a parallel binding form

pval pattern = expression

2 This behavior is known as zip semantics, since the comprehension loops
over the zip of the inputs. Both NESL and Nepal have zip semantics, but
Data-parallel Haskell [CLP+07] has Cartesian-product semantics where
the iteration is over the product of the inputs.

that starts the evaluation of the expression as a parallel thread.
The sequential semantics of a parallel binding are similar to lazy
evaluation, where the binding is only evaluated when one of its
variables is needed. In the parallel implementation, we use eager
evaluation for parallel bindings, but computations are cancelled
when control reaches a point where their result is guaranteed not
to be needed. For example, the following program computes the
product of the leaves of a tree in parallel.

fun treeMul (LF n) = n
| treeMul (ND(t1, t2)) = let

pval b = treeMul t2
val a = treeMul t1
in
if (a = 0) then 0 else a*b

end

Note that if the result of the left product is zero, then we do not
need the result of the right product and that subcomputation (and its
descendants) may be cancelled. The other subtlety in the semantics
of parallel bindings is that any exceptions raised by the evaluation
of the binding must be postponed until one of the variables is
touched.

Parallel choice In some situations, we may want to find one of
possibly many different solutions (e.g., the 8-queens problem). In
these cases, we can use Manticore’s parallel choice operator to run
two computations in parallel, returning the result of the first to
complete. For example, the following function returns a leaf from
a tree; if the tree is unbalanced, then it can be faster than picking a
specific path:

fun treePick (LF n) = n
| treePick (ND(t1, t2)) =

treePick t1 |?| treePick t2

Unlike the other implicitly-threaded mechanisms, parallel choice
is nondeterministic. We can still give a sequential semantics, but
it requires including a source of non-determinism, such as Mc-
Carthy’s amb, in the sequential language. One of the design ques-
tions that we have struggled with is whether to make parallel choice
an implicit or explicitly threaded operation. In the end, we decided
that it was most useful as a fine-grained operation.

2.3 Explicitly threaded parallelism
The explicit concurrent programming mechanisms presented in
Manticore serve two purposes: they support concurrent program-
ming, which is an important feature for systems programming [HJT+93],
and they support explicit parallel programming. Like CML, Man-
ticore supports threads that are explicitly created using the spawn
primitive. Threads do not share mutable state; rather they use syn-
chronous message passing over typed channels to communicate and
synchronize. Additionally, we use CML communication mech-
anisms to represent the interface to imperative features such as
input/output.

CML has been used successfully in a number of systems, in-
cluding a multithreaded GUI toolkit [GR93], a distributed tuple-
space implementation [Rep99], a system for implementing parti-
tioned applications in a distributed setting [YYS+01], and a higher-
level library for software checkpointing [ZSJ06]. CML-style prim-
itives have also been added to a number of other languages, in-
cluding HASKELL [Rus01], JAVA [Dem97], OCAML [Ler00], and
SCHEME [FF04]. We believe that this history demonstrates the ef-
fectiveness of CML’s approach to concurrency.

3. Implementation Overview
We are nearing the completion of an initial implementation of Man-
ticore that will provide a testbed for future research in both lan-
guage design and implementation techniques. Our initial imple-



mentation targets the 64-bit version of the x86 architecture (a.k.a.
X86-64 or AMD64) and we hope to have a public release ready by
end of the summer of 2007.

As is typical in implementations of high-level languages, our
implementation consists of a number of closely related compo-
nents: a compiler (written in Standard ML) for the Manticore lan-
guage, a runtime kernel (written in C and assembler) that imple-
ments garbage collection and various machine-level scheduler op-
erations, and a framework for nested schedulers that provides the
implementation of language-level parallel constructs. This sched-
uler framework is implemented using one of the compiler’s inter-
mediate representations as the programming language (specifically,
it uses the BOM IR, which can be thought of as a low-level ML).
The combination of the runtime kernel and the scheduling frame-
work define the runtime system for the Manticore language.

Two important themes of our implementation are the use of
first-class continuations and our notions of process abstraction.
We discuss these topics before describing the compiler, scheduling
framework, and runtime kernel in the following sections.

3.1 Continuations
Continuations are a well-known language-level mechanism for ex-
pressing concurrency [Wan80, HFW84, Rep89, Shi97]. Continua-
tions come in a number of different strengths or flavors.

1. First-class continuations, such as those provided by SCHEME
and SML/NJ, have unconstrained lifetimes and may be used
more than once. They are easily implemented in a continuation-
passing style compiler using heap-allocated continuations [App92],
but map poorly onto stack-based implementations.

2. One-shot continuations [BWD96] have unconstrained life-
times, but may only be used once. The one-shot restriction
makes these more amenable for stack-based implementations,
but their implementation is still complicated. In practice, most
concurrency operations (but not thread creation) can be imple-
mented using one-shot continuations.

3. Escaping continuations3 have a scope-limited lifetime and can
only be used once, but they also can be used to implement
many concurrency operations [RP00, FR02]. These continua-
tions have a very lightweight implementation in a stack-based
framework; they are essentially equivalent to the C library’s
setjmp/longjmp operations.

In Manticore, we are using continuations in the BOM IR to ex-
press concurrency operations. For our prototype implementation,
we are using heap-allocated continuations à la SML/NJ [App92].
Although heap-allocated continuations impose some extra over-
head (mostly increased GC load) for sequential execution, they pro-
vide a number of advantages for concurrency:

• Creating a continuation just requires allocating a heap object,
so it is fast and imposes little space overhead (< 100 bytes).

