
Lazy Tree Splitting

LARS BERGSTROM
University of Chicago

larsberg@cs.uchicago.edu

MATTHEW FLUET
Rochester Institute of Technology

mtf@cs.rit.edu

MIKE RAINEY ∗

Max Planck Institute for Software Systems
mrainey@mpi-sws.org

JOHN REPPY
University of Chicago

jhr@cs.uchicago.edu

ADAM SHAW
University of Chicago

ams@cs.uchicago.edu

Abstract

Nested data-parallelism (NDP) is a language mechanism thatsupports programming irregular par-
allel applications in a declarative style. In this paper, wedescribe the implementation of NDP in
Parallel ML (PML), which is part of the Manticore system. Oneof the main challenges of imple-
menting NDP is managing the parallel decomposition of work.If we have too many small chunks
of work, the overhead will be too high, but if we do not have enough chunks of work, processors
will be idle. Recently the technique of Lazy Binary Splitting was proposed to address this problem
for nested parallel loops over flat arrays. We have adapted this technique to our implementation of
NDP, which uses binary trees to represent parallel arrays. This new technique, which we callLazy
Tree Splitting(LTS), has the key advantage ofperformance robustness; i.e., that it does not require
tuning to get the best performance for each program. We describe the implementation of the standard
NDP operations using LTS and we present experimental data that demonstrates the scalability of LTS
across a range of benchmarks.

1 Introduction

Nested data-parallelism (NDP) (Blellochet al., 1994) is a declarative style for program-
ming irregular parallel applications. NDP languages provide language features favoring the
NDP style, efficient compilation of NDP programs, and various common NDP operations
like parallel maps, filters, and sum-like reductions. Irregular parallelism is achieved by the

∗ Portions of this work were completed while the author was affiliated with the University of Chicago.

2 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

fact that nested arrays need not haveregular, or rectangular, structure;i.e., subarrays may
have different lengths. NDP programming is supported by a number of different parallel
programming languages (Chakravartyet al., 2007; Ghuloumet al., 2007), including our
ownParallel ML (PML) (Fluetet al., 2008a).

On its face, implementing NDP operations seems straightforward because individual
array elements are natural units for creatingtasks, which are small, independent threads
of control.1 Correspondingly, a simple strategy is to spawn off one task for each array
element. This strategy is unacceptable in practice, as there is a scheduling cost associated
with each task (e.g., the cost of placing the task on a scheduling queue) and individual
tasks often perform only small amounts of work. As such, the scheduling cost of a given
task might exceed the amount of computation it performs. If scheduling costs are too large,
parallelism is not worthwhile.

One common way to avoid this pitfall is to group array elements into fixed-size chunks
of elements and spawn a task for each chunk.Eager Binary Splitting(EBS), a variant
of this strategy, is used by Intel’s Thread Building Blocks (TBB) (Intel, 2008; Robison
et al., 2008) and Cilk++ (Leiserson, 2009). Choosing the right chunk size is inherently
difficult, as one must find the middle ground between undesirable positions on either side.
If the chunks are too small, performance is degraded by the high costs of the associated
scheduling and communicating. By contrast, if the chunks are too big, some processors go
unutilized because there are too few tasks to keep them all busy.

One approach to picking the right chunk size is to use static analysis to predict task ex-
ecution times and pick chunk sizes accordingly (Tick & Zhong, 1993). But this approach
is limited by the fact that tasks can run for arbitrarily different amounts of time, and these
times are difficult to predict in specific cases and impossible to predict in general. Dynamic
techniques for picking the chunk size have the advantage that they can base chunk sizes
on runtime estimates of system load.Lazy Binary Splitting(LBS) is one such chunking
strategy for handling paralleldo-all loops (Tzanneset al., 2010). Unlike the two afore-
mentioned strategies, LBS determines chunks automatically and without programmer (or
compiler) assistance and imposes only minor scheduling costs.

This paper presents an implementation of NDP that is based onour extension of LBS to
binary trees, which we callLazy Tree Splitting(LTS). LTS supports operations that produce
and consume trees where tree nodes are represented as records allocated in the heap. We
are interested in operations on trees because Manticore, the system that supports PML,
usesropes(Boehmet al., 1995), a balanced binary-tree representation of sequences, as
the underlying representation of parallel arrays. Our implementation is purely functional
in that it works with immutable structures, although some imperative techniques are used
under the hood for scheduling.

LTS exhibitsperformance robustness; i.e., it provides scalable parallel performance
across a range of different applications and platforms without requiring any per-application
tuning. Performance robustness is a highly desirable characteristic for a parallel program-
ming language, for obvious reasons. Prior to our adoption ofLTS, we usedEager Tree
Splitting (ETS), a variation of EBS. Our experiments demonstrate thatETS lacks perfor-

1 We do not addressflattening(or vectorizing) (Keller, 1999; Leshchinskiy, 2005) transformations here, since
the techniques of this paper apply equally well to flattened or non-flattened programs.

Lazy Tree Splitting 3

mance robustness: the tuning parameters that control the decomposition of work are very
sensitive to the given application and platform. Furthermore, we demonstrate that the per-
formance of LTS compares favorably to that of (ideally-tuned) ETS across our benchmark
suite.

This manuscript incorporates three substantial improvements to the material presented
in the ICFP’10 paper of the same name. First, we identify a potential issue in our old
approach where certain patterns of tree splitting can produce trees with arbitrary imbal-
ance. We address this issue in Section 4 by presenting a new cursor-splitting technique and
proving that the corresponding rope-processing codes are balance preserving. Second, we
present new benchmarking results from a larger, 48-core machine and demonstrate good
scalability. Third, we present new experiments and examinethe performance results in
more depth.

2 Nested data-parallelism

In this section we give a high-level description of PML and discuss the runtime mech-
anisms we use to support NDP. More detail can be found in our previous papers (Fluet
et al., 2007a; Fluetet al., 2007b; Fluetet al., 2008a).

2.1 Programming model

PML is the programming language supported by the Manticore system.2 Our programming
model is based on a strict and mutation-free functional language (a subset of Standard
ML (Milner et al., 1997)), which is extended with support for multiple forms of paral-
lelism. We provide fine-grain parallelism through several lightweight syntactic constructs
that serve as hints to the compiler and runtime that the program may benefit from execut-
ing the computation in parallel. For this paper, we are primarily concerned with the NDP
constructs, which are based on those found in NESL (Blelloch, 1990b; Blelloch, 1996).

PML provides aparallel array type constructor (parray) and operations to map, filter,
reduce, and scan these arrays in parallel. Like most languages that support NDP, PML
includes comprehension syntax for maps and filters, but for this paper we omit the syntactic
sugar and restrict ourselves the following interface:

type ’a parray
val range : int * int -> int parray
val mapP : (’a -> ’b) -> ’a parray -> ’b parray
val filterP : (’a -> bool) -> ’a parray -> ’a parray
val reduceP : (’a * ’a -> ’a) -> ’a -> ’a parray -> ’a
val scanP : (’a * ’a -> ’a) -> ’a -> ’a parray -> ’a parray
val map2P : (’a * ’b -> ’c)

-> (’a parray * ’b parray)
-> ’c parray

The functionrange generates an array of the integers between its two arguments. The
functionmapPapplies a function to all the elements of aparray in parallel.filterP

2 Manticore may support other parallel languages in the future.

4 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

applies a predicate in parallel over the inputparray to produce a newparray contain-
ing only those elements corresponding to a true result from the predicate. The function
reduceP takes a binary operator along with an identity value and applies the operator
in parallel to the values in theparray until reaching a final result value. The function
scanP produces a parallel prefix scan of the array. BothreduceP andscanP assume
that the binary operation is associative. Finally, the function map2P applies a function
to pairs of elements of twoparray s in parallel; the output array has the length of the
shorter input array. These parallel-array operations havebeen used to specify both SIMD
parallelism that is mapped onto vector hardware (e.g., Intel’s SSE instructions) and SPMD
parallelism where parallelism is mapped onto multiple cores; this paper focuses on exploit-
ing the latter.

