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Abstract

Nested data-parallelism (NDP) is a language mechanisnstiggtorts programming irregular par-
allel applications in a declarative style. In this paper, describe the implementation of NDP in
Parallel ML (PML), which is part of the Manticore system. Qufethe main challenges of imple-
menting NDP is managing the parallel decomposition of wirkve have too many small chunks
of work, the overhead will be too high, but if we do not have @gio chunks of work, processors
will be idle. Recently the technique of Lazy Binary Spliiiwmas proposed to address this problem
for nested parallel loops over flat arrays. We have adapisdebhnique to our implementation of
NDP, which uses binary trees to represent parallel arrdyis. few technique, which we cdlazy
Tree Splitting(LTS), has the key advantage pérformance robustnesse., that it does not require
tuning to get the best performance for each program. We itbesttre implementation of the standard
NDP operations using LTS and we present experimental dataémonstrates the scalability of LTS
across a range of benchmarks.

1 Introduction

Nested data-parallelism (NDP) (Blelloeh al,, 1994) is a declarative style for program-
ming irregular parallel applications. NDP languages plevanguage features favoring the
NDP style, efficient compilation of NDP programs, and vasisommon NDP operations
like parallel maps, filters, and sum-like reductions. Itdeg parallelism is achieved by the

+ Portions of this work were completed while the author wadiatiid with the University of Chicago.
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fact that nested arrays need not hasgular, or rectangular, structurég., subarrays may
have different lengths. NDP programming is supported byraber of different parallel
programming languages (Chakravagtyal., 2007; Ghulounet al,, 2007), including our
own Parallel ML (PML) (Fluetet al., 2008a).

On its face, implementing NDP operations seems straightfat because individual
array elements are natural units for creatiagks which are small, independent threads
of control! Correspondingly, a simple strategy is to spawn off one taskefich array
element. This strategy is unacceptable in practice, as ibex scheduling cost associated
with each task€.g, the cost of placing the task on a scheduling queue) andidhdiV
tasks often perform only small amounts of work. As such, tteeduling cost of a given
task might exceed the amount of computation it performsHgésluling costs are too large,
parallelism is not worthwhile.

One common way to avoid this pitfall is to group array eleraénto fixed-size chunks
of elements and spawn a task for each chuféger Binary Splitting(EBS), a variant
of this strategy, is used by Intel's Thread Building BlocHE8B) (Intel, 2008; Robison
et al, 2008) and Cilk++ (Leiserson, 2009). Choosing the rightrthsize is inherently
difficult, as one must find the middle ground between undkkrpositions on either side.
If the chunks are too small, performance is degraded by thle tdsts of the associated
scheduling and communicating. By contrast, if the chunkg@m big, some processors go
unutilized because there are too few tasks to keep themai bu

One approach to picking the right chunk size is to use statityais to predict task ex-
ecution times and pick chunk sizes accordingly (Tick & Zhoh@93). But this approach
is limited by the fact that tasks can run for arbitrarily diftnt amounts of time, and these
times are difficult to predict in specific cases and imposdibpredict in general. Dynamic
techniques for picking the chunk size have the advantagehbs can base chunk sizes
on runtime estimates of system loddhzy Binary Splitting(LBS) is one such chunking
strategy for handling parallelo-all  loops (Tzannest al., 2010). Unlike the two afore-
mentioned strategies, LBS determines chunks automatiaatl without programmer (or
compiler) assistance and imposes only minor schedulingcos

This paper presents an implementation of NDP that is basedioextension of LBS to
binary trees, which we callazy Tree SplittingLTS). LTS supports operations that produce
and consume trees where tree nodes are represented asraltoedted in the heap. We
are interested in operations on trees because Manticaesygtem that supports PML,
usesropes(Boehmet al, 1995), a balanced binary-tree representation of seqeease
the underlying representation of parallel arrays. Our engntation is purely functional
in that it works with immutable structures, although someémative techniques are used
under the hood for scheduling.

LTS exhibitsperformance robustnesse., it provides scalable parallel performance
across a range of different applications and platformsauitihequiring any per-application
tuning. Performance robustness is a highly desirable ctexistic for a parallel program-
ming language, for obvious reasons. Prior to our adoptiohT&, we usedEager Tree
Splitting (ETS), a variation of EBS. Our experiments demonstrateEi& lacks perfor-

1 We do not addres#attening (or vectorizing (Keller, 1999; Leshchinskiy, 2005) transformations hesiace
the techniques of this paper apply equally well to flattenedom-flattened programs.
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mance robustness: the tuning parameters that control tw@msition of work are very
sensitive to the given application and platform. Furthemmwe demonstrate that the per-
formance of LTS compares favorably to that of (ideally-tdhETS across our benchmark
suite.

This manuscript incorporates three substantial improvesi® the material presented
in the ICFP’10 paper of the same name. First, we identify @&ipttal issue in our old
approach where certain patterns of tree splitting can predrwees with arbitrary imbal-
ance. We address this issue in Section 4 by presenting a nearesplitting technique and
proving that the corresponding rope-processing codesaamte preserving. Second, we
present new benchmarking results from a larger, 48-cordhima@nd demonstrate good
scalability. Third, we present new experiments and exarttiseperformance results in
more depth.

2 Nested data-parallelism

In this section we give a high-level description of PML andadiss the runtime mech-
anisms we use to support NDP. More detail can be found in cewigus papers (Fluet
et al, 2007a; Flueet al,, 2007b; Fluett al,, 2008a).

2.1 Programming model

PML is the programming language supported by the Manticgstesn? Our programming
model is based on a strict and mutation-free functional laigg (a subset of Standard
ML (Milner et al, 1997)), which is extended with support for multiple fornfsparal-
lelism. We provide fine-grain parallelism through seveigthtweight syntactic constructs
that serve as hints to the compiler and runtime that the prognay benefit from execut-
ing the computation in parallel. For this paper, we are pripnaoncerned with the NDP
constructs, which are based on those found #sN(Blelloch, 1990b; Blelloch, 1996).

PML provides gparallel arraytype constructordarray ) and operations to map, filter,
reduce, and scan these arrays in parallel. Like most larggutigt support NDP, PML
includes comprehension syntax for maps and filters, bubfsipaper we omit the syntactic
sugar and restrict ourselves the following interface:

type 'a parray

val range ;int * int  -> int parray

val mapP : ("a->'"b) ->"a parray -> b parray

val filterP . ("a ->bool) ->'a parray -> 'a parray

val reduceP : ("a * 'a->'a) ->'a ->"a parray ->'a

val scanP :(a*'a->"a) ->"a->"a parray ->'a parray
val map2P : ("a * 'b -> "¢)

-> ('a parray * b parray)
-> 'c parray

The functionrange generates an array of the integers between its two argunigmts
functionmapPapplies a function to all the elements oparray in parallel.filterP

2 Manticore may support other parallel languages in the éutur
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applies a predicate in parallel over the inpatray to produce a newarray contain-
ing only those elements corresponding to a true result fioenpredicate. The function
reduceP takes a binary operator along with an identity value andiapphe operator
in parallel to the values in thparray until reaching a final result value. The function
scanP produces a parallel prefix scan of the array. BattiuceP andscanP assume
that the binary operation is associative. Finally, the fiomcmap2P applies a function
to pairs of elements of twparray s in parallel; the output array has the length of the
shorter input array. These parallel-array operations baesn used to specify both SIMD
parallelism that is mapped onto vector hardwarg{Intel's SSE instructions) and SPMD
parallelism where parallelism is mapped onto multiple sptieis paper focuses on exploit-
ing the latter.

As a simple example, the main loop of a ray tracer generatirighnage of widthw and
heighth can be written

fun raytrace (w, h) =
mapP (fn y => mapP (fn x => trace (X, y))
(range (0,w-1)))
(range (0,h-1))

This parallel map within a parallel map is an examplee$ted data-parallelisniNote that
the time to compute one pixel depends on the layout of thesstmTause the ray cast from
position(x,y) might pass through a subspace that is crowded with refleahijexts or it
might pass through relatively empty space. Thus, the anafungmputation performed by
thetrace(x,y) expression (and, therefore, performed by the ilmapP expression)
might differ significantly depending on the layout of the seeThe main contribution
of this paper is a technique for balancing the parallel etieowof such irregular parallel
programs in functional programming languages with ropes.

2.2 Runtime mode

The Manticore runtime system consists of a small core wriiteC, which implements
a processor abstraction layer, garbage collection, anwaésic scheduling primitives.
The rest of our runtime system is written in BOM, a PML-liked¢page. BOM supports
several mechanisms, such as first-class continuations atabta data structures, that are
useful for programming schedulers but are not in PML. Furtietails on our system may
be found elsewhere (Fluet al., 2008b; Rainey, 2009; Rainey, 2007).

A task scheduling policy determines the order in which tastexute and the mappings
from tasks to processors. Our LTS is built on top of a paréictisk scheduling policy
called work stealing(Burton & Sleep, 1981; Halstead Jr., 1984). In work stealiwwg
employ a group of workers, one per processor, that colldbara a given computation.
The idea is that idle workers which have no useful work to darlmeost of the scheduling
costs and busy workers which have useful work to do focus a@shfimg that work.

We use the following well-known implementation of work dteg (Blumofe & Leis-
erson, 1999; Friget al,, 1998). Each worker maintains a deque (double-ended quéue)
tasks, represented as thunks. When a worker reaches a ppoteatial parallelism in the
computation, it pushes a task for one independent branahtbetbottom of the deque
and continues executing the other independent branch. dpmpletion of the executed
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branch, it pops a task off the bottom of the deque and exeitutEthe deque is not empty,
then the task is necessarily the most recently pushed tésirvase all of the local tasks
have been stolen by other workers and the worker must steakarom the top of some
other worker’s deque. Potential victims are chosen at nanfdlom a uniform distribution.

This work-stealing scheduler can be encapsulated in thewfvig function, which is
part of the runtime system core:

val par @ (unit ->'a) * (unit ->'b) ->"'a *'b

When a workerP executepar ( £, g) , it pushes the tas onto the bottom of its deqde
and then executeq) . When the computation ¢f() completes with result, P attempts
to popg from its deque. If successful, théhwill evaluateg() to a result-, and return the
pair (¢, r4) . Otherwise, some other workér has stolery, so P writesr into a shared
variable and looks for other work to do. Whéhfinishes the evaluation af() , then it
will pass the pair of results to the return continuation @ plar call. The scheduler also
provides a generalization pfr to a list of thunks.

val parN : (unit -> "a) list -> "a list

This function can be defined in termsdr , but we use a more efficient implementation
that pushes all of the tasks in its tail onto the deque at once.

2.3 Ropes

In the Manticore system, we use ropes as the underlyingseptation of parallel arrays.
Ropes, originally proposed as an alternative to stringsparsistent balanced binary trees
with seq s, contiguous arrays of data, at their leaves (Boehat, 1995). For the purposes
of this paper, we define the rope type as follows.
dat atype 'a rope

= Leaf of ’'a seq

| Cat of 'a rope * 'a rope
However, in our actual implementation there is extra infation in theCat nodes to sup-
port balancing. Read from left to right, the data elementhateaves of a rope constitute
the data of the parallel array it represents.

Since ropes can be physically dispersed in memory, they alteswited to being built in
parallel, with different processors simultaneously wogkon different parts of the whole.
Furthermore, the rope data structure is persistent, whiohiges, in addition to the usual
advantages of persistence, two special advantages rétatedmory management. First,
we can avoid the cost of store-list operations (Appel, 1988)ch are sometimes necessary
for maintaining an ephemeral data structure. Second, diglaremory manager, such as
the one used by Manticore (Fluetal,, 2008b), can avoid making memory management a
sequential bottleneck by letting processors allocate aaldim subropes independently.

As a parallel-array representation, ropes have severdtivesaes when compared to
contiguous arrays of, say, unboxed doubles. First, ropgor@raccess requires logarithmic
time. Second, keeping ropes balanced requires extra camgut Third, mapping over

3 Strictly speaking, it pushes a continuation that will ewddiy() .
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multiple ropes is more complicated than mapping over migljorays, since the ropes can
have different shapes. In our performance study in Sectiae%ind that these weaknesses
are not a limitation in practice and we know of no study in whitkDP implementations
based on ropes are compared side by side with implemerddiased on alternative rep-
resentations, such as contiguous arrays.

The maximum length of the linear sequence at each leaf of @ impontrolled by a
compile-time constant/. At run-time, a leaf contains a number of elememtsuch that
0 < n < M. In general, rope operations try to keep the size of eacteleafose ta\/ as
possible, although some leaves will necessarily be smélerdo not demand that a rope
maximize the size of its leaves.