• Since continuations are values, many nasty race conditions in
the scheduler can be avoided.

• Heap-allocated first-class continuations do not have the lifetime
limitations of escaping and one-shot continuations, so we avoid
prematurely restricting the expressiveness of our IR.

• By inlining concurrency operations, the compiler can optimize
them based on their context of use [FR02].

3 The term “escaping continuation” is derived from the fact that they can be
used to escape.

3.2 Process abstractions
Our infrastructure has three distinct notions of process abstraction.
At the lowest level, a fiber is an unadorned thread of control. We
use unit continuations to represent the state of suspended fibers.

Surface-language threads are represented as fibers paired with
a thread ID. Since threads may initiate implicit-parallel computa-
tions, a thread may consist of multiple fibers.

Lastly, a virtual processor (vproc) is an abstraction of a hard-
ware processor resource. A vproc runs at most one fiber at a time,
and furthermore is the only means of running fibers. The vproc that
is currently running a fiber is called the host vproc of the fiber, and
can be obtained obtained by the host_vproc operator.

4. The Manticore compiler
As is standard, the Manticore compiler is structured as a sequence
of translations between intermediate languages (IRs). There are six
distinct IRs in our compiler:

1. Parse tree — the product of the parser.

2. AST — an explicitly-typed abstract-syntax tree representation.

3. BOM — a direct-style normalized λ-calculus.

4. CPS — a continuation-passing-style λ-calculus.

5. CFG — a first-order control-flow-graph representation.

6. MLTree — the expression tree representation used by the ML-
RISC code generation framework [GGR94].

With the exception of the parse tree, each of these representa-
tions has a corresponding collection of optimizations. In the case
of the MLTree representation, MLRISC provides a number of
application-independent optimizations, such as register allocation
and peephole optimization, which we do not discuss in this paper.

4.1 The front end
In previous work [FRR+07], we described our intention to adapt
the HaMLet SML compiler [Ros], extended with syntax for our
data-parallel and concurrency operations, to serve as a parser and
typechecker for our compiler. While we had hoped that this ap-
proach would speed the construction of the initial Manticore com-
piler, we were stymied by the fact that the HaMLet compiler does
not produce a typed representation of the program. Thus we de-
cided that it was too difficult to extract an explicitly-typed abstract
syntax tree representation from HaMLet for translation through the
rest of the intermediate representations.

As an alternative, we extended the front-end for a subset of
core-SML that is used as a compiler project at the University
of Chicago. This front-end accepts most of Core ML extended
with our concurrency primitives and parallelism annotations. The
lexer and parser of the compiler are implemented using the ml-
ulex and ml-antlr tools from SML/NJ. The resulting parse tree is
typechecked using the imperative version of the Hindley-Milner
algorithm. Because we currently do not have a module system, our
Basis Library is necessary organized as a flat namespace and so it
differs from that of SML [GR04], but with a simple prelude, we can
compile any sequential Manticore program using an SML compiler.

4.2 AST optimizations
We use a series of transformations on the AST representation to
simplify the program for later stages. These include a flattening
transformation in the style of Keller’s work [Kel99] that eliminates
the data-parallel constructs in favor of lower-level operations. We
have extended this transformation to account for exceptions. We
also introduce futures with cancellation to implement the threading
policies for the other implicitly-parallel constructs. For example,



the treeMul function from Section 2 is transformed to the fol-
lowing form that has explicit management of futures:

fun treeMul (LF n) = n
| treeMul (ND(t1, t2)) = let

val b = future (treeMul t2)
val a = treeMul t1
in
if (a = 0)
then (cancel b; 0)
else a * touch b

end

Shaw’s Masters paper gives a rigorous account of these transfor-
mations [Sha07]. Lastly, we compile nested patterns to simpler de-
cision trees using Pettersson’s technique [Pet92].

4.3 BOM optimizations
The BOM representation is a normalized direct-style λ-calculus
where every intermediate result is bound to a variable and all
arguments are variables.4 This representation has several notable
features:

• It supports first-class continuations with a binding form that
reifies the current continuation. This mechanism is used to ex-
press the various operations on threads (see Section 5) [Wan80,
Ram90, Rep99].

• It includes a simplified form of SML datatypes with simple
pattern matching. These are included to allow BOM code to
be independent of datatype representations.

• It includes high-level operators, which are used to abstract over
the implementation of various higher-level operations, such as
thread creation, message passing, parallel loops, etc. We are
also working on a domain-specific rewriting system for high-
level operators that we will use to implement various optimiza-
tions [PTH01].

We are currently working on the implementation of the BOM
optimizer, so we will describe our design, although not all of it
is implemented yet. After translation from AST, we apply a suite
of standard optimizations, such as contraction, uncurrying, and in-
lining [App92]. We then apply a series of refinement passes that
first apply rewrite operations to the high-level operators [PTH01]
and then expand the operators with their definitions. We then apply
contraction to the resulting code before doing another refinement
pass. Our plan is to use the high-level operations and rewriting to
implement optimizations such as fusion [CLP+07]. We also plan to
implement analysis and optimization passes to specialize the con-
currency primitives [CSW06, RX07], which are also represented as
high-level operations..