As a simple example, the main loop of a ray tracer generating an image of widthw and
heighth can be written

fun raytrace (w, h) =
mapP (fn y => mapP (fn x => trace (x, y))

(range (0,w-1)))
(range (0,h-1))

This parallel map within a parallel map is an example ofnested data-parallelism. Note that
the time to compute one pixel depends on the layout of the scene, because the ray cast from
position(x,y) might pass through a subspace that is crowded with reflectiveobjects or it
might pass through relatively empty space. Thus, the amountof computation performed by
the trace(x,y) expression (and, therefore, performed by the innermapPexpression)
might differ significantly depending on the layout of the scene. The main contribution
of this paper is a technique for balancing the parallel execution of such irregular parallel
programs in functional programming languages with ropes.

2.2 Runtime model

The Manticore runtime system consists of a small core written in C, which implements
a processor abstraction layer, garbage collection, and a few basic scheduling primitives.
The rest of our runtime system is written in BOM, a PML-like language. BOM supports
several mechanisms, such as first-class continuations and mutable data structures, that are
useful for programming schedulers but are not in PML. Further details on our system may
be found elsewhere (Fluetet al., 2008b; Rainey, 2009; Rainey, 2007).

A task scheduling policy determines the order in which tasksexecute and the mappings
from tasks to processors. Our LTS is built on top of a particular task scheduling policy
called work stealing(Burton & Sleep, 1981; Halstead Jr., 1984). In work stealing, we
employ a group of workers, one per processor, that collaborate on a given computation.
The idea is that idle workers which have no useful work to do bear most of the scheduling
costs and busy workers which have useful work to do focus on finishing that work.

We use the following well-known implementation of work stealing (Blumofe & Leis-
erson, 1999; Frigoet al., 1998). Each worker maintains a deque (double-ended queue)of
tasks, represented as thunks. When a worker reaches a point of potential parallelism in the
computation, it pushes a task for one independent branch onto the bottom of the deque
and continues executing the other independent branch. Uponcompletion of the executed

Lazy Tree Splitting 5

branch, it pops a task off the bottom of the deque and executesit. If the deque is not empty,
then the task is necessarily the most recently pushed task; otherwise all of the local tasks
have been stolen by other workers and the worker must steal a task from the top of some
other worker’s deque. Potential victims are chosen at random from a uniform distribution.

This work-stealing scheduler can be encapsulated in the following function, which is
part of the runtime system core:

val par : (unit -> ’a) * (unit -> ’b) -> ’a * ’b

When a workerP executespar (f , g) , it pushes the taskg onto the bottom of its deque3

and then executesf () . When the computation off () completes with resultrf ,P attempts
to popg from its deque. If successful, thenP will evaluateg() to a resultrg and return the
pair (rf , rg) . Otherwise, some other workerQ has stoleng, soP writesrf into a shared
variable and looks for other work to do. WhenQ finishes the evaluation ofg() , then it
will pass the pair of results to the return continuation of the par call. The scheduler also
provides a generalization ofpar to a list of thunks.

val parN : (unit -> ’a) list -> ’a list

This function can be defined in terms ofpar , but we use a more efficient implementation
that pushes all of the tasks in its tail onto the deque at once.

2.3 Ropes

In the Manticore system, we use ropes as the underlying representation of parallel arrays.
Ropes, originally proposed as an alternative to strings, are persistent balanced binary trees
with seq s, contiguous arrays of data, at their leaves (Boehmet al., 1995). For the purposes
of this paper, we define the rope type as follows.

datatype ’a rope
= Leaf of ’a seq
| Cat of ’a rope * ’a rope

However, in our actual implementation there is extra information in theCat nodes to sup-
port balancing. Read from left to right, the data elements atthe leaves of a rope constitute
the data of the parallel array it represents.

Since ropes can be physically dispersed in memory, they are well-suited to being built in
parallel, with different processors simultaneously working on different parts of the whole.
Furthermore, the rope data structure is persistent, which provides, in addition to the usual
advantages of persistence, two special advantages relatedto memory management. First,
we can avoid the cost of store-list operations (Appel, 1989), which are sometimes necessary
for maintaining an ephemeral data structure. Second, a parallel memory manager, such as
the one used by Manticore (Fluetet al., 2008b), can avoid making memory management a
sequential bottleneck by letting processors allocate and reclaim subropes independently.

As a parallel-array representation, ropes have several weaknesses when compared to
contiguous arrays of, say, unboxed doubles. First, rope random access requires logarithmic
time. Second, keeping ropes balanced requires extra computation. Third, mapping over

3 Strictly speaking, it pushes a continuation that will evaluateg() .

6 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

multiple ropes is more complicated than mapping over multiple arrays, since the ropes can
have different shapes. In our performance study in Section 5, we find that these weaknesses
are not a limitation in practice and we know of no study in which NDP implementations
based on ropes are compared side by side with implementations based on alternative rep-
resentations, such as contiguous arrays.

The maximum length of the linear sequence at each leaf of a rope is controlled by a
compile-time constantM . At run-time, a leaf contains a number of elementsn such that
0 ≤ n ≤ M . In general, rope operations try to keep the size of each leafas close toM as
possible, although some leaves will necessarily be smaller. We do not demand that a rope
maximize the size of its leaves.

Requiring perfect balance of all ropes can lead to excessiverebalancing, because even
a small change to a given rope can make the rope unbalanced. Thus, we use a different
balancing policy that still maintains the asymptotic behavior of rope operations but where
ropes are allowed to become slightly unbalanced. For a givenroper of depthd and length
n, our relaxed balancing goal isd ≤ ⌈log2 n⌉ + 2. This property is guaranteed by the
function

val balance : ’a rope -> ’a rope

which takes a roper and returns a balanced rope equivalent tor (returningr itself if it is
already balanced). This function uses a simple parallel balancing algorithm that executes in
timeO(n) on a single processor andO(d2) time on an unbounded number of processors.
The idea is to repeatedly split the given rope into two halvesof equal size, recursively
balance each half in parallel, and to concatenate the two balanced subropes. The base case
occurs when the length of the given rope falls belowM , in which case the algorithm
serially flattens the rope to create a single leaf node.

As noted above, rope operations try to keep the size of each leaf as close toM as possi-
ble. To build ropes, rather than using theCat constructor directly, we define a specialized
constructor:

val cat : ’a rope * ’a rope -> ’a rope

If cat is applied to two small leaves, it can coalesce them into a single larger leaf. Note
thatcat does not guarantee balance, although it will maintain balance if applied to two
balanced ropes of equal size. We also define a similar function

val catN : ’a rope list -> ’a rope

which returns the smart concatenation of its argument ropes.
We sometimes need a fast, cheap operation for splitting a rope into multiple subropes.