Requiring perfect balance of all ropes can lead to excesslvalancing, because even
a small change to a given rope can make the rope unbalancad, Wk use a different
balancing policy that still maintains the asymptotic bebawef rope operations but where
ropes are allowed to become slightly unbalanced. For a giveer of depthd and length
n, our relaxed balancing goal is < [log, n] + 2. This property is guaranteed by the
function

val balance : ’'a rope -> 'a rope

which takes a rope and returns a balanced rope equivalent {oeturningr itself if it is
already balanced). This function uses a simple paralleltmhg algorithm that executes in
time O(n) on a single processor arid(d?) time on an unbounded number of processors.
The idea is to repeatedly split the given rope into two halvesqual size, recursively
balance each half in parallel, and to concatenate the twambadl subropes. The base case
occurs when the length of the given rope falls belddy in which case the algorithm
serially flattens the rope to create a single leaf node.

As noted above, rope operations try to keep the size of eatldeclose td// as possi-
ble. To build ropes, rather than using fat constructor directly, we define a specialized
constructor:

val cat : ’'a rope * 'a rope -> 'a rope

If cat is applied to two small leaves, it can coalesce them into gieilarger leaf. Note
thatcat does not guarantee balance, although it will maintain lwaahapplied to two
balanced ropes of equal size. We also define a similar fumctio

val catN : ’'a rope list -> "a rope

which returns the smart concatenation of its argument ropes
We sometimes need a fast, cheap operation for splitting @ irdp multiple subropes.
For this reason, we provide

val split : 'arope ->'a rope * 'a rope

which splits its rope argument into two subropes such theasires of these ropes differ by
at most one. We also define

val splitN : "a rope * int -> "a rope list
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which splits its parameter inte subropes, where each subrope hassémesize, except
for one subrope that might be smaller than the others.
We sometimes use

val length : 'a rope -> int
which returns the number of elements stored in the leavesag@and
val size : 'a rope -> int

which returns the number of leaves of a rdpe.

The various parallel-array operations described in Se&ia are implemented by anal-
ogous operations on ropes. Sections 3 and 4 describes then@ptation of these rope-
processing operations in detail.

3 The Goldilocks problem

In NDP programs, computations are divided into chunks, dmohks of work are spawned
in parallel. Those chunks might be defined by subsequentasré&ys, for example, or, in
our case, ropes) or iteration spaces (&ap somek + n). The choice of chunk size influ-
ences performance crucially. If the chunks are too smatethvill be too much overhead
in managing them; in extreme cases, the benefits of pasatigiiill be obliterated. On the
other hand, if they are too large, there will not be enoughlpelism, and some processors
may run out of work. An ideal chunking policy apportions ckathat are neither too large
nor too small, but are, like Goldilocks’s third bowl of patge, “just right.” Some different
chunking policies are considered in the sequel.

3.1 Fragile chunking policies

A fragile chunking policy is prone either to creating an essiee number of tasks or to
missing significant opportunities for parallelism. Let ussider two simple policies] -
ary decomposition and structural decomposition, and theamrs that they are fragile. In
T-ary decomposition, we split the input rope iffo= min(n, J x P) chunks, where:

is the size of the input rope] is a fixed compile-time constant, arfdlis the number of
processors, and spawn a task for each chunk. For exampligitireF.(a), we show theé'-
ary decomposition version of the map operatidn.computations where all rope elements
take the same time to process, such as those performed baredfine (dense-matrix)
scientific codes, th@-ary decomposition will balance the work load evenly acraks
processors because all chunks will take about the same dmittime. On the other hand,
when rope elements correspond to varying amounts of workpmeance will be fragile
because some processors will get overloaded and othersutifided. Excessive splitting
is also a problem. Observe that if a program creategels ofmapTary applications and

4 |n our actual implementation, these operations are contitae, as we cache lengths and size€at nodes.
5 In this and subsequent examples, we use

val mapSequential : ('a ->"'b) ->'a rope ->'b rope

which is the obvious sequential implementation of the magraton.
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fun mapTary J frp = let
fun g chunk = fn () => mapSequential f chunk
val n = length rp
val chunks = splitN (rp, min (n, J * numProcs ()))
in
catN (parN (Listmap g chunks))

end
(a) T-ary decomposition
f un mapStructural f rp = (case rp
of Leaf s => Leaf (mapSeq f s)

| Cat (I, 1) =>
Cat (par ( fn () => mapStructural f I,
fn () => mapStructural f r)))

(b) structural decomposition

Fig. 1. Two fragile implementations of the map operation.

if each rope has length > J x P, then theT-ary decomposition creatéd x P)* tasks
at the leaves alone, which can be excessive when eithreP get large.

To remedy the imbalance problem, we might try structuralodggosition, in which
both children of &Cat node are processed in parallel and the elementd.efi& node are
processed sequentially. We show the structural versidmeaitap operation in Figure 1(b).
Recall that the maximum size of a leaf is determined by a fikedjpile-time constant
calledM and that rope-producing operations tend to keep the sizaabf leaf close td /.
But by choosing a/ > 1, some opportunities for parallelism will always be lost dnyd
choosingM = 1, an excessive number of threads may be created, partigcidatie case
of nested loops.

3.2 Eager binary splitting

EBS is a well-known approach that is used by many parallehtibs and languages, in-
cluding Threading Building Blocks (Intel, 2008; Robisemal., 2008)¢ and Cilk++ (Leis-
erson, 2009). In EBS (and, by extension, eager tree spli{iTS)), we group elements
into fixed-size chunks and spawn a task for each chunk. Tleigping is determined by
the following recursive process. Initially, we group akelents into a single chunk. If the
chunk size is less than the stop-splitting threshéleT), evaluate the elements sequen-
tially.” Otherwise, we create two chunks by dividing the elementsalfidnd recursively
apply the same process to the two new chunks. In Figure 2, o 8fe ETS version of
the map operation.

EBS has greater flexibility than thE-ary or structural decompositions because EBS
enables chunk sizes to be picked manually. But this flexjlisi not much of an improve-
ment, because, as is well known (Intel, 2008; Robisbal, 2008; Tzannest al., 2010),
finding a satisfactorysST can be difficult. This difficulty is due, in part, to the faciath

6 In the TBB manual, the option “simple partitioner” refersBBS.
7In TBB, if SST is unspecified, the default 85T = 1, whereas Cilk++ only useSST = 1.
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fun mapETS SST frp =
i f length rp <= SST then mapSequential f rp
el se let
val (I, r) = split rp
in
cat (par ( fn () => mapETS SST f |,
fn () => mapETS SST f r))
end

Fig. 2. The ETS implementation of the map operation.

parallel speedup is very sensitive§87. We ran an experiment that demonstrates some of
the extent of this sensitivity. Figure 3 shows, for seven Pbéhchmarks (see Section 5 for
benchmark descriptions), parallel speedup as a functigib@f. The results demonstrate
that there is n&ST that is optimal for every program and furthermore that a (#6F is

far from optimal.

The Raytracer benchmark demonstrates, in particular, hagilé ETS can be with re-
spect to nesting and to relatively small ropes. Raytracdall of its speedup &7 is
changed fron2° to 2°. To understand why;, first note that the two-dimensional oiapthe
program is &% x 2° rope of ropes, representing the pixels of a square imagenyWbe
instance SST = 27, Raytracer has just sixteen chunks that it can process allglafour
for each row and four for each column, and wH#1" > 29, Raytracer has just one chunk
it can process at a time (no parallelism). We could addrassptioblem by transforming
the two-dimensional representation into a single flat riypé then the clarity of the code
would be compromised, as we would have to use index aritlerteegxtract any pixel. As
arule, our compiler should not encourage programmers ekiwith NDP style to achieve
best performance.

Recall that task execution times can vary unpredictablyri®ing policies that are based
solely on fixed thresholds, such as EBS and ETS, are boundftadike because they rely
on accurately predicting execution times. A superior chimglpolicy would be able to
adapt dynamically to the current load across processors.

3.3 Lazy binary splitting

The LBS policy of Tzanneset al. (Tzanneset al, 2010) is a promising alternative to
the other policies because it dynamically balances loadniiasgt al. show that LBS is
capable of performing as well or better than each configumadf eager binary splitting,
and does so without tuning.

LBS is similar to eager binary splitting but with one key difénce. In LBS, we base
each splitting decision entirely on a dynamic estimatiotoafl balance. Let us consider
the main insight behind LBS. We call a processor hungry & itle and ready to take on
new work, and busy otherwise. It is better for a given processdelay splitting a chunk
and to continue processing local iterations while remote@ssors remain busy. Splitting
can only be profitable when a remote processor is hungry.

Although this insight is sound, it is still unclear whetheis useful. A naive hungry-
processor check would require inter-processor communitatnd the cost of such a check
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Fig. 3. Parallel speedup as a function of the Stop-Spliffingeshold 6ST') (48 processors).

would hardly be an improvement over the cost of spawningestthrFor now, let us assume
that we have a good approximate hungry-processor check

val hungryProcs : unit -> bool

which returndrue if there is probably a remote hungry processor talse  otherwise.
Later we explain how to implement such a check.

LBS works as follows. The scheduler maintains a current khuand a pointeg that
points at the next iteration in the chunk to process. Ijtidhe chunk contains all itera-
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tions andi = 0. To process an iteratioi) the scheduler first checks for a remote hungry
processor. If the check returns false, then all of the othecgssors are likely to be busy,
and the scheduler greedily executes the body of iteratitfrthe check returns true, then
some of the other processors are likely to be hungry, andcthedsiler splits the chunk in
half and spawns a recursive instance to process the sectind ha

Tzanneset al. (Tzannet al, 2010) show how to implement an efficient and accurate
hungry-processor check. Their idea is to derive such a clieokthe work stealing policy.
Recall that, in work stealing, each processor has a dequehwbcords the set of tasks
created by that processor. The hungry-processor check hasgproximation on the size
of the local deque. If the deque of a given processor contone existing tasks, then
these tasks have not yet been stolen, and therefore it ikelynlio be profitable to add
to these tasks by splitting the current chunk. On the othadh# the deque is empty,
then it is a strong indication that there is a remote hungocgssor, and it is probably
worth splitting the current chunk. This heuristic worksmisingly well considering its
simplicity. It is cheap because the check itself requires liweal memory accesses and a
compare instruction, and it provides an estimate that opeements have shown to be
accurate in practice.

Let us consider how LBS behaves with respect to loop neslingpose our computation
has the form of a doubly-nested loop, one processor is exgcan iteration of the inner
loop, and all other processors are hungry. Consequendyeimainder of the inner loop
will be split (possibly multiple times, as work is stoleniindhe busy processor and further
split), generating relatively small chunks of work for thiher processors. Because the
parallelism is fork-join, the only way for the computatianpiroceed to the next iteration
of the outer loop is for all of the work from the inner loop to @@mpleted. At this point,
all processors are hungry, except for the one processocdngpleted the last bit of inner-
loop work. This processor has an empty deque; hence, whéarts $0 execute the next
iteration of the outer loop, it will split the remainder oktlouter loop.

Because there is one hungry-processor check per loopidteraind because loops are
nested, most hungry-processor checks occur during thegsot of the innermost loops.
Thus, the general pattern is clear: splits tend to startinduiriner loops and then move
outward quickly.

4 Lazy tree splitting

LTS operations are not as easy to implement as ETS operatienause, during the exe-
cution of any given LTS operation, a split can occur whilegassingany rope element.
This section presents implementations of five important bpSrations. The implemen-
tations we use are based on Huet’s zipper technique (Hu@¥)l#hd a new technique
we callcursor splitting We first look in detail at the LTS version of mamépLTS), be-
cause its implementation provides a simple survey of ountiggies. We then summarize
implementations of the additional operations.
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4.1 Implementing mapLTS

Structural recursion, on its own, gives no straightforwasay to implementmapLTS
Consider the case in whiamapL TS detects that another processor is hungry. How can
mapLTSbe ready to halve the as-yet-unprocessed part of the roppirigein mind that,
at the halving moment, the focus might be on a mid-leaf elérdeaply nested within a
number ofCat nodes? In a typical structurally-recursive travergad)( Figure 1(b)), the
code has no explicit handle on either the processed porfitiredope or the unprocessed
remainder of the rope; it can only see the current substreicAn implementation needs
to be able to step through a traversal in such a way that itataemy moment, pause the
traversal, reconstruct both the processed results andhffrecessed remainder, divide the
unprocessed remainder in half, and resume processing patise point.