High-level operations play a key rôle in the implementation of
the parallelism and concurrency primitives. The initial operations
are introduced during the translation from AST to BOM. For ex-
ample, the Manticore expression

spawn e
is translated into the following BOM code:

fun fiber ( / exh) = ê
let tid = @spawn (fiber)

return tid
where ê is the translation of e to BOM. Here the compiler has
defined a function fiber that evaluates the expression e5 and

4 BOM is the successor of the BOL intermediate representation used in the
Moby compiler. The name “BOL” does not stand for anything; rather, it is
the lexical average of the acronyms “ANF” and “CPS” [Rep02].
5 In BOM, function arguments are partitioned into normal arguments (to
the left of the “/”) and continuation arguments (the exception handler
continuation exh on the right of the “/”).

applies the high-level operation @spawn to create a new thread
of control. The @spawn operation is defined as small BOM code
fragment stored in an external file. When the compiler is ready to
expand @spawn, it loads the definition of @spawn, which is

define inline @spawn (f) =
cont fiber _ =

cont handler (ex) = @dispatch(host_vproc)
let _ = apply f( / handler)

@dispatch(host_vproc)
let vp = host_vproc
let tid = @new-tid(vp)
do @enqueue (vp, tid, fiber)

return (tid)
The implementation of @spawn uses the cont binder to create a
continuation for the new thread (fiber) and to define a catch-
all exception handler for the thread. Notice also that @spawn
has other high-level operations in its definition (@dispatch,
@new-tid, and @enqueue). These will be expanded in sub-
sequent passes over the BOM code. In a few cases, high-level
operations expand to calls to the runtime kernel.

By defining these operations in external files, it easy to modify
the implementation of scheduling mechanisms, message-passing
protocols, etc. An alternative design would be to program these
mechanisms in the surface language, but our surface language is
lacking continuations (needed to represent threads) and mutable
memory (needed to represent scheduling queues, etc.). On the other
hand, by using BOM for this implementation, we can take advan-
tage of garbage collection, cheap memory allocation, and higher-
order programming. These features would not be readily available
if we coded the high-level operations in the runtime kernel. Further-
more, the optimizer can work on the combination of the application
code and the implementations of high-level operations.

4.4 CPS optimizations
The translation from direct style to CPS eliminates the special han-
dling of continuations and makes control flow explicit. We use the
Danvy-Filinski CPS transformation [DF92], but our implementa-
tion is simplified by the fact that we start from a normalized direct-
style representation. We plan to implement a limited collection of
optimizations on the CPS representation, since some transforma-
tion, such as inlining return continuations are much easier in CPS
than direct style.

4.5 CFG optimizations
The CPS representation is converted to CFG by closure conversion.
Our current implementation uses a simple flat-closure conversion
algorithm, but we plan to implement the Shao-Appel closure con-
version algorithm [SA00] at a future date. We apply two transfor-
mations to the CFG: the first is specializing calling conventions for
known functions. The second is adding explicit heap-limit checks
to program. Because heap-limit tests are used as “safe-points” for
preemption (see Section 6), it is necessary to guarantee that there
is at least one check on every loop, even those that do not allo-
cate. We use a feedback-vertex set algorithm [GJ79] taken from the
SML/NJ compiler to place the checks. Finally, we generate X86-64
(a.k.a. AMD64) assembly code from the CFG using the MLRISC
framework [GGR94, GA96].

5. An infrastructure for nested schedulers
Supporting parallelism at multiple levels poses interesting technical
challenges for an implementation. While it is clear that a runtime
system should minimally support thread migration and some form
of load balancing, we choose to provide a richer infrastructure that
serves as a uniform substrate on which an implementor can build
a wide range of parallelism mechanisms with complex schedul-
ing policies. Our infrastructure can support both explicit parallel



threads that run on a single processor and groups of implicit paral-
lel threads that are distributed across multiple processors with spe-
cialized scheduling disciplines. For example, workcrews [VR88],
work stealing [BL99], lazy task creation [MKH90], engines [HF84]
and nested engines [DH89] are abstractions providing different
scheduling policies, each of which is expressible using the con-
structs provided by our infrastructure [Rai07]. Finally, our infras-
tructure provides the flexibility to experiment with new parallel lan-
guage mechanisms that may require new scheduling disciplines.

We note that the various scheduling policies often need to coop-
erate in an application to satisfy its high-level semantics (e.g., real-
time deadlines in multimedia applications). Furthermore, to best
utilize the underlying hardware, these various scheduling policies
should be implemented in a distributed manner, whereby a concep-
tually global scheduler is executed as multiple concrete schedulers
on multiple processing units. Programming and composing such
policies can be difficult or even impossible under a rigid schedul-
ing regime. A rich notion of scheduler, however, permits both the
nesting of schedulers and different schedulers in the same program,
thus improving modularity, and protecting the policies of nested
schedulers. Such nesting is precisely what is required to efficiently
support heterogeneous parallelism.

In this section, we sketch the design of an infrastructure for the
modular implementation of nested schedulers that support a va-
riety of scheduling policies (a more detailed description can be
found in Rainey’s Master’s paper [Rai07]). Our approach is sim-
ilar in philosophy to the microkernel architecture for operating sys-
tems; we provide a minimum collection of compiler and runtime-
kernel mechanisms to support nested scheduling and then build the
scheduling code on top of that infrastructure.