For this reason, we provide

val split : ’a rope -> ’a rope * ’a rope

which splits its rope argument into two subropes such that the sizes of these ropes differ by
at most one. We also define

val splitN : ’a rope * int -> ’a rope list

Lazy Tree Splitting 7

which splits its parameter inton subropes, where each subrope has thesamesize, except
for one subrope that might be smaller than the others.

We sometimes use

val length : ’a rope -> int

which returns the number of elements stored in the leaves of arope and

val size : ’a rope -> int

which returns the number of leaves of a rope.4

The various parallel-array operations described in Section 2.1 are implemented by anal-
ogous operations on ropes. Sections 3 and 4 describes the implementation of these rope-
processing operations in detail.

3 The Goldilocks problem

In NDP programs, computations are divided into chunks, and chunks of work are spawned
in parallel. Those chunks might be defined by subsequences (of arrays, for example, or, in
our case, ropes) or iteration spaces (say,k to somek + n). The choice of chunk size influ-
ences performance crucially. If the chunks are too small, there will be too much overhead
in managing them; in extreme cases, the benefits of parallelism will be obliterated. On the
other hand, if they are too large, there will not be enough parallelism, and some processors
may run out of work. An ideal chunking policy apportions chunks that are neither too large
nor too small, but are, like Goldilocks’s third bowl of porridge, “just right.” Some different
chunking policies are considered in the sequel.

3.1 Fragile chunking policies

A fragile chunking policy is prone either to creating an excessive number of tasks or to
missing significant opportunities for parallelism. Let us consider two simple policies,T -
ary decomposition and structural decomposition, and the reasons that they are fragile. In
T -ary decomposition, we split the input rope intoT = min(n, J × P) chunks, wheren
is the size of the input rope,J is a fixed compile-time constant, andP is the number of
processors, and spawn a task for each chunk. For example, in Figure 1(a), we show theT -
ary decomposition version of the map operation.5 In computations where all rope elements
take the same time to process, such as those performed by regular affine (dense-matrix)
scientific codes, theT -ary decomposition will balance the work load evenly acrossall
processors because all chunks will take about the same amount of time. On the other hand,
when rope elements correspond to varying amounts of work, performance will be fragile
because some processors will get overloaded and others underutilized. Excessive splitting
is also a problem. Observe that if a program createsi levels ofmapTary applications and

4 In our actual implementation, these operations are constant time, as we cache lengths and sizes inCat nodes.
5 In this and subsequent examples, we use

val mapSequential : (’a -> ’b) -> ’a rope -> ’b rope

which is the obvious sequential implementation of the map operation.

8 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

fun mapTary J f rp = let
fun g chunk = fn () => mapSequential f chunk
val n = length rp
val chunks = splitN (rp, min (n, J * numProcs ()))
in

catN (parN (List.map g chunks))
end

(a) T -ary decomposition

fun mapStructural f rp = (case rp
of Leaf s => Leaf (mapSeq f s)
| Cat (l, r) =>

Cat (par (fn () => mapStructural f l,
fn () => mapStructural f r)))

(b) structural decomposition

Fig. 1. Two fragile implementations of the map operation.

if each rope has lengthn ≥ J × P , then theT -ary decomposition creates(J × P)i tasks
at the leaves alone, which can be excessive when eitheri orP get large.

To remedy the imbalance problem, we might try structural decomposition, in which
both children of aCat node are processed in parallel and the elements of aLeaf node are
processed sequentially. We show the structural version of the map operation in Figure 1(b).
Recall that the maximum size of a leaf is determined by a fixed,compile-time constant
calledM and that rope-producing operations tend to keep the size of each leaf close toM .
But by choosing anM > 1, some opportunities for parallelism will always be lost andby
choosingM = 1, an excessive number of threads may be created, particularly in the case
of nested loops.

3.2 Eager binary splitting

EBS is a well-known approach that is used by many parallel libraries and languages, in-
cluding Threading Building Blocks (Intel, 2008; Robisonet al., 2008)6 and Cilk++ (Leis-
erson, 2009). In EBS (and, by extension, eager tree splitting (ETS)), we group elements
into fixed-size chunks and spawn a task for each chunk. This grouping is determined by
the following recursive process. Initially, we group all elements into a single chunk. If the
chunk size is less than the stop-splitting threshold (SST), evaluate the elements sequen-
tially.7 Otherwise, we create two chunks by dividing the elements in half and recursively
apply the same process to the two new chunks. In Figure 2, we show the ETS version of
the map operation.

EBS has greater flexibility than theT -ary or structural decompositions because EBS
enables chunk sizes to be picked manually. But this flexibility is not much of an improve-
ment, because, as is well known (Intel, 2008; Robisonet al., 2008; Tzanneset al., 2010),
finding a satisfactorySST can be difficult. This difficulty is due, in part, to the fact that

6 In the TBB manual, the option “simple partitioner” refers toEBS.
7 In TBB, if SST is unspecified, the default isSST = 1, whereas Cilk++ only usesSST = 1.

Lazy Tree Splitting 9

fun mapETS SST f rp =
if length rp <= SST then mapSequential f rp
else let

val (l, r) = split rp
in

cat (par (fn () => mapETS SST f l,
fn () => mapETS SST f r))

end

Fig. 2. The ETS implementation of the map operation.

parallel speedup is very sensitive toSST . We ran an experiment that demonstrates some of
the extent of this sensitivity. Figure 3 shows, for seven PMLbenchmarks (see Section 5 for
benchmark descriptions), parallel speedup as a function ofSST . The results demonstrate
that there is noSST that is optimal for every program and furthermore that a poorSST is
far from optimal.

The Raytracer benchmark demonstrates, in particular, how fragile ETS can be with re-
spect to nesting and to relatively small ropes. Raytracer loses all of its speedup asSST is
changed from26 to 29. To understand why, first note that the two-dimensional output of the
program is a29 × 29 rope of ropes, representing the pixels of a square image. When, for
instance,SST = 27, Raytracer has just sixteen chunks that it can process in parallel: four
for each row and four for each column, and whenSST ≥ 29, Raytracer has just one chunk
it can process at a time (no parallelism). We could address this problem by transforming
the two-dimensional representation into a single flat rope,but then the clarity of the code
would be compromised, as we would have to use index arithmetic to extract any pixel. As
a rule, our compiler should not encourage programmers to break with NDP style to achieve
best performance.

Recall that task execution times can vary unpredictably. Chunking policies that are based
solely on fixed thresholds, such as EBS and ETS, are bound to befragile because they rely
on accurately predicting execution times. A superior chunking policy would be able to
adapt dynamically to the current load across processors.

3.3 Lazy binary splitting

The LBS policy of Tzannes,et al. (Tzanneset al., 2010) is a promising alternative to
the other policies because it dynamically balances load. Tzannes,et al. show that LBS is
capable of performing as well or better than each configuration of eager binary splitting,
and does so without tuning.