An implementation ofnapLTSshould also béalance preservingneaning that a bal-
anced input rope is mapped to a balanced output rope. Witladamce preservation, chains
of mapLTSapplications can, under the right circumstances, yielésdpat are arbitrar-
ily unbalanced. While it may at first appear that balanceésare unnecessary, since the
structure of the rope is not used to guide the creation ofllea@mputations, balance
is nonetheless important to guarantee an efficient algorftir dividing the unprocessed
remainder of a paused traversal. In fact, we will demonstaadtronger property: that our
implementation omapLTSis shape preservingneaning that an input rope is mapped to
an output rope with exactly the same shape. Hence, throtghedollowing and in Ap-
pendix A, equalities in properties, lemmas, theorems, aadfp denote structural equality
of objects. Note that shape preservation implies balanesspvation.

4.1.1 Cursor interface

A key component of our approach is a data structure callearsor which represents an
intermediate step of a map computation.

type (' b, 'a) map_cur

The cursor records the subropes that have been processa the fsubropes that remain
to be processed, and enough information so that the exacstimgcture of the correspond-
ing rope can always be recovered. In the cursdr,is the type of the elements of the
elements of the processed subropes’aads the type of the elements of the unprocessed
subropes. Conceptually, a cursor describes a point in e with processed elements to
the left and unprocessed elements to the right. In Sectibi3 4wve will see that cursors
are implemented using techniques similar to Huet's zipfidtset, 1997) and McBride’s
contexts (McBride, 2008).

Let us introduce a few simple operations over cursors sovileatan describe the se-
guential part ofnapLTS Theroot operation returns the rope corresponding to the given
cursor for the special case that the types of the unprocesskprocessed elements are the
same.

8 \We name the type constructorap_cur because other rope operations require a different typersbcusee
Section 4.2.
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val root : ('b, 'b) map_cur -> b rope

Because ropes are homogenous with respect to their elegpmtit is not possible to
obtain a rope from a cursor when the types of the unprocesskdracessed elements are
different.

ThelengthRight  operation returns the number of unprocessed data elemiethis o
given cursor, which we consider to be to the right of the cusdocus.

val lengthRight o ("b, "a) map_cur -> int

Since a cursor represents an intermediate step of map catigmuivith both processed
and unprocessed elements, it must be possible to split araats the processed elements
and two ropes of unprocessed elements and to later join tp@srtogether with the pro-
cessed elements. Tplit andjoin  operations provide this behavior.

val split (b, "a) map_cur
-> ("arope * 'a rope * 'b map_cur_reb)

val join > ("arope * 'a rope * 'b map_cur_reb)
-> (b, "a) map_cur
The callsplit cur returns(rpl, rp2, reb) whererpl andrp2 are ropes, such

that the ropepl contains the first half of the unprocessed data elementmiof the
roperp2 contains the remaining unprocessed data elemertgrofandreb is a special
rebuildervalue. For the time being, we useap_cur_reb as an abstract type constructor
without a specific implementation.

type 'b map_cur_reb

This rebuilder value records sufficient information so tihet original cursocur can be
reconstructed by thpin operation. The caloin (rp1, rp2, reb) rebuilds the
cursorcur that is uniquely determined by its three arguments.

To prove that oumapLTS implementation is shape preserving, we will rely on the
implementations ofplit  andjoin to be well-behaved, as expressed by the following
property:

Property 1(split andjoin are well-behavef

For any cursocur , if split cur returns(rpl, rp2, reb) , then
join (rpl, rp2, reb) = cur
and
length rpl = (lengthRight cur) div 2
and
length rp2

= (lengthRight cur) - ((lengthRight cur) div 2)

4.1.2 mapLTSimplementation

We factor the implementation efiapLTSinto a coordination portion, which is responsi-
ble for introducing parallelism by splitting and joiningrsers, and a computation portion,
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which is responsible for performing the mapping computadod stepping through in-
termediate cursors. This computational portiomnwdpL TS is provided by an auxiliary
operation namedhapLTSUntil , which is additionally capable of pausing its traversal
based on the results of a runtime predicate.

val mapLTSUntil : (unit -> bool)
-> ("a ->"b)
-> ' a rope
-> (( "b, "a) map_cur, 'b rope) progress

The first argumenttmapLTSUntil is a polling function é.g, hungryProcs ); the sec-
ond argument s a function to be applied to the individuah@déments; and the third argu-
ment is a rope. The result ofmapLTSUntil is a value of type
(( "a, "b) map_cur, b rope) progress , where theprogress type con-
structof is defined as
datatype ('m 'd) progress
= More of 'm
| Done of 'd

WhenmapLTSUntil returns a valudore cur’ , it represents the intermediate cursor
whenmapLTSUntil was paused, and when itreturri®ane rp’ ,itrepresentsthe fully
processed rope. The evaluatiomefpLTSUntil cond f rp proceeds by applyinf

to the elements afp from left to right until eithercond () returnstrue or the whole
rope is processed.

To prove that oumapLTSimplementation is shape preserving, we will rely on the im-
plementation omapLTSUntil to be well-behaved. Primarily, we require tmaapLTS-
Until  preserves the shape of the input rope. We also requirarthpt. TSUntil  only
pauses and returns a new cursor when the number of unprdcgleseents of the result
cursor is less than or equal to that of the input rope and iatgrehan or equal to two.
We require this behavior for two reasons. First, for terrtiorg we require the number of
unprocessed elements of the result cursor to be less thajual ® that of the input rope
and to be greater than or equal to two so that splitting thisarwyields non-empty ropes
that are strictly smaller than the input rope; this avoidsribed for extraneous base cases.
Second, for performance, we note that it is not worthwhilpdaase execution if there are
fewer than two unprocessed elements. In that case thereappuartunity for parallelism,
and, as such, it is better to simply finish the map computatitimna sequential execution.
Although this second requirement seems unrelated to shreperpation, it is necessary to
require this behavior to prove that the implementation tmaigive formapLTSis shape
preserving. These requirements are expressed by the fojqwoperty:

Property 2(mapLTSUntil is well-behavell
Forany ropep and any predicateond , if mapLTSUntil cond ( fn x => x) rp
returnsDone rp’ , then

P’ = Ip

9 Theprogress type constructor is used elsewhere in the implementatiaiiffatent types, which motivates
its polymorphic definition.
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fun mapLTS frp =
(case mapLTSUntil hungryProcs f rp
of Done rp° => rp’

| More cur =>|et
val (rpl, rp2, reb) = split cur
val (rpl’, rp2’) =
par ( fn () => mapLTS f rpl,
fn () => mapLTS f rp2)
in
root (join (rpl’, rp2’, reb))
end)

Fig. 4. The LTS implementation of the map operation.

and if it returnsMore cur’ , then
root cur’ = 1Imp

and
length rp > lengthRight cur’

and
lengthRight cur’ > 2

Figure 4 gives our implementation ofapLTS ThemapLTSfunction attempts to com-
plete its given map computation sequentially by callingpLTSUntil on the ropep . If
the call tomapLTSUntil returnsDone rp’ ,thenthe rmap computation is complete and
mapLTSreturns the result ropp’ . Otherwise, ifmapLTSUntil returnsMore cur’
thenmapLTS splits the remaining map computation in half (usegit ), recursively
processes the two halves in parallel (uspag ), and joins the recursive results together
(usingjoin ). The result ofmapLTSis the rope obtained by applyimgot to the result
cursor from thgoin  operation.

Using our previously stated properties, we can prove thairtiplementation ofapLTS
is shape preserving

Theorem mapLTSis shape preserving
For any ropep ,

mapLTS (fn x => x)rp = 1p
Proof

The proof is by strong induction dangth rp , using Properties 2 and 2.
See Appendix A.4 for a detailed proof.[]

It remains to implement the cursor type, thapLTSUntil operation, and thsplit
andjoin operations.

4.1.3 Cursor implementation

The crucial property ofmapLTSUntil is that during the traversal of the input rope, it
must maintain sufficient information to pause the traveasainy moment and reconstruct
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both the processed portion of the rope and the unprocesswdnger of the rope. Huet's
zipper technique (Huet, 1997) provides the insight necggssaderive a persistent cursor
data structure and functional operations over it, whichbéthis “pausable” traversal. A
zipper is a representation of an aggregate data structarésittors the data structure into
a distinguished substructure under focus and a one-hotextpplugging the substructure
into the context yields the original structure. Zipperstdaafficient navigation through
and modification of a data structure. With a customized zipppresentation and some
basic navigation operations we arrive at an elegant impheatien ofmapLTSUntil
To represent the cursor, we use a context representatiolarsbm Huet's single-hole
contexts (Huet, 1997), but with different types of elemantsither side of the hole, as in
McBride’s contexts (McBride, 2008). Essentially, a conascribes a path through a rope
from the root to a particular sub-rope, while also recordimgsub-ropes that branch off of
this path; sub-ropes branching off to the left are processbde sub-ropes branching off
to the right are unprocessed. Thus, our context represemtatdefined as
datatype (' b, 'a) map_ctx

= MCTop

| MCLeft of ('b, "a) map_ctx =* 'a rope

| MCRight of 'b rope =* (’'b, ’'a) map_ctx

whereMCToprepresents an empty conteMtCLeft(ctx, rrp) represents the context
surrounding the left branch of@at node whererp is the right branch andtx is the
context surrounding th€at node, andMCRight(lrp, ctx) represents the context

surrounding the right branch of@at node wherdrp is the left branch andtx is the
context surrounding th€at node. For a map computation, all subropes to the left of the
context’s hole are processédy rope ) and all subropes to the right of the context’s hole
are unprocessed & rope ). Given this context type, we define the cursor type as

type ('b, "a) map_cur = ('b seq * 'a seq) * ('b, 'a) map_ctx

where the first element of the pair is the leaf located at theazyitself split into a sequence
of processed elements and a sequence of unprocessed eleamehthe second element is
the context surrounding the leaf.

The implementations ahapLTSandmapLTSUntil require a number of operations
to manipulate cursors and contexts. Tiheg (rp, ctx) operation plugs the ropp
into the contexttx for the special case that the types of the unprocessed andgsed
elements of the context are the same:

val plug : "b rope * ('b, "b) map_ctx -> 'b rope
fun plug (rp, ctx) = (case ctx
of MCTop=> rp
| MCLeft (ctx’, rrp) => plug (Cat (rp, rrp), ctx)
| MCRight (Irp, ctx’) => plug (Cat (Irp, rp), ctx’))
Theroot ((pseq,useq), ctx) operation, which returns the rope corresponding to

a given cursor, simply reconstructs a leaf rope from the secespseq anduseq and
plugs the rope into the contestx :
val root : ('b, 'b) map_cur -> b rope
fun root ((pseq, useq), Ctx) =
plug (Leaf (joinSeq (pseq, useq)), Ctx)
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Theleftmost (rp, ctx) operation navigates to the leftmost leafrpf and re-
turns(seq’, ctx’) ,the sequenceeq’ atthat leaf and the contegtx’ surrounding
that leaf, as composed with the conteit :

val leftmost : 'arope * ('b, 'a) map_ctx
->"a seq * ('b, "a) map_ctx
fun leftmost (rp, ctx) = (case rp
of Leaf seq => (seq, ctx)
| Cat (Irp, rrp) => leftmost (Irp, MCLeft (ctx, rrp)))

We measure the length of a context and of a cursor as the pghie alimber of processed
elements and the number of unprocessed elements:

infix 6 ++
fun (al, bl) ++ (a2, b2) = (@l + a2, bl + b2)
val ctxLength : ('b, "a) map_ctx -> int * int
fun ctxLength ctx = (case ctx
of MCTop => (0, 0)
| MCLeft (ctx, rrp) => (ctxLength ctx’) ++ (0, length rrp)
| MCRIight (Irp, ctx) => (ctxLength ctx’) ++ (length Irp, 0))
val curLength : ('b, "a) map_cur ->int * int

fun curLength ((pseq,useq), ctx) =
(ctxLength ctx) ++ (lengthSeq pseq, lengthSeq useq)

ThelengthRight  operation simply extracts the number of unprocessed elenfierm
the length of the given cursor:

fun lengthRight cur = snd (curLength cur)

Similarly, we measure the size of a context and of a cursoh@pair of the number of
processed leaves and the number of unprocessed leaves:

val ctxSize : (b, 'a) map_ctx -> int * int
fun ctxSize ctx = (case ctx
of MCTop => (0, 0)
| MCLeft (ctx’, rrp) => (ctxSize ctx’) ++ (0, size rrp)
| MCRight (Irp, ctx’) => (ctxSize ctx’) ++ (size Irp, 0))
val curSize : (b, "a) map_cur -> int * int

fun curSize ((pseq,useq), Ctx) =
(ctxSize ctx) ++ (1, 1)

Thenext (rp, ctx) operation plugs the (processed) ropeinto the contexttx ,
then attempts to navigate to the next unprocessed leaf.
val next : 'b rope * ('b, 'a) map_ctx
-> ("aseq * ('b, "a) map_ctx, 'b rope) progress
fun next (rp, ctx) =
(case ctx
of MCTop => Done rp
| MCLeft (ctx’, rrp) = | et
val (seq”, ctx”) = leftmost (rrp, MCRight (rp, ctx’))
in
More (seq”, ctx”)
end
| MCRight (Irp, ctx’) =>

next (Cat (Irp, rp), ctx’))
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MCTop MCTop
MCLeft MCRight
/’ \ ctx’
\ / /
MCRight Cat Cat MCLeft
ctx
/N /\ / N\ \
Leaf MCRight Leaf Leaf Leaf Cat Leaf Leaf
/ / N\ Seq
seq
Leaf Leaf Leaf Leaf
AN
rp

(@ next ( rp, ctx) = More(seq , ctx’')

MCTop
MCRight Cat =rp’
\ ctx /
/ /
Cat MCRight Cat Cat
Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf
AN
rp

(o) next ( rp, ctx) = Done rp’

Fig. 5. Operations on contexts.