We present the infrastructure here using SML for notational
convenience, but note that schedulers are actually implemented as
high-level operations in the BOM IR of the compiler. Specifically,
user programs do not have direct access to the scheduling opera-
tions or to the underlying continuation operations. Rather, the com-
piler takes care of importing and inlining schedulers into the com-
piled program. Indeed, a number of the “primitive” scheduling op-
erations are implemented as high-level operations, and, hence, are
themselves inlined into compiled programs. This exposes much of
the low-level operational behavior of schedulers to the optimizers,
while preserving a high-level interface for writing schedulers.

5.1 The scheduler-action stack
At the heart of our infrastructure are scheduler actions. A scheduler
action is a function that takes a signal and performs the appropriate
scheduling activity in response to that signal.

datatype signal = STOP | PREEMPT of fiber
type action = signal -> void

At a minimum, we need two signals: STOP that signals the ter-
mination of the current fiber and PREEMPT that is used to asyn-
chronously preempt the current fiber. When the runtime kernel pre-
empts a fiber it reifies the fiber’s state as a continuation that is car-
ried by the preempt signal. The signal type could be extended to
model other forms of asynchronous events, such as asynchronous
exceptions [MJMR01]. As a scheduler action should never return,
its result type (void) is one that has no values.

Each vproc has its own stack of scheduler actions. The top of a
vproc’s stack is called the current scheduler action. When a vproc
receives a signal, it handles it by popping the current action from
the stack, setting the signal mask, and throwing the signal to the
current action. The operation is illustrated in Figure 1; here we use
dark grey in the mask box to denote when signals are masked.

There are two operations in the infrastructure that scheduling
code can use to affect a vproc’s scheduler stack directly.

. . .
mask

runningaction stack

ready queue
. . .

mask

runningaction stack

ready queue

K1

K2

preempt (K2)

throw K1(K2)

Figure 1. The effect of preemption on a vproc

. . .
mask

runningaction stack

ready queue
. . .

mask

runningaction stack

ready queue

run (K1, K2)

throw K2()

K1

run (K1, K2)

Figure 2. The effect of run K1 K2 on a vproc

. . .
mask

runningaction stack

ready queue
. . .

mask

runningaction stack

ready queue

forward (X)

throw K(X)

K

forward (X)

Figure 3. The effect of forward X on a vproc

val run : action * fiber -> ’a
val forward : signal -> ’a

Both operations should never return, so their result types may be
instantiated to arbitrary types.

The operation run (K1,K2) pushes K1 onto the host vproc’s
action stack, clears the vproc’s signal mask, and throws to the
continuation K2 (see Figure 2). The run operation requires that
signals be masked, since it manipulates the vproc’s action stack.
The other operation is the operation forward X , which sets the
signal mask and forwards the signal X to the current action (see
Figure 3). The forward operation is used both in scheduling code
to propagate signals up the stack of actions and in user code to
signal termination, which means that signals may, or may not, be
masked when it is executed. For example, a thread exit function can
be defined as follows:

fun stop () = forward STOP

Another example is the implementation of a yield operation that
causes the current fiber to yield control of the processor to its parent
scheduler.

fun yield () = callcc (fn k => forward (PREEMPT k))

5.2 Scheduling queues
In addition to the scheduler stack, each vproc has a queue of
ready fibers that is used for scheduling. The enq operation takes
a suspended fiber and adds it to the scheduler queue, while the deq
operation removes the next fiber from the queue.

val enq : fiber * tid -> unit
val deq : unit -> fiber * tid



If the queue is empty, then the deq operation causes the vproc to
go idle until there is work for it.

5.3 Miscellaneous
To avoid the danger of asynchronous preemption while scheduling
code is running, the forward operation masks preemption and the
run operation unmasks preemption on the host vproc. We also pro-
vide operations for explicitly masking and unmasking preemption
on the host vproc.

val mask : unit -> unit
val unmask : unit -> unit

Schedulers for speculative computations may require a mecha-
nism to asynchronously signal fibers (executing speculative com-
puations) when they become unnecessary. Hence, we provide an
operation to trigger a preemption on a vproc.

val signalVP : vproc -> unit

5.4 The default scheduler
We have already shown how the language-level spawn primi-
tive is implemented using the BOM continuations. Language-level
threads use a simple round-robin scheduler built on top of the per-
vproc scheduling queues. This scheduler is installed at the bottom
of each action stack and is called the default scheduler.

fun switch STOP = dispatch ()
| switch (PREEMPT k) = (

enq (k, get_tid());
dispatch () )

and dispatch () = let
val (fiber, tid) = deq ()
in

set_tid tid;
run (switch, fiber)

end

On a STOP signal, it runs the next fiber in the queue and on a
PREEMPT signal, it enqueues the preempted fiber and then runs
the next fiber. It uses the get_tid and set_tid operations to
update the host vproc’s current thread ID.6

5.5 Provisioning parallel computations
The last part of our infrastructure are the operations used to map a
parallel computation across multiple vprocs. The operation enqVP
enqueues a fiber on a named vproc:

val enqVP : vproc * fiber * tid -> unit

Using this operation we can implement an explicit migration func-
tion that moves the calling computation to a specific vproc.

fun migrateTo vp = callcc (fn k => (
enqVP (vp, k, get_tid());
stop ()))

We also provide a mechanism for assigning vprocs to computa-
tions. The basic parallel computation is a group of fibers running on
separate vprocs; the scheduling infrastructure provides the mecha-
nism of group IDs to distinguish between different parallel compu-
tations.

type gid
val newgid : unit -> gid
val provision : gid -> vproc option
val release : gid * vproc -> unit

When initiating a parallel computation, the newgid operation is
used to create a unique group ID for the computation. This ID is
passed to the provision operation to request additional vprocs.