LBS is similar to eager binary splitting but with one key difference. In LBS, we base
each splitting decision entirely on a dynamic estimation ofload balance. Let us consider
the main insight behind LBS. We call a processor hungry if it is idle and ready to take on
new work, and busy otherwise. It is better for a given processor to delay splitting a chunk
and to continue processing local iterations while remote processors remain busy. Splitting
can only be profitable when a remote processor is hungry.

Although this insight is sound, it is still unclear whether it is useful. A naı̈ve hungry-
processor check would require inter-processor communication, and the cost of such a check

10 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

SST

sp
ee

du
p

Barnes Hut
Black Scholes
DMM

Raytracer
Nested Sums
Quicksort

SMVM

20 22 24 26 28 210 212 214

0

8

16

24

32

40

48

Fig. 3. Parallel speedup as a function of the Stop-SplittingThreshold (SST) (48 processors).

would hardly be an improvement over the cost of spawning a thread. For now, let us assume
that we have a good approximate hungry-processor check

val hungryProcs : unit -> bool

which returnstrue if there is probably a remote hungry processor andfalse otherwise.
Later we explain how to implement such a check.

LBS works as follows. The scheduler maintains a current chunk c and a pointeri that
points at the next iteration in the chunk to process. Initially, the chunk contains all itera-

Lazy Tree Splitting 11

tions andi = 0. To process an iterationi, the scheduler first checks for a remote hungry
processor. If the check returns false, then all of the other processors are likely to be busy,
and the scheduler greedily executes the body of iterationi. If the check returns true, then
some of the other processors are likely to be hungry, and the scheduler splits the chunk in
half and spawns a recursive instance to process the second half.

Tzannes,et al. (Tzanneset al., 2010) show how to implement an efficient and accurate
hungry-processor check. Their idea is to derive such a checkfrom the work stealing policy.
Recall that, in work stealing, each processor has a deque, which records the set of tasks
created by that processor. The hungry-processor check bases its approximation on the size
of the local deque. If the deque of a given processor containssome existing tasks, then
these tasks have not yet been stolen, and therefore it is unlikely to be profitable to add
to these tasks by splitting the current chunk. On the other hand, if the deque is empty,
then it is a strong indication that there is a remote hungry processor, and it is probably
worth splitting the current chunk. This heuristic works surprisingly well considering its
simplicity. It is cheap because the check itself requires two local memory accesses and a
compare instruction, and it provides an estimate that our experiments have shown to be
accurate in practice.

Let us consider how LBS behaves with respect to loop nesting.Suppose our computation
has the form of a doubly-nested loop, one processor is executing an iteration of the inner
loop, and all other processors are hungry. Consequently, the remainder of the inner loop
will be split (possibly multiple times, as work is stolen from the busy processor and further
split), generating relatively small chunks of work for the other processors. Because the
parallelism is fork-join, the only way for the computation to proceed to the next iteration
of the outer loop is for all of the work from the inner loop to becompleted. At this point,
all processors are hungry, except for the one processor thatcompleted the last bit of inner-
loop work. This processor has an empty deque; hence, when it starts to execute the next
iteration of the outer loop, it will split the remainder of the outer loop.

Because there is one hungry-processor check per loop iteration, and because loops are
nested, most hungry-processor checks occur during the processing of the innermost loops.
Thus, the general pattern is clear: splits tend to start during inner loops and then move
outward quickly.

4 Lazy tree splitting

LTS operations are not as easy to implement as ETS operations, because, during the exe-
cution of any given LTS operation, a split can occur while processingany rope element.
This section presents implementations of five important LTSoperations. The implemen-
tations we use are based on Huet’s zipper technique (Huet, 1997) and a new technique
we callcursor splitting. We first look in detail at the LTS version of map (mapLTS), be-
cause its implementation provides a simple survey of our techniques. We then summarize
implementations of the additional operations.

12 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

4.1 Implementing mapLTS

Structural recursion, on its own, gives no straightforwardway to implementmapLTS.
Consider the case in whichmapLTS detects that another processor is hungry. How can
mapLTSbe ready to halve the as-yet-unprocessed part of the rope, keeping in mind that,
at the halving moment, the focus might be on a mid-leaf element deeply nested within a
number ofCat nodes? In a typical structurally-recursive traversal (e.g., Figure 1(b)), the
code has no explicit handle on either the processed portion of the rope or the unprocessed
remainder of the rope; it can only see the current substructure. An implementation needs
to be able to step through a traversal in such a way that it can,at any moment, pause the
traversal, reconstruct both the processed results and the unprocessed remainder, divide the
unprocessed remainder in half, and resume processing at thepause point.

An implementation ofmapLTSshould also bebalance preserving, meaning that a bal-
anced input rope is mapped to a balanced output rope. Withoutbalance preservation, chains
of mapLTSapplications can, under the right circumstances, yield ropes that are arbitrar-
ily unbalanced. While it may at first appear that balanced ropes are unnecessary, since the
structure of the rope is not used to guide the creation of parallel computations, balance
is nonetheless important to guarantee an efficient algorithm for dividing the unprocessed
remainder of a paused traversal. In fact, we will demonstrate a stronger property: that our
implementation ofmapLTS is shape preserving, meaning that an input rope is mapped to
an output rope with exactly the same shape. Hence, throughout the following and in Ap-
pendix A, equalities in properties, lemmas, theorems, and proofs denote structural equality
of objects. Note that shape preservation implies balance preservation.

4.1.1 Cursor interface

A key component of our approach is a data structure called acursor which represents an
intermediate step of a map computation.8

type (’b, ’a) map_cur

The cursor records the subropes that have been processed so far, the subropes that remain
to be processed, and enough information so that the exact tree structure of the correspond-
ing rope can always be recovered. In the cursor,’b is the type of the elements of the
elements of the processed subropes and’a is the type of the elements of the unprocessed
subropes. Conceptually, a cursor describes a point in the rope with processed elements to
the left and unprocessed elements to the right. In Section 4.1.3, we will see that cursors
are implemented using techniques similar to Huet’s zippers(Huet, 1997) and McBride’s
contexts (McBride, 2008).

Let us introduce a few simple operations over cursors so thatwe can describe the se-
quential part ofmapLTS. Theroot operation returns the rope corresponding to the given
cursor for the special case that the types of the unprocessedand processed elements are the
same.

8 We name the type constructormap_cur because other rope operations require a different type of cursor; see
Section 4.2.

Lazy Tree Splitting 13

val root : (’b, ’b) map_cur -> ’b rope

Because ropes are homogenous with respect to their element type, it is not possible to
obtain a rope from a cursor when the types of the unprocessed and processed elements are
different.

The lengthRight operation returns the number of unprocessed data elements of the
given cursor, which we consider to be to the right of the cursor’s focus.

val lengthRight : (’b, ’a) map_cur -> int

Since a cursor represents an intermediate step of map computation with both processed
and unprocessed elements, it must be possible to split a cursor into the processed elements
and two ropes of unprocessed elements and to later join two ropes together with the pro-
cessed elements. Thesplit andjoin operations provide this behavior.

val split : (’b, ’a) map_cur
-> (’a rope * ’a rope * ’b map_cur_reb)

val join : (’a rope * ’a rope * ’b map_cur_reb)
-> (’b, ’a) map_cur

The callsplit cur returns(rp1, rp2, reb) whererp1 andrp2 are ropes, such
that the roperp1 contains the first half of the unprocessed data elements ofcur , the
roperp2 contains the remaining unprocessed data elements ofcur , andreb is a special
rebuildervalue. For the time being, we usemap_cur_reb as an abstract type constructor
without a specific implementation.

type ’b map_cur_reb

This rebuilder value records sufficient information so thatthe original cursorcur can be
reconstructed by thejoin operation. The calljoin (rp1, rp2, reb) rebuilds the
cursorcur that is uniquely determined by its three arguments.