This navigation can either succeed, in which casgt returnsMore (seq’, ctx’)

(see Figure 5(a)), wherseq' is the sequence at the next leaf astg’  is the context
surrounding that leaf, or fail, in which casext returnsDone rp’ (see Figure 5(b)),
whererp’ is the whole processed rope.

4.1.4mapLTSUnt i | implementation

With these context operations, we give the implementatfonapLTSUntil in Figure 6.
The traversal omapLTSUntil is performed by the auxiliary functiom The argument
seq represents the sequence of the leftmost unprocessed liaf @fpe and the argument
ctx represents the context surrounding that leaf.

The processing of the sequence is performechbpUntilSeq , a function with similar
behavior tomapLTSUntil , butimplemented over linear sequences.

val mapUntilSeq : (unit -> bool)
->("a->"h)
-> "a seq

-> ("aseq * 'b seq, ’'b seq) progress

It is mapUntilSeq that actually calls the predicatond and applies the functiof.
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Note thatmapUntilSeq must also maintain a context with processed elements tethe |
and unprocessed elements to the right, but doing so isltfaria linear sequence. (Recall

the standard accumulate-with-reverse implementatiomayf for lists.) Not surprisingly,

we require thamapUntilSeq preserves the shape of the sequence, as expressed by the
following property:

Property 3(mapUntilSeq is shape preserving
For any sequencgeq and any predicateond , if

mapUntilSeq cond ( fn x => x) seq

returnsDone seq’ , then

seq’ = seq
and if it returnsdMore (useq’,pseq’) , then
joinSeq (pseq’, useq’) = seq

Unlike mapLTSUntil , we do not require thanapUntilSeq only pauses and returns
a pair of unprocessed and processed sequences when thermimiberocessed elements
is greater than or equal to two. This difference exists beeamapUntilSeq is called
on behalf ofmapLTSUntil ; although a call tanapUntilSeq may return with one
unprocessed element, the context maintainednapLTSUntil may have additional
unprocessed elements. Theorem 2 in Appendix A.1 provesathdamplementation of
mapUntilSeq satisfies Property 3, and therefore, may be used in our ghaserving
implementation ofnapLTS

If mapUntilSeq returns a complete resulbéne pseq’ ), then the traversal plugs
the context with this completed leaf sequence and atteraptavigate to the next unpro-
cessed leaf by callingext (Leaf pseq’, ctx) .If next returnsDone rp’ ,then
the rope traversal is complete and the whole processed sap&urned. Otherwiseext
returnsMore (seq’, ctx’) and the traversal loops to process the next leaf sequence
(seq’ ) with the new contextqtx’ ).

If mapUntilSeq returns a partial resultMore (useq’,pseq’) ), then the traver-
sal determines the number of unprocessed elements cotht@irt®th the unprocessed
sequencaiseq’ and the contexttx . If there are at least two unprocessed elements,
then the traversal pauses and returns an intermediaterc(fe@s pause and return gives
mapLTSthe opportunity to split the unprocessed elements and fhesparallel mapping
of these halves of the unprocessed elements onto the wealkirgg deque.) If there are less
than two elements, then the traversal sequentially presdbge remaining unprocessed el-
ement to complete the rope traversal and return the wholeepsed rope. Theorem 3 in
Appendix A.2 proves that this implementationropLTSUntil  satisfies Property 2, and
therefore, may be used in our shape-preserving implenent@atmapLTS

4.1.5spl it andj oi n implementation

Finally, let us consider the implementationggflit ~ andjoin . The key idea behind the
implementations of these operationsis to introduce datatsires that we call thenzipped
contextand theunzipped cursqrwhich enables us to temporarily break apart a (zipped)
context or cursor and to later put the context or cursor baggther.
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fun mapLTSUntil cond f rp = let
fun mSeq (seq, ctx) = case next (Leaf seq, ctx)
of Done rp’ => rp’
| More (seq’, ctx) => mSeq (mapSeq f seq’, ctx)
fun m (seq, ctx) = (case mapUntilSeq cond f seq
of Done pseq’ => (case next (Leaf pseq’, ctx)
of Done rp’ => Done rp’

| More (seq’, ctx) => m (seq’, ctx’))
| More (useq’, pseq’) =>
i f snd (curLength ((pseq’, useq’), ctx)) >= 2 t hen
More ((pseq’, useq’), ctx)
el se
Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)))
val (seq, ctx) = leftmost (rp, MCTop)
in
m (seq, ctx)
end

Fig. 6. ThemapLTSUntil operation.

datatype dir = Left | Right
type (' b, ’'a) unzip_map_ctx =
"b rope list * "a rope list * dir list
type ('b, "a) unzip_map_cur = ('b, 'a) unzip_map_ctx

This representation divides a context into three lists:a(1iyt of processed subropes lo-
cated above and left of the hole, (2) a list of unprocessedopes located above and
to the right of the hole, and (3) a list of branch directions. énzipped cursor has the
same type as an unzipped context, but has an additionalantathe first elements of the

'b rope list and the'a rope list components areeaf ropes, corresponding
tothe’b seq and’'a seq components of a (zipped) cursor. The zipped and unzipped
contexts and cursors are just two different ways of reptasgthe same context or cursor.
For example, the zipped context

MCRight (rpl, MCRight (rp2, MCLeft (MCRight (rp4, MCTop), r p3)))

and the unzipped context

(Irp1, rp2, rp4],
[rp3],
[Right, Right, Left, Right])

both represent a context of two right branchgk andrp2 , a left branchp3 , and a right
branchrp4 . It is easy to define operations to unzip a cursor
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val ctxUnzip : ('b, "a) map_ctx -> (’'b, 'a) unzip_map_ctx
fun ctxUnzip ¢ = (case ¢
of MCTop =>
(nil, nil, nil)
| MCLeft (c, r) => | et
val (Is, rs, ds) = ctxUnzip ¢
in
(Is, r = rs, Left :: ds)
end
| MCRight (I, c) = | et
val (Is, rs, ds) = ctxUnzip ¢
in
(I 2 Is, rs, Right :: ds)
end)
val curUnzip : ('b, "a) map_cur -> ('b, ’'a) unzip_map_cur
fun curUnzip ((pseq,useq), ctx) = let
val (Is, rs, ds) = ctxUnzip ctx
in
((Leaf pseq):ls, (Leaf useq)::rs, ds)
end
and vice versa
val ctxZip : (’'b, ’'a) unzip_map_ctx -> (' b, ’a) map_ctx
fun ctxZip (Is, rs, ds) = (case (Is, rs, ds)
of (nil, nil, nil) =>
MCTop
| (s, r :: rs, Left i ds) =>
MCLeft (ctxZip (Is, rs, ds), r)
| (I ::1s, rs, Right :: ds) =>
MCRight (I, ctxZip (Is, rs, ds)))
val curZip : ('b, 'a) unzip_map_cur -> ('b, 'a) map_cur

fun curZip ((Leaf pseq):ls, (Leaf useq):rs, ds) =
((pseq, useq), ctxZip (Is, rs, ds))

Although the zipped and unzipped contexts and cursors Hegeatit ways of represent-
ing the same context or cursor, they are each suited fordiffeasks. The zipped contexts
and cursors are better suited (being both easier to codeaatet to execute) for the step-
by-step traversal of a rope used in the implementatiomapLTSUntil . On the other
hand, the unzipped contexts and cursors are better suitéloefaplitting of a rope used in
the implementation afnapLTS.

From the description of an unzipped context, it should bardleat our initial handle on
the unprocessed elements of a context is through a list efsrgf unprocessed elements).
To split this list of ropes at tha” unprocessed element, we first divide this list of ropes
into three parts based an using thedivideRopes  helper function.

fun divideRopes (rp :: rps, n) =
if n <= length rp t hen

(nil, rp, n, rps)

el se let
val (rpsl, rp’, n’, rps2) = divideRopes (rps, n - length rp)
in

(rp :: rpsl, rp’, n', rps2)
end
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The applicatiordivideRopes (rps, n) returns(rpsl, rp, k, rps2) , such
thatrpsl @ [rp] @ rps2 isequaltaps andrpsl andrp contain at least the first
n elements of the ropes ofs . The integek is the index inrp at which then®” element
of rps is found. As noted above, the inverse operatiodiofdeRopes is simply the
concatenation ofpsl , [rp] , andrps2 .

While divideRopes has roughly divided the unprocessed elements into thosssrop
that occur strictly before the split, the rope in which thétsgcurs, and those ropes that
occur strictly after the split, our next task is to split th@pe in which the split occurs.
The applicatiorsplitAtAsCur (rp, n) returns a cursor in which the “hole” occurs
between the* andn+1°* elements of the rope .

val splitAtAsCur : arope * int -> ('a, 'a) map_cur
fun splitAtAsCur (rp, n) = let
fun s (rp, ctx, n) = (case rp
of Leaf seq => let
val (Iseq, rseq) = splitAtSeq (seq, n)
in
((Iseq, rseq), ctx)
end
| Cat (Irp, rrp) =>

if n < length Irp t hen
s (Irp, MCLeft (ctx, rrp), n)
el se
s (rrp, MCRight (Irp, ctx), n - length Irp))
in
s (rp, MCTop, n)
end

To recover the original rope, it suffices to use thet operation. We may also unzip the
context returned bgplitAtAsCur to obtain additional lists of ropes that occur before
the split and that occur after split.

Our final pair of helper functions encode a list of ropes asnglsirope and decode
a single rope as a list of ropes. Encoding a list of ropes asglesrope will be the last
step ofsplit , whereby the lists of unprocessed ropes returnedibigeRopes  and
splitAtAsCur are turned into two single ropes for parallel processinpapLTS The
applicationencodeRopes rps returnsaropep and aninteger, wherel isthe length
of the listrps . The length is used bgecodeRope to reconstructps .

val encodeRopes : ’'a rope list ->"a rope * int
fun encodeRopes rps = let
fun e rs = (case rs
of [rp] =>
P
| rp :rps =>

Cat (rp, e rps))
in

(e rps, Listlength rps)
end

The applicatiordecodeRope (rp, |) returns a list of ropesps .
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val decodeRope : 'a rope * int -> 'a rope list
fun decodeRope (rp, n) =
if n=1then
[rp]
el se (case rp
of Cat (I, r) =
| :: decodeRope (r, n - 1))

We can now present the implementationspfit , which, as specified above, takes a
cursorcur and returns two ropepl andrp2 and a rebuilder data structurep . The
roperpl contains the first half of the unprocessed elementsiof andrp2 contains the
remaining unprocessed elements. The rebuilder data steret provides sufficient in-
formation to reconstructur fromrpl andrp2 . The complete code is shown in Figure 7.
Let(ls, rs, ds) be the result o€urUnzip cur . We divide the list of unprocessed
subropess into three parts: the subropgss1 that occur before positiom, the subrope
mrp containing the data element at positioyand the subropeps2 that occur after po-
sitionn. Next, we let(mls, mrs, mds)  be the unzipped cursor that splits the subrope
mrp. We letnl andn2 be the lengths ofpsl andmrs, respectively. These values en-
able us to later separate ths1 subropes from thenls subropes and thers subropes
from therps2 subropes. We Idirpl, 11) and(rp2, 12) be the rope encodings of
rsl @ mils andmrs @ rs2, respectively. The result afplit is then

(rpl, rp2, (Is, ds, mds, nl, n2, 11, 12))

where the third component is the rebuilder, which theref@a®the type

type 'b map_cur_reb =
(" b rope list * dir list * dir list * int * int * int * int)