6 To simplify the code, we have left the host vproc implicit, but in the actual
implementation, it is an extra argument to the various operations like deq.

This operation either returns a vproc that is not already assigned
to the computation or else the constant NONE to signal that no
additional processing resources are available for the group. To
balance workload evenly between threads, the runtime kernel never
assigns a vproc to a given group twice and attempts to balance the
number of groups assigned to each vproc. When a computation is
finished with a vproc, it uses the release operation to report to
the runtime kernel that it is done with the vproc.

6. Runtime kernel
Our runtime kernel is implemented in C with a small amount of
assembly-code glue between the runtime and generated code.

Vprocs Each vproc is hosted by its own POSIX thread (pthread).
We use the Linux processor affinity extension to bind pthreads to
distinct processors. For each vproc, we allocate a local memory
region of size 2k bytes aligned on a 2k-byte boundary (currently,
k = 20). The runtime representation of a vproc is stored in the base
of this memory region and the remaining space is used as the vproc-
local heap. The hostVP primitive is implemented by clearing the
low k bits of the allocation pointer.

One important design principle that we follow is minimizing
sharing of mutable state between vprocs. We distinguish between
three types of vproc state: thread-local state, which is local to each
individual computation; vproc-local state, which is only accessed
by code running on the vproc; and global state, which is accessed
by other vprocs. The thread-atomic state, such as machine registers,
is protected by limiting context switches to “safe-points” (i.e.,
heap-limit checks).

Scheduling queues Each vproc has two scheduling queues: a pri-
mary queue that is vproc local and a secondary queue that is glob-
ally accessible. In our framework we distinguish between enqueue-
ing a fiber on the host vproc’s scheduling queue (enq) and en-
queueing it on a remote vproc’s queue (enqVP). This distinction al-
lows us to keep operations on the primary queue local, which means
we can avoid expensive synchronization. The secondary queue is
protected with traditional locking and is accessed periodically to
move fibers down to the primary queue (or when the primary queue
is empty).

Preemption We implement preemption by synchronizing pre-
empt signals with garbage-collection tests as is done by Reppy [Rep90].
We dedicate a pthread to periodically send SIGUSR2 signals to the
vproc pthreads. Each vproc has a signal handler that sets the heap-
limit register to zero, which causes the next heap-limit check to fail
and the garbage collector to be invoked. At that point, the compu-
tation is in a safe state, which we capture as a continuation value
that is wrapped in the PREEMPT signal and passed to the topmost
signal-action handler. The one downside to this approach is that the
compiler must add heap-limit checks to non-allocating loops. An
alternative that avoids this extra overhead is to use the atomic-heap
transactions of Shivers et al. [SCM99], but that technique requires
substantial compiler support.

Startup and shutdown One challenging part of the implementa-
tion is initialization and clean termination. When a program ini-
tially starts running, it is single threaded and running on a single
vproc. Before executing the user code, it enqueues a thread on every
vproc that installs the default scheduler. After initialization, each
of the vprocs, except the initial one, will be idle and waiting for a
fiber to be added to their secondary queues. If at any point, all of
the vprocs go idle, then the system shuts down.

Garbage collector For the initial implementation, we have adopted
a simple, yet effective, garbage collection strategy. Our garbage



collector might best be described as a “locally-concurrent/globally-
sequential” collector. It is based on the approach of Doligez, Leroy,
and Gonthier [DL93, DG94]. The heap is organized into a fixed-
size local heap for each vproc and a shared global heap. The global
heap is simply a collection of chunks of memory, each of which
may contain many heap objects. Each vproc has a dedicated chunk
of memory in the global heap. Heap objects consist of one or more
pointer-sized words with a pointer-sized header. We enforce the
invariant that there are no pointers into the local heap from either
the global heap or another vproc’s local heap.

Each local heap is managed using Appel’s “semi-generational”
collector [App89]. Each local heap is divided into a nursery area
and an old-data area. New objects are allocated in the nursery; when
the nursery area is exhausted, a minor collection copies live data in
the nursery area to the old-data area, leaving an empty (but slightly
smaller) nursery area. When the resulting nursery is too small, a
major collection promotes the the live data in the old-data to the
global heap, leaving an empty nursery and old-data areas. Objects
are promoted to the vproc’s dedicated chunk of memory in the
global heap; dedicating a chunk of memory to each vproc ensures
that the major collection of a vproc local heap can proceed without
locking the global heap. Synchronization is only required when a
vproc’s dedicated chunk of memory is exhausted, and a fresh chunk
of memory needs to be allocated and added to the global heap.

Each vproc performs a certain amount of local garbage collec-
tion, during which time other vprocs may be executing either muta-
tor code or performing their own local garbage collection. When a
global garbage collection is necessary, all vprocs synchronize on a
barrier, after which the initiating vproc (alone) performs the global
garbage collection. While the sequential global garbage collection
fails to take advantage of the parallelism available in a multipro-
cessor system, we expect that the concurrent local garbage collec-
tions will handle a significant portion of garbage-collection work.
Furthermore, the implementation of the garbage collector remains
quite simple. Eventually, we plan to experiment with more sophis-
ticated garbage collection algorithms for the global heap.