To prove that ourmapLTS implementation is shape preserving, we will rely on the
implementations ofsplit andjoin to be well-behaved, as expressed by the following
property:

Property 1(split and join are well-behaved)
For any cursorcur , if split cur returns(rp1, rp2, reb) , then

join (rp1, rp2, reb) = cur

and

length rp1 = (lengthRight cur) div 2

and

length rp2
= (lengthRight cur) - ((lengthRight cur) div 2)

4.1.2 mapLTS implementation

We factor the implementation ofmapLTS into a coordination portion, which is responsi-
ble for introducing parallelism by splitting and joining cursors, and a computation portion,

14 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

which is responsible for performing the mapping computation and stepping through in-
termediate cursors. This computational portion ofmapLTS is provided by an auxiliary
operation namedmapLTSUntil , which is additionally capable of pausing its traversal
based on the results of a runtime predicate.

val mapLTSUntil : (unit -> bool)
-> (’a -> ’b)
-> ’a rope
-> ((’b, ’a) map_cur, ’b rope) progress

The first argument tomapLTSUntil is a polling function (e.g., hungryProcs); the sec-
ond argument is a function to be applied to the individual data elements; and the third argu-
ment is a rope. The result ofmapLTSUntil is a value of type
((’a, ’b) map_cur, ’b rope) progress , where theprogress type con-
structor9 is defined as

datatype (’m, ’d) progress
= More of ’m
| Done of ’d

WhenmapLTSUntil returns a valueMore cur’ , it represents the intermediate cursor
whenmapLTSUntil was paused, and when it returns aDone rp’ , it represents the fully
processed rope. The evaluation ofmapLTSUntil cond f rp proceeds by applyingf
to the elements ofrp from left to right until eithercond () returnstrue or the whole
rope is processed.

To prove that ourmapLTS implementation is shape preserving, we will rely on the im-
plementation ofmapLTSUntil to be well-behaved. Primarily, we require thatmapLTS-
Until preserves the shape of the input rope. We also require thatmapLTSUntil only
pauses and returns a new cursor when the number of unprocessed elements of the result
cursor is less than or equal to that of the input rope and is greater than or equal to two.
We require this behavior for two reasons. First, for termination, we require the number of
unprocessed elements of the result cursor to be less than or equal to that of the input rope
and to be greater than or equal to two so that splitting this cursor yields non-empty ropes
that are strictly smaller than the input rope; this avoids the need for extraneous base cases.
Second, for performance, we note that it is not worthwhile topause execution if there are
fewer than two unprocessed elements. In that case there is noopportunity for parallelism,
and, as such, it is better to simply finish the map computationwith a sequential execution.
Although this second requirement seems unrelated to shape preservation, it is necessary to
require this behavior to prove that the implementation thatwe give formapLTS is shape
preserving. These requirements are expressed by the following property:

Property 2(mapLTSUntil is well-behaved)
For any roperp and any predicatecond , if mapLTSUntil cond (fn x => x) rp
returnsDone rp’ , then

rp’ = rp

9 Theprogress type constructor is used elsewhere in the implementation atdifferent types, which motivates
its polymorphic definition.

Lazy Tree Splitting 15

fun mapLTS f rp =
(case mapLTSUntil hungryProcs f rp

of Done rp’ => rp’
| More cur’ => let

val (rp1, rp2, reb) = split cur’
val (rp1’, rp2’) =

par (fn () => mapLTS f rp1,
fn () => mapLTS f rp2)

in
root (join (rp1’, rp2’, reb))

end)

Fig. 4. The LTS implementation of the map operation.

and if it returnsMore cur’ , then

root cur’ = rp

and

length rp ≥ lengthRight cur’

and

lengthRight cur’ ≥ 2

Figure 4 gives our implementation ofmapLTS. ThemapLTSfunction attempts to com-
plete its given map computation sequentially by callingmapLTSUntil on the roperp . If
the call tomapLTSUntil returnsDone rp’ , then the rmap computation is complete and
mapLTSreturns the result roperp’ . Otherwise, ifmapLTSUntil returnsMore cur’ ,
thenmapLTS splits the remaining map computation in half (usingsplit), recursively
processes the two halves in parallel (usingpar), and joins the recursive results together
(usingjoin). The result ofmapLTS is the rope obtained by applyingroot to the result
cursor from thejoin operation.

Using our previously stated properties, we can prove that this implementation ofmapLTS
is shape preserving.

Theorem 1(mapLTSis shape preserving)
For any roperp ,

mapLTS (fn x => x) rp = rp

Proof
The proof is by strong induction onlength rp , using Properties 2 and 2.
See Appendix A.4 for a detailed proof.

It remains to implement the cursor type, themapLTSUntil operation, and thesplit
andjoin operations.

4.1.3 Cursor implementation

The crucial property ofmapLTSUntil is that during the traversal of the input rope, it
must maintain sufficient information to pause the traversalat any moment and reconstruct

16 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

both the processed portion of the rope and the unprocessed remainder of the rope. Huet’s
zipper technique (Huet, 1997) provides the insight necessary to derive a persistent cursor
data structure and functional operations over it, which enable this “pausable” traversal. A
zipper is a representation of an aggregate data structure that factors the data structure into
a distinguished substructure under focus and a one-hole context; plugging the substructure
into the context yields the original structure. Zippers enable efficient navigation through
and modification of a data structure. With a customized zipper representation and some
basic navigation operations we arrive at an elegant implementation ofmapLTSUntil .

To represent the cursor, we use a context representation similar to Huet’s single-hole
contexts (Huet, 1997), but with different types of elementson either side of the hole, as in
McBride’s contexts (McBride, 2008). Essentially, a context describes a path through a rope
from the root to a particular sub-rope, while also recordingthe sub-ropes that branch off of
this path; sub-ropes branching off to the left are processed, while sub-ropes branching off
to the right are unprocessed. Thus, our context representation is defined as

datatype (’b, ’a) map_ctx
= MCTop
| MCLeft of (’b, ’a) map_ctx * ’a rope
| MCRight of ’b rope * (’b, ’a) map_ctx

whereMCToprepresents an empty context,MCLeft(ctx, rrp) represents the context
surrounding the left branch of aCat node whererrp is the right branch andctx is the
context surrounding theCat node, andMCRight(lrp, ctx) represents the context
surrounding the right branch of aCat node wherelrp is the left branch andctx is the
context surrounding theCat node. For a map computation, all subropes to the left of the
context’s hole are processed (’b rope) and all subropes to the right of the context’s hole
are unprocessed (’a rope). Given this context type, we define the cursor type as

type (’b, ’a) map_cur = (’b seq * ’a seq) * (’b, ’a) map_ctx

where the first element of the pair is the leaf located at the cursor, itself split into a sequence
of processed elements and a sequence of unprocessed elements, and the second element is
the context surrounding the leaf.