Recall thafoin takes encoded ropegl andrp2 and rebuilder
(Is, ds, mds, n1, n2, I1, 12)

and returns the cursor that was originally split. The impatation ofjoin  follows
straightforwardly by successively inverting each of thempions performed bgplit
Letrpsl andrps2 bethe decodings ¢fpl, 11) and(rp2, 12) ,respectively, that
are obtained by two calls tdecodeRope . Fromrpsl andnl, we reconstruct the lists
of subropessl andmls, and, fromrps2 andn2, we reconstruct the lists of subropes
mrs andrs2 . We then leimrp be

root (curZip (mls, mrs, mds))
Next, we letrs bersl @ [m] @ rs2 . The original cursor is thus
curZip (Is, rs, ds)

which is the result returned bgin . Theorem 4 in Appendix A.3 proves that these im-
plementations oéplit  andjoin satisfy Property 1, and therefore, may be used in our
shape-preserving implementationméplL TS
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fun split cur = let
val n = snd (curLength cur) div 2
val (Is, rs, ds) = curUnzip cur
val (rpsl, mrp, k, rps2) = divideRopes (rs, n)
val (mls, mrs, mds) = curUnzip (splitAtAsCur (mrp, K))
val (nl, n2) = (Listlength rpsl, Listlength mrs)
val (rpl, 11) = encodeRopes (rpsl @ mis)
val (rp2, 12) = encodeRopes (mrs @ rps2)
in
(rpl, rp2, (Is, ds, mds, nl, n2, I1, 12))
end
fun join (rpl, rp2, (Is, ds, mds, nl1, n2, I1, 12)) = |et
val xsl1l = decodeRope (rpl, I11)
val (rpsl, mls) = (List.take (xs1, nl), List.drop (xsl, nl))
val xs2 = decodeRope (rp2, 12)
val (mrs, rps2) = (List.take (xs2, n2), List.drop (xs2, n2))

val mrp = root (curZip (mls, mrs, mds))
val rs = rpsl @ [mrp] @ rps2
in
curZip (Is, rs, ds)
end

Fig. 7. The implementation afplit andjoin

4.2 Implementing other operations

The implementation dilterLTS is very similar to that omapLTS. Indeedfilter-
LTS uses the same context representation and operationalsTS simply instantiated
with unprocessed and processed elements having the saee typ

val filterLTS : (a->bool) ->"'a rope ->"'a rope
type 'a filter_ctx = ("a, 'a) map_ctx

As with mapLTS where the mapping operation was applied byrtteoUntilSeq oper-
ation, the actual filtering of elements is performed byfiherUntilSeq operation.
One complication of all rope-filter operations, includiiiiterLTS | is that filter opera-
tions are not balance preserving, because data elememntnaoged from the filter result
rope based on the filter predicate. We mékerLTS balance preserving by applying
our parallel balancing functiobalance to the result rope.

ThereduceL TS operation takes an associative operator, its zero, andesarogpreturns
the rope’s reduction under the operator.

val reducelTS : ('a* 'a->'a) ->’a ->'arope ->"'a

Thus, theeducelL TS operation may be seen as a generalized sum operation. The imp
mentation offeducelL TS is again similar to that alhapLTS but uses a simpler context:

dat at ype ' a reduce_ctx
= RCTop
| RCLeft of 'a rope * 'a reduce_ctx
| RCRight of 'a * ’a reduce_ctx
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whereRCRIight (z, c) represents the context surrounding the right branch@éata
node in whichz is thereductionof the left branch and is the context surrounding the
reduction of theCat node.

ThescanLTS operation, also known awefix sumsis used by many data-parallel algo-
rithms. LikereducelLTS , thescanLTS operation takes an associative operator, its zero,
and a rope and returns a rope of the reductions of the prefixas nput rope.

1

val scanLTS : ('a* 'a->"a) ->"'a ->"a rope ->"'a rope

For example,

scanLTS ( op +) O (Cat (Leaf [1, 2], Leaf [3, 4]))
= Cat (Leaf [1, 3], Leaf [6, 10])
In a survey on prefix sums, Blelloch describes classes of itapbparallel algorithms that
use this operation and gives an efficient parallel imples#or of prefix sums (Blelloch,
1990a), on which our implementation s€anLTS is based. The algorithm takes two
passes over the rope. The first performs a parallel reductienthe input rope, construct-
ing an intermediate rope in which partial reduction resates recorded at each internal
node. The second pass builds the result rope in parallel bgegsing the intermediate
rope. The efficiency of this second pass is derived from lgaeomstant-time access to the
cached sums while it builds the result.
The result of this first pass is callednaonoid-cached treéHinze & Paterson, 2006),
specialized in the current casertmnoid-cached ropén a monoid-cached rope,
dat at ype 'a crope

= CLeaf of "a * "a seq

| CCat of 'a » "a crope * ’a crope
each internal node caches the reduction of its children s\dét® example, supposing the
scanning operator is integer addition, one such monoitiedoope is

CCat (10, CLeaf (3, [1, 2]), CLeaf (7, [3, 4])

Our implementation of Blelloch’s algorithm is again simita that ofmapLTS except
that we use a context in which there aope s to the right of the hole archched_rope s
to the left of the hole. Aside from some minor complexity itwog the propagation of
partial sums, the operations on this context are similahtsé on the context used by
mapLTS

The map2LTS operation maps a binary function over a pair of ropes (of times
length).

val map2LTS: ("a * 'b ->"'¢c) ->"a rope * 'b rope -> 'c rope
For example, the pointwise addition of the ropp$ andrp2 can be implemented as
map2LTS (op +) (rpl, rp2)

Note thatrpl andrp2 may have completely different branching structures, whohld
complicate any structural-recursive implementation. Zipper technique provides a clean
alternative: we maintain a pair of contexts and advance tiogrether in lock step during
execution. The result rope is accumulated in one of thestextm
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Contexts and partial results nicely handle the processingaves of unequal length.
When themap2SeqUntil  function is applied to two leaves of unequal length, it siypl
returns a partial result that includes the remaining elésieom the longer sequence. The
map2Until  function need only step the context of the shorter lineausage to find the
next leaf with which to resume threap2SeqUntil  processing. We do need to distinguish
map2SeqUntil  returning with a partial result due to the polling functiamwhich case
map2Until  should also return a partial result (signaling that a tasiukhbe pushed
to the work-stealing deque), fromap2SeqUntil  returning with a partial result do to
exhausting one of the leaves, in which casgp2Until should not return a partial result.
The implementation straightforwardly extends to maps biteary arity.

5 Evaluation

We have already demonstrated in Section 3 that, with ETSualanning of the chunk
size is essential to obtain acceptable parallel performaccoss all of our benchmarks.
In this section, we present the results of additional expenits that demonstrate that LTS
performance is always close to the best, hand-tuned ET$hdfumore, these additional
experiments demonstrate that no hand tuning was necessachieve good performance
with LTS.

5.1 Experimental method

Our benchmark machine is a Dell PowerEdge R815 server, tedtfitith 48 cores and
128 GB physical memory. This machine runs 86 Ubuntu Linux 10.04.2 LTS, kernel
version 2.6.32-27. The 48 cores are provided by four 12 coi®Dpteron 6172 “Magny
Cours” processors (Carver, 2010; Convedal,, 2010), Each core operates at 2.1 GHz and
has 64 KB each of instruction and data L1 cache and 512 KB ofdche. There are two
6 MB L3 caches per processor, each of which is shared by sescéor a total of 48 MB
of L3 cache.

We ran each experiment 10 times, and we report the averafggpance results in our
graphs and tables. For most of these experiments the sthddaiation was below 2%,
thus we omit the error bars from our plots.

5.2 Benchmarks

For our empirical evaluation, we ran one synthetic benckraad seven benchmark pro-
grams picked from our benchmark suite. Our maximum leaf sizZE024, which is one
setting that provided good performance on our test machirasa all seven benchmarks.
The Barnes-Hut benchmark is anbody simulation that calculates the gravitational
forces betweem particles as they move through two-dimensional space @agnHut,
1986). The Barnes-Hut computation consists of two phasethd first, the simulation
volume is divided into square cells via a quadtree, so thgtparticles from nearby cells
need to be handled individually and particles from distasitsccan be grouped together
and treated as large particles. The second phase calcglatétational forces using the
guadtree to accelerate the computation. We represent ¢fueisee of particles by a rope
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of mass-point and velocity pairs and the quadtree by an edgreata type where every
node is annotated with a mass point. Our benchmark runs fisee2Qions over 3,000,000
particles generated from a random Plummer distributioar{fther, 1911). The programis
adapted from a Data-Parallel Haskell program (Peyton Jeinals 2008).

The Raytracer benchmark renders a 2,000 image in parallel as a two-dimensional
sequence, which is then written to a file. The original pragweas written in ID (Nikhil,
1991) and implements a simple ray tracer that does not usecamjeration data structures.
The sequential version outputs each pixel to the image fileiagomputed, whereas the
parallel version first builds an intermediate rope of pixatsl later flushes the rope to a
file.

The Quicksort benchmark sorts a rope of 10 million integersarallel. Our program is
adapted from one that was originally written foEBL (Scandal Project, n.d.).

The SMVM benchmark is a sparse-matrix by dense-vector pligitition. The matrix
contains 1,091,362 elements and the vector 16,614.

The DMM benchmark is a dense-matrix by dense-matrix mudiion in which each
matrix is 600x 600. We represent a matrix column as a rope of scalars andrx msia
rope of columns.

The Black-Scholes benchmark computes the price of Europgtmons analytically us-
ing a partial differential equation. We store the optiona iope.

The Nested Sums benchmark is a synthetic benchmark thabiexirregular paral-
lelism. Its basic form is as follows:

I et fun upTo i = range (O, i)
in mapP sumP (mapP upTo (range (0, 5999)))
end
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PML

BenchmarH MLton | Seq. LTS BestETS48 LTS48 LTS48 Speedup
DMM 6.79| 21.86 20.59 1.01 0.91 24.05
Raytracer 166.36] 253.57 247.20 6.28 5.75 44.10
SMVM 5.21] 15.31 13.52 0.64 0.81 18.86
Quicksort|  28.41| 59.39 65.26 1.33 1.64 36.21
Barnes Hut 165.84( 502.17 521.63 2427 29.57 16.98
Black Scholes 3.96 8.20 8.18 0.24 0.24 34.17
Nested Sums  7.19| 25.93 25.86 2.30 1.02 25.42

Table 1. Summary of performance. Execution time in seconds.

The program generates an 6,000-element array of 6,009enéerays and returns an array
containing the sum of each subarray.

5.3 Lazy vs.eager tree splitting

Figures 8, 9, 10, and 11 show the performance of LTS and ETeShsicside. Each graph
contains four speedup curves for a single benchmark, withaamve for LTS and three
curves for ETS with small, medium, and large setting$8f". We chose these particular
SST values because they cover various extremes of performaschown in Figure 3.
Observe that, in each graph, the LTS speedup is close to dadegt ETS configuration
and that the performance curves of most of the ETS configuratre flat.

In Table 1, we present performance measurements for eactir dfemchmarks run in
several different sequential configurations, as well as®prdcessors. The first column of
data presents timing results for MLton. MLton is a sequémilale-program optimizing
compiler for Standard ML (MLton, n.d.; Weeks, 2006), whishthe “gold standard” for
ML performance. The second data column gives the baselirferpgance of the natural
sequential PML versions of the benchmaiikes.(parallel operations are replaced with their
natural sequential equivalents). We are about a facto5e810x slower than MLton for all
of the benchmarks except Nested Sums. Considering MLtai&ssf aggressive optimiza-
tions and maturity, the sequential performance of PML isenaging. Our slower perfor-
mance can be attributed to at least two factors. First, théokMkcompiler monomorphizes
the program and then aggressively flattens the resultingpmorphic data representations,
whereas Manticore does no such monomorphization and thiingscode often involves
boxed data representations. Second, our profiling showehi@C overheads in our sys-
tem. These issues can be addressed by improving the segjyentormance of Manticore.
The last two columns report the parallel execution time grekdup on 48 cores. Over-
all, the speedups are quite good. The Barnes-Hut benchimamlever, achieves a modest
speedup, which we believe stems from a limit on the amounaddlfelism in the program.
This hypothesis is supported by the fact that increasingihet size improves the speedup
results.

Observe that, in many cases, the 48-core LTS performanisetf@hind the best 48-
core ETS performance. This gap may indicate that LTS inwémme overhead costs that
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are heavier than those of ETS. To break down the sources & theerheads, first recall
that LTS requires the program to make one or more zipperrsaigeand that each zipper
traversal requires heap allocations. To estimate the ripperhead, we can compare the
execution times in the columns labeled Seq. and LTS in Tabl&é LTS column contains
the execution time of the benchmarks using the LTS runtimehaeisms €.g, zippers),
but without parallelism. We see that in the sequential ddwel TS version is about 24%
slower, which is indeed a significant cost. By compariso@ Bl S traversal uses a natural
structural recursion in which the state is maintained varim-time call stack. In many
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compilers, including Manticore, the natural recursionfieiw more efficient than a zipper
because compiler optimizations are more effective at apting natural-recursive code and
because the natural-recursive code can benefit from stamiqesed to heap allocation.