Since the execution of mutator code must preserve the garbage
collector invariant, the transfer of data between vprocs requires that
data to be promoted to the global heap. For example, when one
vproc enqueues a fiber on another vproc’s secondary queue, the
fiber will become reachable from both vprocs, and hence must be
allocated in the global heap. Note that such a promotion requires
transitively promoting any object reachable from the fiber. Similar
promotion is necessary to implement message-passing operations.
When promoting objects, we install forward pointers in their head-
ers, which preserves sharing if the objects are promoted multiple
times or survive a major collection.

7. Related work
Manticore’s support for fine-grain parallelism is influenced by pre-
vious work on nested data-parallel languages, such as NESL [BCH+94,
Ble96, BG96] and Nepal[CK00, CKLP01, LCK06]. Like Man-
ticore, these languages have functional sequential cores and par-
allel arrays. To this mix, Manticore adds explicit parallelism,
which neither NESL or Nepal support. The languages Id [Nik91],
pH [NA01], and Sisal [GDF+97] represent another approach to
implicit parallelism in a functional setting that does not require
user annotations. The explicit concurrency mechanisms in Manti-
core are taken from Concurrent ML (CML) [Rep99]. While CML
was not designed with parallelism in mind (in fact, its original
implementation is inherently not parallel), we believe that it will
provide good support for coarse grain parallelism. Erlang is a simi-
lar language that has a mutation-free sequential core with message
passing [AVWW96] that has parallel implementations [Hed98], but
no support for fine-grain parallel computation.

Chapel [CCZ04] and Fortress [Ste06] are imperative languages
with high-level parallel constructs. Chapel has forall loops and
forall expressions, and Fortress has aggregates and comprehen-
sions, both of which are similar to our parallel comprehensions.
Arrays in both languages are operated on in parallel by default,
similar to our parallel arrays. The main differences between these
languages and ours seem to be their imperative nature and their fo-
cus on supporting object-oriented programming. Because both lan-
guages have shared mutable state, both have a notion of atomicity,
which is a topic our design does not currently address.

Programming parallel hardware effectively is difficult, but there
have been a few recent successes. Google’s MapReduce pro-
gramming model [DG04] has been a great success in processing
large datasets in parallel. Sawzall is a system for analysis of large
datasets distributed over disks or even machines [PDGQ05]. Brook
for GPUs [BFH+04] is a C-like language which allows the pro-
grammer to use a GPU as a stream co-processor.

8. Status and future work
We began our implementation effort in December of 2006. We
started with the backend of the compiler and the runtime system;
since then, we have been working our way forward. We have
implemented a parser, pretty printer, and type checker for each IR.
Having an external representation for each IR has has allowed us to
compile and execute test programs throughout development and to
exercise our runtime system.

As noted previously, we have not implemented any significant
optimizations yet, so we are not in a position to benchmark perfor-
mance. Rather, we have focused on moving quickly towards an end-
to-end implementation. We have recently begun testing the compi-
lation of front-end programs through to executable code. The front-
end recognizes all of the language constructs and primitives, but we
have yet to implement the full complement of AST transformations
to support them.

In addition to the scheduling framework and runtime system
described here, we previously developed a prototype that supports
writing schedulers and applications in C [Rai07]. We used assem-
bly routines to implement one-shot continuations (essentially like
setjmp/longjmp). The purpose of this first implementation was
primarily as a “proof of concept.” It allowed us to test our frame-
work as a platform for writing schedulers. Most of the schedulers
we have experimented with have been prototyped in this imple-
mentation. It also demonstrates that our design carries over to im-
plementations based on traditional stacks, although our experience
has been that using heap-allocated continuations greatly simplifies
the implementation.

We hope to have a public release ready by end of the summer of
2007. In the immediate future, we plan to explore additional anal-
yses and optimizations to support the parallel constructs described
in Section 2. Looking further ahead, we plan to experiment with
language support for shared state and compiler support for hetero-
geneous processors (e.g., special-purpose vector units).

References
[App89] Appel, A. W. Simple generational garbage collection and

fast allocation. SP&E, 19(2), 1989, pp. 171–183.

[App92] Appel, A. W. Compiling with Continuations. Cambridge
University Press, Cambridge, England, 1992.

[AVWW96] Armstrong, J., R. Virding, C. Wikström, and M. Williams.
Concurrent programming in ERLANG (2nd ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

[BCH+94] Blelloch, G. E., S. Chatterjee, J. C. Hardwick, J. Sipelstein,
and M. Zagha. Implementation of a portable nested data-
parallel language. JPDC, 21(1), 1994, pp. 4–14.



[BFH+04] Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: stream
computing on graphics hardware. SIGGRAPH ’04, 23(3),
July 2004, pp. 777–786.

[BG96] Blelloch, G. E. and J. Greiner. A provable time and space
efficient implementation of NESL. In ICFP ’96, New York,
NY, May 1996. ACM, pp. 213–225.

[BL99] Blumofe, R. D. and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. JACM, 46(5),
1999, pp. 720–748.

[Ble96] Blelloch, G. E. Programming parallel algorithms. CACM,
39(3), March 1996, pp. 85–97.

[BWD96] Bruggeman, C., O. Waddell, and R. K. Dybvig. Representing
control in the presence of one-shot continuations. In PLDI
’96, New York, NY, May 1996. ACM, pp. 99–107.