The implementations ofmapLTSandmapLTSUntil require a number of operations
to manipulate cursors and contexts. Theplug (rp, ctx) operation plugs the roperp
into the contextctx for the special case that the types of the unprocessed and processed
elements of the context are the same:

val plug : ’b rope * (’b, ’b) map_ctx -> ’b rope
fun plug (rp, ctx) = (case ctx

of MCTop => rp
| MCLeft (ctx’, rrp) => plug (Cat (rp, rrp), ctx’)
| MCRight (lrp, ctx’) => plug (Cat (lrp, rp), ctx’))

Theroot ((pseq,useq), ctx) operation, which returns the rope corresponding to
a given cursor, simply reconstructs a leaf rope from the sequencespseq anduseq and
plugs the rope into the contextctx :

val root : (’b, ’b) map_cur -> ’b rope
fun root ((pseq, useq), ctx) =

plug (Leaf (joinSeq (pseq, useq)), ctx)

Lazy Tree Splitting 17

The leftmost (rp, ctx) operation navigates to the leftmost leaf ofrp and re-
turns(seq’, ctx’) , the sequenceseq’ at that leaf and the contextctx’ surrounding
that leaf, as composed with the contextctx :

val leftmost : ’a rope * (’b, ’a) map_ctx
-> ’a seq * (’b, ’a) map_ctx

fun leftmost (rp, ctx) = (case rp
of Leaf seq => (seq, ctx)
| Cat (lrp, rrp) => leftmost (lrp, MCLeft (ctx, rrp)))

We measure the length of a context and of a cursor as the pair ofthe number of processed
elements and the number of unprocessed elements:
infix 6 ++
fun (a1, b1) ++ (a2, b2) = (a1 + a2, b1 + b2)

val ctxLength : (’b, ’a) map_ctx -> int * int
fun ctxLength ctx = (case ctx

of MCTop => (0, 0)
| MCLeft (ctx’, rrp) => (ctxLength ctx’) ++ (0, length rrp)
| MCRight (lrp, ctx’) => (ctxLength ctx’) ++ (length lrp, 0))

val curLength : (’b, ’a) map_cur -> int * int
fun curLength ((pseq,useq), ctx) =

(ctxLength ctx) ++ (lengthSeq pseq, lengthSeq useq)

The lengthRight operation simply extracts the number of unprocessed elements from
the length of the given cursor:

fun lengthRight cur = snd (curLength cur)

Similarly, we measure the size of a context and of a cursor as the pair of the number of
processed leaves and the number of unprocessed leaves:

val ctxSize : (’b, ’a) map_ctx -> int * int
fun ctxSize ctx = (case ctx

of MCTop => (0, 0)
| MCLeft (ctx’, rrp) => (ctxSize ctx’) ++ (0, size rrp)
| MCRight (lrp, ctx’) => (ctxSize ctx’) ++ (size lrp, 0))

val curSize : (’b, ’a) map_cur -> int * int
fun curSize ((pseq,useq), ctx) =

(ctxSize ctx) ++ (1, 1)

Thenext (rp, ctx) operation plugs the (processed) roperp into the contextctx ,
then attempts to navigate to the next unprocessed leaf.
val next : ’b rope * (’b, ’a) map_ctx

-> (’a seq * (’b, ’a) map_ctx, ’b rope) progress
fun next (rp, ctx) =

(case ctx
of MCTop => Done rp
| MCLeft (ctx’, rrp) => let

val (seq’’, ctx’’) = leftmost (rrp, MCRight (rp, ctx’))
in

More (seq’’, ctx’’)
end

| MCRight (lrp, ctx’) =>
next (Cat (lrp, rp), ctx’))

18 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

MCTop

MCLeft

MCRight

Leaf MCRight

Leaf Leaf

Cat

Leaf Leaf

ctx

rp

MCTop

MCRight

Cat

Leaf Cat

Leaf Leaf

MCLeft

Leaf Leaf

ctx’

seq’

(a) next (rp, ctx) ⇒ More(seq’, ctx’)

MCTop

MCRight

Cat

Leaf Leaf

MCRight

Leaf Leaf

ctx

rp

Cat

Cat

Leaf Leaf

Cat

Leaf Leaf

rp’

(b) next (rp, ctx) ⇒ Done rp’

Fig. 5. Operations on contexts.

This navigation can either succeed, in which casenext returnsMore (seq’, ctx’)
(see Figure 5(a)), whereseq’ is the sequence at the next leaf andctx’ is the context
surrounding that leaf, or fail, in which casenext returnsDone rp’ (see Figure 5(b)),
whererp’ is the whole processed rope.

4.1.4 mapLTSUntil implementation

With these context operations, we give the implementation of mapLTSUntil in Figure 6.
The traversal ofmapLTSUntil is performed by the auxiliary functionm. The argument
seq represents the sequence of the leftmost unprocessed leaf ofthe rope and the argument
ctx represents the context surrounding that leaf.

The processing of the sequence is performed bymapUntilSeq , a function with similar
behavior tomapLTSUntil , but implemented over linear sequences.

val mapUntilSeq : (unit -> bool)
-> (’a -> ’b)
-> ’a seq
-> (’a seq * ’b seq, ’b seq) progress

It is mapUntilSeq that actually calls the predicatecond and applies the functionf .

Lazy Tree Splitting 19

Note thatmapUntilSeq must also maintain a context with processed elements to the left
and unprocessed elements to the right, but doing so is trivial for a linear sequence. (Recall
the standard accumulate-with-reverse implementation ofmap for lists.) Not surprisingly,
we require thatmapUntilSeq preserves the shape of the sequence, as expressed by the
following property:

Property 3(mapUntilSeq is shape preserving)
For any sequenceseq and any predicatecond , if

mapUntilSeq cond (fn x => x) seq

returnsDone seq’ , then

seq’ = seq

and if it returnsMore (useq’,pseq’) , then

joinSeq (pseq’, useq’) = seq

Unlike mapLTSUntil , we do not require thatmapUntilSeq only pauses and returns
a pair of unprocessed and processed sequences when the number of unprocessed elements
is greater than or equal to two. This difference exists becausemapUntilSeq is called
on behalf ofmapLTSUntil ; although a call tomapUntilSeq may return with one
unprocessed element, the context maintained bymapLTSUntil may have additional
unprocessed elements. Theorem 2 in Appendix A.1 proves thatan implementation of
mapUntilSeq satisfies Property 3, and therefore, may be used in our shape-preserving
implementation ofmapLTS.

If mapUntilSeq returns a complete result (Done pseq’), then the traversal plugs
the context with this completed leaf sequence and attempts to navigate to the next unpro-
cessed leaf by callingnext (Leaf pseq’, ctx) . If next returnsDone rp’ , then
the rope traversal is complete and the whole processed rope is returned. Otherwise,next
returnsMore (seq’, ctx’) and the traversal loops to process the next leaf sequence
(seq’) with the new context (ctx’).

If mapUntilSeq returns a partial result (More (useq’,pseq’)), then the traver-
sal determines the number of unprocessed elements contained in both the unprocessed
sequenceuseq’ and the contextctx . If there are at least two unprocessed elements,
then the traversal pauses and returns an intermediate cursor. (This pause and return gives
mapLTSthe opportunity to split the unprocessed elements and push the parallel mapping
of these halves of the unprocessed elements onto the work-stealing deque.) If there are less
than two elements, then the traversal sequentially processes the remaining unprocessed el-
ement to complete the rope traversal and return the whole processed rope. Theorem 3 in
Appendix A.2 proves that this implementation ofmapLTSUntil satisfies Property 2, and
therefore, may be used in our shape-preserving implementation of mapLTS.