We also ran an experiment to measure LTS overheads in MLemause MLton offers
better sequential performance and uses a more-conveh@estgle call stack, whereas
Manticore uses heap-allocated continuations to repréiseitll stack (Appel, 1992; Fluet
etal, 2007hb). In this experiment we, ran SMVM sequentially udim@ and ETS versions
and found that the LTS and ETS versions completed in 8.49 a@@ geconds, respec-
tively, indicating a 70% advantage for the ETS version. Alljkcontributor to this gap
is the difference in heap allocation: LTS and ETS versiotecated 6.4GB and 2.8GB,
respectively. In spite of these costs, the extra heap aitotain LTS do not necessarily
harm its scalability, because, in Manticore, the allocaipger objects are almost always
reclaimed by the same processor that performed the albocati

Another possibility we considered is that LTS suffers baseaof communication costs
from extra task migrations. Profiling data that we gathereghssts otherwise, however,
because the data shows no significant difference in the nuofilséeals between LTS and
the best ETS configuration. Furthermore, our profiling datass that the per-processor
utilization for the best ETS configuration is never more tB&h greater than that of LTS,
which is almost within our 2% error bar.

There is still a question of whether our technique tradestomi@g parametel§ST, for
another, the maximum leaf size. We address this concernamiays. First, observe that
even if performance is sensitive to the leaf size, this wiik specific to ropes, but neither
ETS nor LTS. Second, we have measured the effect of the maxilmaf size on perfor-
mance. Figure 12 shows the speedups for our benchmarks astaofuof maximum leaf
size on 48 processors. The results show that all of bencrepamnftorm well for maximum
leaf sizes in the seft512, 1024, 2048}, so our choice of 024 is justified. One concern is
DMM, which is sensitive ta\/ because it does many subscript operations on its two input
ropes. One could reduce this sensitivity by using a flattpe r@presentation that provides
a faster subscript operation.

6 Related work

Adaptive parallel loop schedulin@he original work on lazy binary splitting presents a
dynamic scheduling approach for paraltid-all  loops (Tzannegt al, 2010). Their
work addresses splitting ranges of indices, whereas outesases splitting trees where
tree nodes are represented as records allocated on the heap.

In the original LBS work, they use profitable parallelism thresholdPPT) to reduce
the number of hungry-processor checks. TVeT is an integer which determines how
many iterations a given loop can process before doing a gymgrcessor check. Our per-
formance study haBPT = 1 (i.e., one hungry-processor check per iteration) because we
have not implemented the necessary compiler mechanisnwsdthdrwise.

Robisonet al. propose a variant of EBS called auto partitioning (Robisbal., 2008),
which provides good performance for many programs and doe®quire tuning® Auto

10 Auto partitioning is currently the default chunking stgyeof TBB (Intel, 2008).
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partitioning derives some limited adaptivity by employitg heuristic that when a task
detects it has been migrated it splits its chunk into at Isaste fixed number of subchunks.
The assumption is that if a steal occurs, there are probaldyr processors that need work,
and it is worthwhile to split a chunk further. As discussedizanneset al.(Tzannet al,,
2010), auto partitioning has two limitations. First, idevels of loop nesting? processors,
and a small, constant parametér it creates at leagtk’ x P)’ chunks, which is excessive
if the number of processors is large. Second, although ishawe limited adaptivity, auto
partitioning lacks performance portability with respeetthe context of the loop, which
limits its effectiveness for scheduling programs writteritie liberal loop-nesting style of
an NDP language.

Cutting off excess parallelis®ne approach to the granularity problem is to try to limit
the total number of tasks that get created, so as to guardnaethe total cost of schedul-
ing can be well amortized. Variations of the cutoff-basedrapch have been studied by
Loidl and Hammond (Loidl & Hammond, 1995) in the context ofgkall and Lopezt

al. (Lopezet al, 1996) and Tick and Zhong (Tick & Zhong, 1993) in the conteX¥bgic
programming. Their key idea is that, if a given task is smh#,scheduler executes the task
as a sequential computation, that is, completely free oédaling costs. A limitation of
the cutoff-based approaches is that they rely on there menegsonably-accurate way of
predicting the task-execution time. Predicting executiore is difficult for many classes
of programs, such as ray tracers, where execution time disgemavily on properties of
the input data set, and is not feasible in general. In casesengrediction is not feasible,
LTS can still be an effective approach, because LTS doesep#rtd on prediction. LTS is
concerned only with reducing the scheduling cost per task.

Flattening and fusionNESL is a nested data-parallel dialect of ML (Blelloehal., 1994).
The NesL compiler uses a program transformation calfedtening which transforms
nested parallelism into a form of data parallelism that maplsonto SIMD architectures.
Note that SIMD operations typically require array elemeatisave a contiguous layout in
memory. Flattened code maps well onto SIMD architecturealbse the elements of flat-
tened arrays are readily stored in adjacent memory locatlarcontrast, LTS is a dynamic
technique that has the goal of scheduling nested parafieiffectively on MIMD architec-
tures. A flattened program may still use LBS (or LTS) to schedwe execution of array
operations on MIMD architectures, so in that sense, flaigaind LTS are orthogonal.

There is, of yet, no direct comparison between an NDP impieat®n based on LTS
and an implementation based on flattening. One major diffarés that LTS uses a tree
representation whereas flattening uses contiguous araysuch, the LTS representa-
tion has two disadvantages. First, tree random access is expensive. For a rope it is
O(logn) time, wheren is the length of a given rope. Second, there is a large cotrfsien
tor overhead imposed by maintaining tree nodes. One waydiaceethese costs is to use
a “bushy” representation that is similar to ropes but whbhesliranching factor is greater
than two and child pointers are stored in contiguous arrays.

Data-parallel fusion is a program transformation that glates data-parallel operations
under certain circumstances. It is implemented in tlesN(Chatterjee, 1993) and Data
Parallel Haskell (Chakravarst al., 2008) compilers, but not in Manticore currently. Fu-
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sion typically improves task granularity thanks to inciegshe work per task. To see why,
consider the expression

mapP f (mapP g xs)
and its fused counterpart
mapP (f o g) xs

Combining the twamapPs yields a computation which both generates fewer logickisa
— only one per array element instead of two — and sacrificesanallplism. Although it
improves granularity, fusion is limited as a granularipntrol mechanism, because the
transformation applies only when there are pairs of opamatthat can be fused. As such,
additional mechanisms, such as LTS, are crucial for adishgggsanularity control in gen-
eral.

Parallel depth-first schedulingVork by Greiner and Blelloch proposes an implementation
of NDP based on a scheduling policy, called Parallel Deptkt FPDF), that is designed
to minimize space usage (Blelloch & Greiner, 1996). The ficatity of PDF on modern
machines is severely limited because the policy relies améalized task queue. Narlikar
and Blelloch address this issue by proposing a scheduliigypzalled DFDeques, which
is a hybrid of PDF and work stealing (Narlikar & Blelloch, 199 Although DFDeques
addresses the inefficiency of having a centralized quewestheduling costs involved
in DFDeques are similar to those of plain work stealing, lbseahe granularity-control
mechanism of DFDeques involves switching from PDF to woglakhg every time a fixed
amount of memory has been allocated. LBS and LTS furtherdmgon plain work steal-
ing by optimizing for the special cases of loops and NDP dji@na.

Ct Ct is an NDP extension to C++ (Ghulouet al, 2007). Soet al. describe a fusion

technique for Ct that is similar to the fusion technique oHD{Soet al,, 2006). The fusion

technique used by Ct is orthogonal to LTS for the same reas®ftg the fusion technique
of DPH. The work on Ct does not directly address the issue déling an automatic

chunking strategy, which is the main contribution of LTS.

GpH GpH introduced the notion of agvaluation strategy(Trinderet al, 1998) which
is a part of a program that is dedicated to controlling sonpeets of parallel execution.
Strategies have been used to implement eager-splittiegshiunking for parallel compu-
tations. We believe that a mechanism like an evaluatiotegfyacould be used to build a
clean implementation of lazy tree splitting in a lazy fuonail language.

Cilk Cilk is a parallel dialect of the C language extended witlgliistic constructs for
expressing fork-join parallelism (Friget al, 1998). Cilk is designed for parallel function
calls but not loops, whereas our approach addresses both.

7 Conclusion

We have described the implementation of NDP features in thptMore system. We have
also presented a new technique for parallel decomposltap,.tree splitting, inspired by
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the lazy binary splitting technique for parallel loops. Wesented an efficient implemen-
tation of LTS over ropes, making novel use of the zipper tepmmto enable the necessary
traversals. Our techniques can be readily adapted to ttaeesttactures other than ropes
and are not limited to functional languages. A work-steglimread scheduler is the only
special requirement of our technique.

LTS compares favorably to ETS, requiring no applicatiopesfic or machine-specific
tuning. For any of our benchmarks, LTS outperforms most locaifigurations of ETS,
and is, at worst, only 27% slower than the optimally tuned E®8figuration. As argued
here by us and elsewhere by others (Tzamtes, 2010), the ETS approach is not feasible
in general because, in order to achieve acceptable penfmentne programmer has to tune
each instance of a given parallel tree operation to the gieetext in which the operation
appears and for each machine on which it is to be run. LTS eebigood performance
without the need for tuning.
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type 'a seq = 'a list
fun joinSeq (seql, seq2) = List.append (seql, seq2)
fun revSeq seq = Listrev seq
fun mapSeq f seq = Listmap f seq
fun mapUntilSeq cond f seq = let
fun Ip (seq, acc) =
(case seq
of [] => Done (revSeq acc)
| x:seq’ =>
if cond () then
More (seq, revSeq acc)
el se
Ip (seq’, (f x)::acc))
in
Ip (seq, [I)
end

Fig. A1l. ThemapUntilSeq operation for lists

A Proofs
A.1 mapSeqUnt i | isshape preserving

Figure A 1 gives an implementationafapUntilSeq for sequences implemented as lists.
Although our actual implementation uses contiguous arf@aysequences, the implemen-
tation here demonstrates the essential behavior, in wh&function maintains an implicit
context with processed elements to the left and unprocedsetknts to the right.

With the following lemma and theorem, we can conclude thatimplementation of
mapSequUntil can be used safely byapLTS.

Lemma 1
For any sequencgeq, any sequencacc , any predicateond , withf =fn x => x,
if Ip (seq, acc) returnsDone pseq’ , then

pseq’ = joinSeq (seq, revSeq acc)
and if it returnsMore (useq’, pseq’) , then
joinSeq (useq’, pseq’) = joinSeq (seq, revSeq acc)

Proof
By structural induction oseq. O

Theorem AmapUntilSeq is shape preserving
Property 3 holds for the implementationmoapSeqUntil

For any sequenceq and any predicateond , if mapUntilSeq cond ( fn x => X) seq
returnsDone seq’ , then

seq’ = seq
and if it returndMore (useq’,pseq’) , then

joinSeq (pseq’, useq’) = seq
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Proof
By Lemmal. O

A.2 mapLTSUnt i | iswell-behaved

The well-behavedness of oanapLTSUntil operation, namely, that it satisfies Prop-
erty 2, will depend upon a number of properties about theecdraind cursor operations.
For instance, thieftmost  operation preserves the represented rope as well as ithleng
and size:

Lemma 2
Forany ropep and any contextx , if leftmost (rp, ctx) returngseq’, ctx’) ,
then

plug (Leaf seq’, ctx’) = plug (rp, ctx)
and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (0O, length rp)

and
(ctxSize ctx’) ++ (0, 1) = (ctxSize ctx) ++ (0, size rp)
Proof

By assumption,
leftmost (rp, ctx) = (seq, ctx) (1)
The proof is by structural induction ap .

e Suppose that

rp = Leaf seq ()
Therefore,
(seq’, ctx’)
= leftmost (rp, ctx) by (1)
= leftmost (Leaf seq, ctx) by (2)
= (seq, ctx) by defn ofleftmost
and
seq’ = seq (3)
and
ctx’ = Cix 4)
Hence,

plug (Leaf seq’, ctx’)
= plug (Leaf seq, ctx) by (3) and (4)
= plug (rp, ctx) by (2)



Lazy Tree Splitting 41

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (0, lengthSeq seq) by (3) and (4)
= (ctxLength ctx) ++ (O, length (Leaf seq)) by defn oflength
= (ctxLength ctx) ++ (O, length rp) by (2)

and

(ctxSize ctx’) ++ (0, 1)