[CCZ04] Callahan, D., B. L. Chamberlain, and H. P. Zima. The
Cascade High Productivity Language. In HIPS ’04, Los
Alamitos, CA, April 2004. IEEE Computer Society Press,
pp. 52–60.

[CK00] Chakravarty, M. M. T. and G. Keller. More types for nested
data parallel programming. In ICFP ’00, New York, NY,
September 2000. ACM, pp. 94–105.

[CKLP01] Chakravarty, M. M. T., G. Keller, R. Leshchinskiy, and
W. Pfannenstiel. Nepal – Nested Data Parallelism in Haskell.
In Euro-Par ’01, vol. 2150 of LNCS, New York, NY, August
2001. Springer-Verlag, pp. 524–534.

[CLP+07] Chakravarty, M. M. T., R. Leschchinski, S. Peyton Jones,
G. Keller, and S. Marlow. Data Parallel Haskell: A status
report. In DAMP ’07, New York, NY, January 2007. ACM,
pp. 10–18.

[CSW06] Carlsson, R., K. Sagonas, and J. Wilhelmsson. Message
analysis for concurrent programs using message passing.
ACM TOPLAS, 28(4), July 2006, pp. 715–746.

[Dem97] Demaine, E. D. Higher-order concurrency in Java. In
WoTUG20, April 1997, pp. 34–47. Available from
http://theory.csail.mit.edu/∼edemaine/
papers/WoTUG20/.

[DF92] Danvy, O. and A. Filinski. Representing control: A study of
the CPS transformation. MSCS, 2(4), 1992, pp. 361–391.

[DG94] Doligez, D. and G. Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In POPL ’94, New
York, NY, January 1994. ACM, pp. 70–83.

[DG04] Dean, J. and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04, December 2004,
pp. 137–150.

[DH89] Dybvig, R. K. and R. Hieb. Engines from continuations.
Comp. Lang., 14(2), 1989, pp. 109–123.

[DL93] Doligez, D. and X. Leroy. A concurrent, generational
garbage collector for a multithreaded implementation of
ml. In POPL ’93, New York, NY, January 1993. ACM, pp.
113–123.

[FF04] Flatt, M. and R. B. Findler. Kill-safe synchronization
abstractions. In PLDI ’04, June 2004, pp. 47–58.

[FR02] Fisher, K. and J. Reppy. Compiler support for lightweight
concurrency. Technical memorandum, Bell Labs, March
2002. Available from http://moby.cs.uchicago.
edu/.

[FRR+07] Fluet, M., M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Manticore: A heterogeneous parallel language. In DAMP
’07, New York, NY, January 2007. ACM, pp. 37–44.

[GA96] George, L. and A. Appel. Iterated register coalescing. ACM
TOPLAS, 18(3), May 1996, pp. 300–324.

[GDF+97] Gaudiot, J.-L., T. DeBoni, J. Feo, W. Bohm, W. Najjar, and

P. Miller. The Sisal model of functional programming and
its implementation. In pAs ’97, Los Alamitos, CA, March
1997. IEEE Computer Society Press, pp. 112–123.

[GGR94] George, L., F. Guillame, and J. Reppy. A portable and
optimizing back end for the SML/NJ compiler. In CC ’94,
April 1994, pp. 83–97.

[GJ79] Garey, M. R. and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H.
Freeman, 1979.

[GR93] Gansner, E. R. and J. H. Reppy. A Multi-threaded Higher-
order User Interface Toolkit, vol. 1 of Software Trends, pp.
61–80. John Wiley & Sons, 1993.

[GR04] Gansner, E. R. and J. H. Reppy (eds.). The Standard ML
Basis Library. Cambridge University Press, Cambridge,
England, 2004.

[Ham91] Hammond, K. Parallel SML: a Functional Language and its
Implementation in Dactl. The MIT Press, Cambridge, MA,
1991.

[Hed98] Hedqvist, P. A parallel and multithreaded ERLANG
implementation. Master’s dissertation, Computer Science
Department, Uppsala University, Uppsala, Sweden, June
1998.

[HF84] Haynes, C. T. and D. P. Friedman. Engines build process
abstractions. In LFP ’84, New York, NY, August 1984.
ACM, pp. 18–24.

[HFW84] Haynes, C. T., D. P. Friedman, and M. Wand. Continuations
and coroutines. In LFP ’84, New York, NY, August 1984.
ACM, pp. 293–298.

[HJT+93] Hauser, C., C. Jacobi, M. Theimer, B. Welch, and M. Weiser.
Using threads in interactive systems: A case study. In SOSP
’93, December 1993, pp. 94–105.

[Hof05] Hofstee, H. P. Cell broadband engine architecture from
20,000 feet. Available at http://www-128.ibm.com/
developerworks/power/library/pa-cbea.
html, August 2005.

[JH93] Jones, M. P. and P. Hudak. Implicit and explicit parallel
programming in Haskell. Technical Report Research Report
YALEU/DCS/RR-982, Yale University, August 1993.

[Kel99] Keller, G. Transformation-based Implementation of Nested
Data Parallelism for Distributed Memory Machines. Ph.D.
dissertation, Technische Universität Berlin, Berlin, Germany,
1999.

[LCK06] Leshchinskiy, R., M. M. T. Chakravarty, and G. Keller.
Higher order flattening. In V. Alexandrov, D. van Albada,
P. Sloot, and J. Dongarra (eds.), ICCS ’06, number 3992
in LNCS, New York, NY, May 2006. Springer-Verlag, pp.
920–928.