4.1.5 split andjoin implementation

Finally, let us consider the implementation ofsplit andjoin . The key idea behind the
implementations of these operations is to introduce data structures that we call theunzipped
contextand theunzipped cursor, which enables us to temporarily break apart a (zipped)
context or cursor and to later put the context or cursor back together.

20 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

fun mapLTSUntil cond f rp = let
fun mSeq (seq, ctx) = case next (Leaf seq, ctx)

of Done rp’ => rp’
| More (seq’, ctx’) => mSeq (mapSeq f seq’, ctx’)

fun m (seq, ctx) = (case mapUntilSeq cond f seq
of Done pseq’ => (case next (Leaf pseq’, ctx)

of Done rp’ => Done rp’
| More (seq’, ctx’) => m (seq’, ctx’))

| More (useq’, pseq’) =>
if snd (curLength ((pseq’, useq’), ctx)) >= 2 then

More ((pseq’, useq’), ctx)
else

Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)))
val (seq, ctx) = leftmost (rp, MCTop)
in

m (seq, ctx)
end

Fig. 6. ThemapLTSUntil operation.

datatype dir = Left | Right
type (’b, ’a) unzip_map_ctx =

’b rope list * ’a rope list * dir list
type (’b, ’a) unzip_map_cur = (’b, ’a) unzip_map_ctx

This representation divides a context into three lists: (1)a list of processed subropes lo-
cated above and left of the hole, (2) a list of unprocessed subropes located above and
to the right of the hole, and (3) a list of branch directions. An unzipped cursor has the
same type as an unzipped context, but has an additional invariant: the first elements of the
’b rope list and the’a rope list components areLeaf ropes, corresponding
to the’b seq and ’a seq components of a (zipped) cursor. The zipped and unzipped
contexts and cursors are just two different ways of representing the same context or cursor.
For example, the zipped context

MCRight (rp1, MCRight (rp2, MCLeft (MCRight (rp4, MCTop), r p3)))

and the unzipped context

([rp1, rp2, rp4],
[rp3],
[Right, Right, Left, Right])

both represent a context of two right branchesrp1 andrp2 , a left branchrp3 , and a right
branchrp4 . It is easy to define operations to unzip a cursor

Lazy Tree Splitting 21

val ctxUnzip : (’b, ’a) map_ctx -> (’b, ’a) unzip_map_ctx
fun ctxUnzip c = (case c

of MCTop =>
(nil, nil, nil)

| MCLeft (c, r) => let
val (ls, rs, ds) = ctxUnzip c
in

(ls, r :: rs, Left :: ds)
end

| MCRight (l, c) => let
val (ls, rs, ds) = ctxUnzip c
in

(l :: ls, rs, Right :: ds)
end)

val curUnzip : (’b, ’a) map_cur -> (’b, ’a) unzip_map_cur
fun curUnzip ((pseq,useq), ctx) = let

val (ls, rs, ds) = ctxUnzip ctx
in

((Leaf pseq)::ls, (Leaf useq)::rs, ds)
end

and vice versa

val ctxZip : (’b, ’a) unzip_map_ctx -> (’b, ’a) map_ctx
fun ctxZip (ls, rs, ds) = (case (ls, rs, ds)

of (nil, nil, nil) =>
MCTop

| (ls, r :: rs, Left :: ds) =>
MCLeft (ctxZip (ls, rs, ds), r)

| (l :: ls, rs, Right :: ds) =>
MCRight (l, ctxZip (ls, rs, ds)))

val curZip : (’b, ’a) unzip_map_cur -> (’b, ’a) map_cur
fun curZip ((Leaf pseq)::ls, (Leaf useq)::rs, ds) =

((pseq, useq), ctxZip (ls, rs, ds))

Although the zipped and unzipped contexts and cursors are different ways of represent-
ing the same context or cursor, they are each suited for different tasks. The zipped contexts
and cursors are better suited (being both easier to code and faster to execute) for the step-
by-step traversal of a rope used in the implementation ofmapLTSUntil . On the other
hand, the unzipped contexts and cursors are better suited for the splitting of a rope used in
the implementation ofmapLTS.

From the description of an unzipped context, it should be clear that our initial handle on
the unprocessed elements of a context is through a list of ropes (of unprocessed elements).
To split this list of ropes at thenth unprocessed element, we first divide this list of ropes
into three parts based onn, using thedivideRopes helper function.

fun divideRopes (rp :: rps, n) =
if n <= length rp then

(nil, rp, n, rps)
else let

val (rps1, rp’, n’, rps2) = divideRopes (rps, n - length rp)
in

(rp :: rps1, rp’, n’, rps2)
end

22 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

The applicationdivideRopes (rps, n) returns(rps1, rp, k, rps2) , such
thatrps1 @ [rp] @ rps2 is equal torps andrps1 andrp contain at least the first
n elements of the ropes ofrps . The integerk is the index inrp at which thenth element
of rps is found. As noted above, the inverse operation ofdivideRopes is simply the
concatenation ofrps1 , [rp] , andrps2 .

While divideRopes has roughly divided the unprocessed elements into those ropes
that occur strictly before the split, the rope in which the split occurs, and those ropes that
occur strictly after the split, our next task is to split the rope in which the split occurs.
The applicationsplitAtAsCur (rp, n) returns a cursor in which the “hole” occurs
between thenth andn+1st elements of the roperp .

val splitAtAsCur : ’a rope * int -> (’a, ’a) map_cur
fun splitAtAsCur (rp, n) = let

fun s (rp, ctx, n) = (case rp
of Leaf seq => let

val (lseq, rseq) = splitAtSeq (seq, n)
in

((lseq, rseq), ctx)
end

| Cat (lrp, rrp) =>
if n < length lrp then

s (lrp, MCLeft (ctx, rrp), n)
else

s (rrp, MCRight (lrp, ctx), n - length lrp))
in

s (rp, MCTop, n)
end

To recover the original rope, it suffices to use theroot operation. We may also unzip the
context returned bysplitAtAsCur to obtain additional lists of ropes that occur before
the split and that occur after split.

Our final pair of helper functions encode a list of ropes as a single rope and decode
a single rope as a list of ropes. Encoding a list of ropes as a single rope will be the last
step ofsplit , whereby the lists of unprocessed ropes returned bydivideRopes and
splitAtAsCur are turned into two single ropes for parallel processing inmapLTS. The
applicationencodeRopes rps returns a roperp and an integerl , wherel is the length
of the listrps . The length is used bydecodeRope to reconstructrps .

val encodeRopes : ’a rope list -> ’a rope * int
fun encodeRopes rps = let

fun e rs = (case rs
of [rp] =>

rp
| rp :: rps =>

Cat (rp, e rps))
in

(e rps, List.length rps)
end

The applicationdecodeRope (rp, l) returns a list of ropesrps .