= (ctxSize ctx) ++ (0, 1) by (4)
= (ctxSize ctx) ++ (0, size (Leaf seq)) by defn ofsize
= (ctxSize ctx) ++ (0, size rp) by (2)
Suppose that
rp = Cat (Irp, rrp) (5)
Therefore,
(seq’, ctx’)
= leftmost (rp, ctx) by (1)
= leftmost (Cat (Irp, rrp), ctx) by (5)
= leftmost (Irp, MCLeft (ctx, rrp)) by defn ofleftmost
and
(seq’, ctx’) = leftmost (Irp, MCLeft (ctx, rrp)) (6)
By the induction hypothesis withp , MCLeft (ctx, rrp) , and (6),
plug (Leaf seq’, ctx’) %
= plug (Irp, MCLeft (ctx, rrp))
and
(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength (MCLeft ctx, rpp)) ++ (O, length Irp)
(8)
and
ctxSize ctx’) ++ (0, 1
( ) ++ (0, 1) ©)

= (ctxSize (MCLeft ctx, rpp)) ++ (0, size Irp)
Hence,

plug (Leaf seq’, ctx’)

= plug (Irp, MCLeft (ctx, rpp)) by (7)
plug (Cat (Irp, rrp), ctx) by defn ofplug
plug (rp, ctx) by (5)
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and
(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength (MCLeft ctx, rpp)) ++ (O, length Irp)

by (8)

= (ctxLength ctx) ++ (0O, length rrp) ++ (0, length Irp)

by defn ofctxLength

= (ctxLength ctx) ++ (0, (length rrp) + (length Irp))

by defn of++

= (ctxLength ctx) ++ (0, (length Irp) + (length rrp))

= (ctxLength ctx) ++ (O, length (Cat (Irp, rrp)))

= (ctxLength ctx) ++ (0O, length rp)
and

(ctxSize ctx’) ++ (0, 1)
= (ctxSize (MCLeft ctx, rpp)) ++ (0, size Irp)

by defn of+

by defn oflength
by (5)

by (9)

= (ctxSize ctx) ++ (0, size rrp) ++ (0, size Irp)

by defn ofctxSize

= (ctxSize ctx) ++ (0, (size rrp) + (size Irp))

by defn of++

= (ctxSize ctx) ++ (0, (size Irp) + (size rrp))

by defn of+

= (ctxSize ctx) ++ (0, size (Cat (Irp, rrp)))

by defn ofsize

= (ctxSize ctx) ++ (0, size rp) by (5)
]
Similarly, thenext operation preserves the represented rope as well as itthland
size:
Lemma 3
For any ropep and any contexttx , if next (rp, ctx) returnsDone rp’ , then
P’ = plug (rp, ctx)
and if it returnsMore (seq’, ctx’) , then
plug (Leaf seq’, ctx’) = plug (rp, ctx)
and
(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength ctx) ++ (length rp, 0)
and
(ctxSize ctx’) ++ (0, 1) = (ctxSize ctx) ++ (size rp, 0)

Proof
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The proof is by structural induction arix .

e Suppose that

ctx = MCTop
Hence,
next (rp, ctx)
= next (rp, MCTop) by (1)
= Done rp by defn ofnext
and, furthermore,
rp
= plug (rp, MCTop) by defn ofplug
= plug (rp, ctx) by (1)
as required whenext (rp, ctx) returnsDone rp .
e Suppose that
ctx = MCLeft (ctx’, rrp)
Hence,
next (rp, ctx)
= next (rp, MCLeft (ctx’, rrp)) by (2)
= More (seq”, ctx”) by defn ofnext
where
(seq”, ctx™) = leftmost (rrp, MCRight (rp, ctx’))
By Lemma 2 withrrp , MCRight (rp, ctx’) , and (3),
plug (Leaf seq”, ctx”)
= plug (rrp, MCRIight (rp, ctx’))
and

(ctxLength ctx”) ++ (0, lengthSeq seq”)
= (ctxLength (MCRight (rp, ctx?))) ++ (O, length rrp)
and
(ctxSize ctx”) ++ (0, 1)
= (ctxSize (MCRight (rp, ctx’))) ++ (0, size rrp)
Furthermore,

plug (Leaf seq”, ctx”)
= plug (rrp, MCRIight (rp, ctx)) by (4)

plug (Cat (rp, rrp), ctx) by defn ofplug
plug (rp, MCLeft (ctx’, rrp)) by defn ofplug

43
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and

(ctxLength ctx™) ++ (0, lengthSeq seq”)
= (ctxLength (MCRIight (rp, ctx?))) ++ (O, length rrp)
by (5)
= (ctxLength ctx’) ++ (length rp, 0) ++ (0, length rrp)
by defn ofctxLength
= (ctxLength ctx’) ++ (0, length rrp) ++ (length rp, 0)
by defn of++
= (ctxLength (MCLeft (ctx’, rrp))) ++ (length rp, 0)
by defn ofctxLength
= (ctxLength ctx) ++ (length rp, 0) by (2)

and

(ctxSize ctx) ++ (0, 1)
= (ctxSize (MCRight (rp, ctx’))) ++ (0, size rrp)
by (6)
= (ctxSize ctx’) ++ (size rp, 0) ++ (0, size rrp)
by defn ofctxSize
= (ctxSize ctx’) ++ (0, size rrp) ++ (size rp, 0)
by defn of++
(ctxsize (MCLeft (ctx’, rrp))) ++ (size rp, 0)
by defn ofctxSize
= (ctxSize ctx) ++ (size rp, 0) by (2)

as required whenext (rp, ctx) returnsMore (seq”, ctx”)
e Suppose that

ctx = MCRight (Irp, ctx’) (7
Hence,
next (rp, ctx)
= next (rp, MCRight (Irp, ctx’)) by (7)
= next (Cat (Irp, rp), ctx) by defn ofnext
and
next (rp, ctx) = next (Cat (Irp, rp), ctx) (8)

Proceed by cases on the resulhekt (Cat (Irp, rp), ctx)

— Suppose that the resultBone rp”
Therefore,

next (Cat (Irp, rp), ctx’) = Done rp” 9)
By the induction hypothesis witBat (Irp, rp) ,ctx’ , and (9),

rp” = plug (Cat (Irp, rp), ctx’) (20)
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Hence,

next (rp, ctx)
= next (Cat (Irp, rp), ctx’) by (8)
= Done rp” by (9)

and, furthermore,

p
= plug (Cat (Irp, rp), ctx’) by (10)
= plug (rp, MCRight (Irp, ctx’)) by defn ofplug
= plug (rp, ctx) by (7)
as required whenext (rp, ctx) returnsDone rp”
Suppose that the resultidore (seq”, ctx”)
Therefore,
next (Cat (Irp, rp), ctx) = More (seq’, ctx”)
(11)
By the induction hypothesis witBat (Irp, rp) ,ctx’ ,and (11),
plug (Leaf seq”, ctx”) = plug (Cat (Irp, rp), ctx’)
(12)
and
(ctxLength ctx™) ++ (0, lengthSeq seq”)
= (ctxLength ctx’) ++ (length (Cat (Irp, rp)), 0)
(13)
and
(ctxSize ctx”) ++ (0, 1)
= (ctxSize ctx’) ++ (size (Cat (Irp, rp)), 0)
(14)
Hence,
next (rp, ctx)
= next (Cat (Irp, rp), ctx) by (8)
= More (seq”, ctx”) by (11)
and, furthermore,
plug (Leaf seq”, ctx”)
= plug (Cat (Irp, rp), ctx) by (12)
= plug (rp, MCRight (Irp, ctx’)) by defn ofplug

plug (rp, ctx) by (7)



46 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

and

(ctxLength ctx™) ++ (0, lengthSeq seq”)
= (ctxLength ctx’) ++ (length (Cat (Irp, rp)), 0)
by (13)
= (ctxLength ctx’) ++ (length Irp + length rp, 0)

by defn oflength

= (ctxLength ctx’) ++ (length Irp, 0) ++ (length rp, 0)
by defn of++
= (ctxLength (MCRight (Irp, ctx’))) ++ (length rp, 0)

by defn ofctxLength
= (ctxLength ctx) ++ (length rp, 0) by (7)
and
(ctxSize ctx”) ++ (0, 1)
= (ctxSize ctx’) ++ (size (Cat (Irp, rp)), 0)
by (14)

= (ctxSize ctx’) ++ (size Irp + size rp, 0)
by defn ofsize
= (ctxSize ctx’) ++ (size Irp, 0) ++ (size rp, 0)
by defn of++
= (ctxsize (MCRight (Irp, ctx’))) ++ (size rp, 0)
by defn ofctxSize
= (ctxSize ctx) ++ (size rp, 0) by (7)

as required whenext (rp, ctx) returnsMore (seq”, ctx”)
U

The following lemmas and theorem enable us to use this imgh¢ation ofmapLTSUntil
in ourmapLTS.

Lemma 4
For any sequencgeq and any contexttx , withf =fn x => x,

mSeq (seq, ctx) = plug (Leaf seq, ctx)

Proof
The proof is by strong induction and (ctxSize ctx)
The induction hypothesis is:
foranyseq andctx’
such thasnd (ctxSize ctx’) <snd (ctxSize ctx) ,
mSeq (seq’, ctx’) = plug (Leaf seq’, ctx’)

Proceed by cases on the resulhekt (Leaf seq, ctx)

e Suppose that the result3one rp’ .
Therefore,

next (Leaf seq, ctx) = Done rp’ (1)
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By Lemma 3 withLeaf seq , ctx , and (1)
rp’ = plug (Leaf seq, ctx) (2)
Hence,

mSeq (seq, ctx)

= rp by defn ofmSegand (1)

= plug (Leaf seq, ctx) by (2)
Suppose that the resulthdore (seq’, ctx’)
Therefore,

next (Leaf seq, ctx) = More (seq’, ctx) 3)
Note that

mapSeq (fn x => x) seq’ = seq 4
is assumed to hold of an implementatiomedpSeq,
By Lemma 3 withLeaf seq , ctx , and (3)

plug (Leaf seq’, ctx’) = plug (Leaf seq, ctx) (5)
and
(ctxLength ctx’) ++ (0, lengthSeq seq’) (©6)
= (ctxLength ctx) ++ (length (Leaf seq), 0)
and
(ctxSize ctx’) ++ (0, 1) 7
= (ctxSize ctx) ++ (size (Leaf seq), 0)
Note that

snd (ctxSize ctx)
= snd ((ctxSize ctx) ++ (size (Leaf seq), 0))
by defn ofsnd and++

= snd ((ctxSize ctx’) ++ (0, 1)) by (7)
= snd (ctxSize ctx’) + 1 by defn ofsnd and++
Hence,
snd (ctxSize ctx’) < snd (ctxSize ctx) (8)

By the induction hypothesis witbeq’ , ctx’ , and (8),
mSeq (seq’, ctx’) = plug (Leaf seq’, ctx’) (9)
Hence,

mSeq (seq, ctx)
= mSeq (mapSeq (fn x => x) seq, ctx’)
by defn ofmSegand (3)
= mSeq (seq’, ctx) by (4)
= plug (Leaf seq’, ctx’) by (9)
= plug (Leaf seq, ctx) by (5)
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O

Lemmab
For any sequencgeq, any contexttx , any predicateond , withf =fn x => x, if
m (seq, ctx) returnsDone rp’ ,then

rp = plug (Leaf seq, ctx)

and if it returnsMore cur’ , then

root cur’ = plug (Leaf seq, ctx)
and
snd (ctxLength ctx) + (lengthSeq seq)
> snd (curLength cur’)
and
snd (curLength cur’) > 2
Proof

The proof is by strong induction and (ctxSize ctx)
The induction hypothesis is:
foranyseq andctx’

such thasnd (ctxSize ctx’) < snd (ctxSize ctx) ,
if m (seq’, ctx’) returnsDone rp”
then
rp” = plug (Leaf seq’, ctx’)

and if it returnadMore cur”
then

root cur” = plug (Leaf seq’, ctx)
and

snd (ctxLength ctx’) + (lengthSeq seq’)
> snd (curLength cur”)
and

snd (curLength cur”) > 2

Proceed by cases on the resultmdpUntilSeq cond ( fn x => X) seq .

e Suppose that the result3one pseq’ .
Therefore,

mapUntilSeq cond (fn x => x) seq = Done pseq’ 1)
By Property 3 withseq, cond and (1),
pseq’ = seq 2)

Proceed by cases on the resulhekt (Leaf pseq’, ctx)