[Ler00] Leroy, X. The Objective Caml System (release 3.00), April
2000. Available from http://caml.inria.fr.

[MJMR01] Marlow, S., S. P. Jones, A. Moran, and J. Reppy. Asyn-
chronous exceptions in Haskell. In PLDI ’01, June 2001, pp.
274–285.

[MKH90] Mohr, E., D. A. Kranz, and R. H. Halstead Jr. Lazy task
creation: a technique for increasing the granularity of parallel
programs. In LFP ’90, New York, NY, June 1990. ACM, pp.
185–197.

[NA01] Nikhil, R. S. and Arvind. Implicit Parallel Programming
in pH. Morgan Kaufmann Publishers, San Francisco, CA,
2001.

[Nik91] Nikhil, R. S. ID Language Reference Manual. Laboratory
for Computer Science, MIT, Cambridge, MA, July 1991.

[OH05] Olukotun, K. and L. Hammond. The future of microproces-
sors. ACM Queue, 3(7), September 2005. Available from
http://www.acmqueue.org.



[PDGQ05] Pike, R., S. Dorward, R. Griesemer, and S. Quinlan. Inter-
preting the data: Parallel analysis with sawzall. Scientific
Programming Journal, 13(4), 2005, pp. 227–298.

[Pet92] Pettersson, M. A term pattern-match compiler inspired by
finite automata theory. In CC ’92, vol. 641 of LNCS, New
York, NY, October 1992. Springer-Verlag, pp. 258–270.

[PTH01] Peyton Jones, S., A. Tolmach, and T. Hoare. Playing by
the rules: Rewriting as a practical optimization technique
in GHC. In Proceedings of the 2001 Haskell Workshop,
September 2001, pp. 203–233.

[Rai07] Rainey, M. The Manticore runtime model. Master’s
dissertation, University of Chicago, January 2007. Available
from http://manticore.cs.uchicago.edu.

[Ram90] Ramsey, N. Concurrent programming in ML. Technical
Report CS-TR-262-90, Dept. of C.S., Princeton University,
April 1990.

[Ree83] Reeves, W. T. Particle systems — a technique for modeling
a class of fuzzy objects. ACM TOG, 2(2), 1983, pp. 91–108.

[Rep89] Reppy, J. H. First-class synchronous operations in Standard
ML. Technical Report TR 89-1068, Dept. of CS, Cornell
University, December 1989.

[Rep90] Reppy, J. H. Asynchronous signals in Standard ML.
Technical Report TR 90-1144, Dept. of CS, Cornell
University, Ithaca, NY, August 1990.

[Rep91] Reppy, J. H. CML: A higher-order concurrent language. In
PLDI ’91, New York, NY, June 1991. ACM, pp. 293–305.

[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge
University Press, Cambridge, England, 1999.

[Rep02] Reppy, J. Optimizing nested loops using local CPS
conversion. HOSC, 15, 2002, pp. 161–180.

[Ros] Rossberg, A. HaMLet. Available from http://www.ps.
uni-sb.de/hamlet.

[RP00] Ramsey, N. and S. Peyton Jones. Featherweight concur-
rency in a portable assembly language. Unpublished pa-
per available at http://www.cminusminus.org/
abstracts/c--con.html, November 2000.

[Rus01] Russell, G. Events in Haskell, and how to implement them.
In ICFP ’01, September 2001, pp. 157–168.

[RX07] Reppy, J. and Y. Xiao. Specialization of CML message-
passing primitives. In POPL ’07, New York, NY, January
2007. ACM, pp. 315–326.

[SA00] Shao, Z. and A. W. Appel. Efficient and safe-for-space
closure conversion. ACM TOPLAS, 22(1), 2000, pp. 129–
161.

[SCM99] Shivers, O., J. W. Clark, and R. McGrath. Atomic heap
transactions and fine-grain interrupts. In ICFP ’99, New
York, NY, September 1999. ACM, pp. 48–59.

[Sha07] Shaw, A. Data parallelism in Manticore. Master’s
dissertation, University of Chicago, July 2007. Available
from http://manticore.cs.uchicago.edu.

[Shi97] Shivers, O. Continuations and threads: Expressing machine
concurrency directly in advanced languages. In CW ’97,
New York, NY, January 1997. ACM.

[Ste06] Steele Jr., G. L. Parallel programming and code selection
in Fortress. In PPoPP ’06, New York, NY, March
2006. ACM, p. 1. Keynote talk; slides available from
http://research.sun.com/projects/plrg/
CGOPPoPP2006public.pdf.

[VR88] Vandevoorde, M. T. and E. S. Roberts. Workcrews: an
abstraction for controlling parallelism. IJPP, 17(4), August
1988, pp. 347–366.

[Wan80] Wand, M. Continuation-based multiprocessing. In LFP ’80,
New York, NY, August 1980. ACM, pp. 19–28.

[YYS+01] Young, C., L. YN, T. Szymanski, J. Reppy, R. Pike,
G. Narlikar, S. Mullender, and E. Grosse. Protium, an
infrastructure for partitioned applications. In HotOS-X,
January 2001, pp. 41–46.

[ZSJ06] Ziarek, L., P. Schatz, and S. Jagannathan. Stabilizers: a
modular checkpointing abstraction for concurrent functional
programs. In ICFP ’06, New York, NY, September 2006.
ACM, pp. 136–147.