— Suppose that the resultBone rp’ .
Therefore,

next (Leaf pseq’, ctx) = Done rp’ 3)
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By Lemma 3 withLeaf pseq’ ,ctx , and (3),

rp° = plug (Leaf pseq’, ctx) 4)
Hence,
m (seq, ctx)
= Done rp’ by defn ofm (1), and (3)
and, furthermore,
rp’
= plug (Leaf pseq’, ctx) by (4)
= plug (Leaf seq, ctx) by (2)

as required whem (seq, ctx) returnsDone rp’ .
— Suppose that the resultidore (seq’, ctx’)
Therefore,

next (Leaf pseq’, ctx) = More (seq’, ctx’) (5)

By Lemma 3 withLeaf pseq’ ,ctx , and (5),

plug (Leaf seq’, ctx’) = plug (Leaf pseq’, ctx)
(6)
and
(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength ctx) ++ (length (Leaf pseq’), 0)
(7
and
(ctxSize ctx’) ++ (0, 1) (8)
= (ctxSize ctx) ++ (size (Leaf pseq), 0)

snd (ctxSize ctx)
= snd ((ctxSize ctx) ++ (size (Leaf pseq’), 0))
by defn ofsnd and++

= snd ((ctxSize ctx’) ++ (0, 1)) by (8)
= snd (ctxSize ctx’) + 1 by defn ofsnd and++
Hence,
snd (ctxSize ctx’) < snd (ctxSize ctx) 9)

Proceed by cases on the resultof(seq’, ctx’)

— Suppose that the resultBone rp”
Therefore,

m (seq’, ctx) = Done rp” (10)
By the induction hypothesis witbeq’ , ctx’ , and (9),

rp” = plug (Leaf seq’, ctx’) (11)
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Hence,

m (seq, ctx)
= m (seq’, ctx)
= Done rp”

and, furthermore,

by defn ofm (1), and (5)
by (10)

rp”
= plug (Leaf seq’, ctx) by (11)
= plug (Leaf pseq’, ctx) by (6)
= plug (Leaf seq, ctx) by (2)
as required whem (seq, ctx) returnsDone rp”
Suppose that the resultidore cur”
Therefore,
m (seq’, ctx’) = More cur”
By the induction hypothesis witbeq’ , ctx’ , and (9),
root cur” = plug (Leaf seq’, ctx’)
and
snd (ctxLength ctx’) + (lengthSeq seq’)
> snd (curLength cur”)
and
snd (curLength cur™) > 2
Hence,

m (seq, ctx)
= m (seq’, ctx))
= More cur”

and, furthermore,

and

root cur”
= plug (Leaf seq’, ctx’)
= plug (Leaf pseq’, ctx)
= plug (Leaf seq, ctx)

by defn ofm (1), and (5)
by (12)

by (13)
by (6)
by (2)

snd (ctxLength ctx) + (lengthSeq seq)

>

Y

snd (ctxLength ctx)

snd ((ctxLength ctx) ++ (length (Leaf pseq’), 0))

snd ((ctxLength ctx’) ++ (O,

by defn ofsnd and++
lengthSeq")

by (7)

snd (ctxLength ctx’) + (lengthSeq seq’)

snd (curLength cur”)

by defn ofsnd and++
by (14)

(12)

(13)

(14)

(15)
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and
snd (curLength cur™)
> 2 by (15)

as required whem (seq, ctx) returnsMore cur”
e Suppose that the resultidore (useq’, pseq’)

Therefore,
mapUntilSeq cond (fn x => Xx) seq = More (useq’, pseq’)
(16)
By Property 3 withseq, cond and (16),
joinSeq (pseq’, useq’) = seq a7)

Proceed by cases ontheresulsndl (curLength ((pseq’,useq’), ctx)) >= 2

— Suppose that the resulttizie .

Therefore,
snd (curLength ((pseq’, useq’), ctx)) > 2 (18)
Hence,
m (seq, ctx)
= More ((pseq, useq’), Ctx)
by defn ofm (16), and (18)
and

root ((pseq’, useq’), ctx)
= plug (Leaf (joinSeq (pseq’, useq’)), ctx) by defn ofroot
= plug (Leaf seq, ctx) by (17)

and

snd (ctxLength ctx) + (lengthSeq seq)
= snd (ctxLength ctx) + (lengthSeq (joinSeq (pseq’, useq’)))
by (17)
= snd (ctxLength ctx) + (lengthSeq pseq’) + (lengthSeq useq’)

by defn oflengthSeq

andjoinSeq
> snd (ctxLength ctx) + (lengthSeq useq’)
= snd ((ctxLength ctx) ++ (lengthSeq pseq’, lengthSeq useq’)

by defn ofsnd and++

= snd (curLength ((pseq’, useq’), ctx)) by defn ofcurLength
and
snd (curLength ((pseq, useq), ctx))
> 2 by (18)
as required when m (seq, ctx) returns

More ((pseq’, useq’), ctx)
— Suppose that the resultfisise
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Therefore,
snd (curLength ((pseq’, useq’), ctx)) < 2 (29)

Note that
mapSeq (fn x => x) useq’ = useq (20)

is assumed to hold of an implementatiomadéipSeq.
By Lemma 4 withseq, ctx ,

mSeq (seq, ctx) = plug (Leaf seq, ctx) (22)
Hence,

m (seq, ctx)
= Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx))
by defn ofm (16), and (19)

and
mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)
= mSeq (joinSeq (pseq’, useq), ctx) by (20)
= mSeq (seq, ctx) by (17)
= plug (Leaf seq, ctx) by (21)
as required when m (seq, ctx) returns

Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx))
O

Theorem ImapLTSUntil is well-behaveyl
Property 2 holds for the implementationroBpL TSUntil

Forany ropep and any predicateond , if mapLTSUntil cond ( fn x => x) rp
returnsDone rp’ , then

P’ = 1p
and if it returnsMore cur’ |, then
root cur’ = I

and

length rp > lengthRight cur’
and

lengthRight cur’ > 2
Proof
Note that
mapLTSUntil cond ( fn x => x) 1p
= m (seq, ctx) by defn ofmapLTSUntil

where

(seq, ctx) = leftmost (rp, MCTop) (1)
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By Lemma 2 withrp , MCTop and (1),

plug (Leaf seq, ctx) = plug (rp, MCTop) (2)
and
(ctxLength ctx) ++ (0, lengthSeq seq) 3)
= (ctxLength MCTop) ++ (O, length rp)
and
(ctxSize ctx) ++ (0, 1) = (ctxSize MCTop) ++ (0, size rp)
(4)
Proceed by cases on the resultof(seq, ctx)
e Suppose that the result3one rp’ .
Therefore,
m (seq, ctx) = Done rp’ (5)
By Lemma 5 withctx , cond , and (5),
rp’ = plug (Leaf seq, ctx) (6)
Hence,
mapLTSUntil cond ( fn x => x) rp
= m (seq, ctx) by defn ofmapLTSUntil
= Done rp’ by (5)
and
rp’
plug (Leaf seq, ctx) by (6)
= plug (rp, MCTop) by (2)
rp by defn ofplug
as required when mapLTSUntil cond ( fn x => X) rp returns
Done rp’ .
e Suppose that the resultidore cur’
Therefore,
m (seq, ctx) = More cur (7
By Lemma 5 withctx , cond , and (7),
root cur’ = plug (Leaf seq, ctx) (8)
and
snd (ctxLength ctx) + (lengthSeq seq) > snd (curLength cur’)
9)
and
snd (curLength cur’) > 2 (20)



54 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Hence,
mapLTSUntil cond ( fn x => x) rp
= m (seq, ctx) by defn ofmapLTSUntil
= More cur by (7)
and
root cur’
= plug (Leaf seq, ctx) by (8)
= plug (rp, MCTop) by (2)
p by defn ofplug
and
length rp
= snd((0, 0) ++ (O, length rp))
by defn ofsnd and++
= snd((ctxLength MCTop) ++ (O, length rp))
by defn ofctxLength
= snd((ctxLength ctx) ++ (0, lengthSeq seq))
by (3)
= snd(ctxLength ctx) + (lengthSeq seq)
by defn ofsnd and++
> snd (curLength cur’) by (9)
and
snd (curLength cur’)
> 2 by (10)
as required when mapLTSUntil cond ( fn x => X) rp returns
More cur’

A.3 split andj oi n arewell-behaved

The well-behavedness of oagplit andjoin  operations will depend on the property
that thezipCursor  operation is a left-inverse of thenzipCursor  operation.

Lemma 6
For any (zipped) contexttx ,

ZipCtx (unzipCtx ctx) ctx

Proof
By structural induction otx . [

Lemma 7
For any (zipped) cursaur ,

zipCursor (unzipCursor cur) = cur

Proof
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By Lemma6. O

We have thatdivideRopes (rps, n) returns(rpsl, rp, k, rps2) such
thatrpsl @ [rp] @ rps2 s equal tarps andk is the index inrfp at which thent”
element ofrps is found.

Lemma 8
For any nonempty list of ropesps and any integern, such that0<n
and n < sumLengths rps if divideRopes (rps, n) returns
(rps1, rp, k, rps2) , then

psl @ [rp] @ rps2 = r1ps
and

length rp < k

and

k = n - (sumLengths rpsl)
Proof

By structural induction omps . [

We have thattheoot operation is a left-inverse of treplitAtAsCur operation and
also thasplitAtAsCur returns a cursor in which the “hole” occurs betweenrtffeand
n+1%" elements of the rope .

Lemma9
Foranyropep and any integem, suchthat < nandn <length rp ,if splitAtAsCur (rp, n)
returnscur , then

root cur = rp
and
curLength cur = (n, (length rp) - n)

Proof
By structural inductionomp . [

Finally, we have that thdecodeRope operationis a left-inverse of tlecodeRopes
operation.

Lemma 10
For any nonempty list of ropegs ,

decodeRope (encodeRope rps) = Ips

Proof
By structural inductionomps . [

With the following theorem, we can conclude that our implemé&on ofsplit  and
join  can be used safely bmapLTS

Theorem 4split andjoin are well-behaveyl
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Property 1 holds for the implementationssplit ~ andjoin

For any cursocur , if split cur returns(rpl, rp2, reb) , then
join (rpl, rp2, reb) = cur
and
length rpl = (lengthRight cur) div 2
and
length rp2 = (lengthRight cur) - ((lengthRight cur) div 2)
Proof

By Lemmas 7, 8, 9 and 10.[]

A.4 mapLTSisshapepreserving

Theorem ImapLTSis shape preserving
For any ropep ,
mapLTS (fn x => x) rp = 1p
Proof
The proof is by strong induction dangth rp
The induction hypothesis is:
for anyrp’
such thatength rp’ <length rp
mapLTS (fn x => x) rp’ = rp

Proceed by cases on the resulbadpL TSUntil hungryProcs ( fnx =>x)rp .

e Suppose that the resultone rp’ .

Therefore,
mapLTSUntil hungryProcs ( fnx =>x)rp = Done rp’
1)
By Property 2 withrp andhungryProcs and (1),
P’ = 1p 2)
Therefore,
mapLTS (fn x => x) rp
= rp by defn ofmapLTSand (1)
=1 by (2)
e Suppose that the resultidore cur’
Therefore,
mapLTSUntil hungryProcs ( fnx =>x)rp = More cur

(3)
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By Property 2 withrp andhungryProcs and (3),

root cur’ = 1p (4)
and
length rp > lengthRight cur’ (5)
and
lengthRight cur’ > 2 (6)
Note thatlengthRight cur’ > 2 implies that
lengthRight cur’ > (lengthRight cur’) div 2 (7
and
(lengthRight cur’) div 2 > 1 (8)
By Property 1,
join (rpl, rp2, reb) = cur 9)
and
length rpl = (lengthRight cur’) div 2 (10)
and
length rp2
= (lengthRight cur’) - ((lengthRight cur’) div 2)
(11)
Note that
length rpl
= (lengthRight cur’) div 2 by (10)
< lengthRight cur’ by (7)
< length rp by (5)
Hence,
length rpl < length rp (12)
By the induction hypothesis wittpl and (12),
mapLTS (fn x => x) rpl = rpl (13)
Note that
length rp2
= (lengthRight cur’) - ((lengthRight cur’) div 2)
by (11)
< (lengthRight cur’) - 1 by (8)
< lengthRight cur’
< length rp by (5)
Hence,

length rp2 < length rp (14)
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By the induction hypothesis wittp2 and (14),
mapLTS (fn x => x) rp2 = rp2

Note that, by the definitions ahapLTSandpar2 ,

rpl’ = mapLTS (fn x => x) rpl
and

rp2’ = mapLTS (fn x => x) rp2
Therefore,

mapLTS (fn x => x) rp
= root (join (rpl’, rp2’, reb))

A. Shaw

(15)

(16)

(17)

by defn ofmapLTSand (3)

root (join (rpl, rp2’, reb))
root (join (rpl, rp2, reb))
root cur’

p

by (16) and (13)
by (17) and (15)
by (9)
by (4)