Lazy Tree Splitting 23

val decodeRope : ’a rope * int -> ’a rope list
fun decodeRope (rp, n) =

if n = 1 then
[rp]

else (case rp
of Cat (l, r) =>

l :: decodeRope (r, n - 1))

We can now present the implementation ofsplit , which, as specified above, takes a
cursorcur and returns two ropesrp1 andrp2 and a rebuilder data structure,reb . The
roperp1 contains the first half of the unprocessed elements ofcur andrp2 contains the
remaining unprocessed elements. The rebuilder data structurereb provides sufficient in-
formation to reconstructcur from rp1 andrp2 . The complete code is shown in Figure 7.
Let (ls, rs, ds) be the result ofcurUnzip cur . We divide the list of unprocessed
subropesrs into three parts: the subropesrps1 that occur before positionn, the subrope
mrp containing the data element at positionn, and the subropesrps2 that occur after po-
sitionn. Next, we let(mls, mrs, mds) be the unzipped cursor that splits the subrope
mrp. We letn1 andn2 be the lengths ofrps1 andmrs , respectively. These values en-
able us to later separate therps1 subropes from themls subropes and themrs subropes
from therps2 subropes. We let(rp1, l1) and(rp2, l2) be the rope encodings of
rs1 @ mls andmrs @ rs2 , respectively. The result ofsplit is then

(rp1, rp2, (ls, ds, mds, n1, n2, l1, l2))

where the third component is the rebuilder, which thereforehas the type

type ’b map_cur_reb =
(’b rope list * dir list * dir list * int * int * int * int)

Recall thatjoin takes encoded ropesrp1 andrp2 and rebuilder

(ls, ds, mds, n1, n2, l1, l2)

and returns the cursor that was originally split. The implementation of join follows
straightforwardly by successively inverting each of the operations performed bysplit .
Let rps1 andrps2 be the decodings of(rp1, l1) and(rp2, l2) , respectively, that
are obtained by two calls todecodeRope . Fromrps1 andn1 , we reconstruct the lists
of subropesrs1 andmls , and, fromrps2 andn2 , we reconstruct the lists of subropes
mrs andrs2 . We then letmrp be

root (curZip (mls, mrs, mds))

Next, we letrs bers1 @ [m] @ rs2 . The original cursor is thus

curZip (ls, rs, ds)

which is the result returned byjoin . Theorem 4 in Appendix A.3 proves that these im-
plementations ofsplit andjoin satisfy Property 1, and therefore, may be used in our
shape-preserving implementation ofmapLTS.

24 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

fun split cur = let
val n = snd (curLength cur) div 2
val (ls, rs, ds) = curUnzip cur
val (rps1, mrp, k, rps2) = divideRopes (rs, n)
val (mls, mrs, mds) = curUnzip (splitAtAsCur (mrp, k))
val (n1, n2) = (List.length rps1, List.length mrs)
val (rp1, l1) = encodeRopes (rps1 @ mls)
val (rp2, l2) = encodeRopes (mrs @ rps2)
in

(rp1, rp2, (ls, ds, mds, n1, n2, l1, l2))
end

fun join (rp1, rp2, (ls, ds, mds, n1, n2, l1, l2)) = let
val xs1 = decodeRope (rp1, l1)
val (rps1, mls) = (List.take (xs1, n1), List.drop (xs1, n1))
val xs2 = decodeRope (rp2, l2)
val (mrs, rps2) = (List.take (xs2, n2), List.drop (xs2, n2))
val mrp = root (curZip (mls, mrs, mds))
val rs = rps1 @ [mrp] @ rps2
in

curZip (ls, rs, ds)
end

Fig. 7. The implementation ofsplit andjoin .

4.2 Implementing other operations

The implementation offilterLTS is very similar to that ofmapLTS. Indeed,filter-
LTS uses the same context representation and operations asmapLTS, simply instantiated
with unprocessed and processed elements having the same type:

val filterLTS : (’a -> bool) -> ’a rope -> ’a rope
type ’a filter_ctx = (’a, ’a) map_ctx

As with mapLTS, where the mapping operation was applied by themapUntilSeq oper-
ation, the actual filtering of elements is performed by thefilterUntilSeq operation.
One complication of all rope-filter operations, includingfilterLTS , is that filter opera-
tions are not balance preserving, because data elements areremoved from the filter result
rope based on the filter predicate. We makefilterLTS balance preserving by applying
our parallel balancing functionbalance to the result rope.

ThereduceLTS operation takes an associative operator, its zero, and a rope and returns
the rope’s reduction under the operator.

val reduceLTS : (’a * ’a -> ’a) -> ’a -> ’a rope -> ’a

Thus, thereduceLTS operation may be seen as a generalized sum operation. The imple-
mentation ofreduceLTS is again similar to that ofmapLTS, but uses a simpler context:

datatype ’a reduce_ctx
= RCTop
| RCLeft of ’a rope * ’a reduce_ctx
| RCRight of ’a * ’a reduce_ctx

Lazy Tree Splitting 25

whereRCRight (z, c) represents the context surrounding the right branch of aCat
node in whichz is thereductionof the left branch andc is the context surrounding the
reduction of theCat node.

ThescanLTS operation, also known asprefix sums, is used by many data-parallel algo-
rithms. LikereduceLTS , thescanLTS operation takes an associative operator, its zero,
and a rope and returns a rope of the reductions of the prefixes of the input rope.

val scanLTS : (’a * ’a -> ’a) -> ’a -> ’a rope -> ’a rope

For example,

scanLTS (op +) 0 (Cat (Leaf [1, 2], Leaf [3, 4]))
⇒ Cat (Leaf [1, 3], Leaf [6, 10])

In a survey on prefix sums, Blelloch describes classes of important parallel algorithms that
use this operation and gives an efficient parallel implementation of prefix sums (Blelloch,
1990a), on which our implementation ofscanLTS is based. The algorithm takes two
passes over the rope. The first performs a parallel reductionover the input rope, construct-
ing an intermediate rope in which partial reduction resultsare recorded at each internal
node. The second pass builds the result rope in parallel by processing the intermediate
rope. The efficiency of this second pass is derived from having constant-time access to the
cached sums while it builds the result.

The result of this first pass is called amonoid-cached tree(Hinze & Paterson, 2006),
specialized in the current case tomonoid-cached rope. In a monoid-cached rope,

datatype ’a crope
= CLeaf of ’a * ’a seq
| CCat of ’a * ’a crope * ’a crope

each internal node caches the reduction of its children nodes. For example, supposing the
scanning operator is integer addition, one such monoid-cached rope is

CCat (10, CLeaf (3, [1, 2]), CLeaf (7, [3, 4]))

Our implementation of Blelloch’s algorithm is again similar to that ofmapLTS, except
that we use a context in which there arerope s to the right of the hole andcached_rope s
to the left of the hole. Aside from some minor complexity involving the propagation of
partial sums, the operations on this context are similar to those on the context used by
mapLTS.

The map2LTS operation maps a binary function over a pair of ropes (of the same
length).

val map2LTS : (’a * ’b -> ’c) -> ’a rope * ’b rope -> ’c rope

For example, the pointwise addition of the ropesrp1 andrp2 can be implemented as

map2LTS (op +) (rp1, rp2)

Note thatrp1 andrp2 may have completely different branching structures, whichwould
complicate any structural-recursive implementation. Thezipper technique provides a clean
alternative: we maintain a pair of contexts and advance themtogether in lock step during
execution. The result rope is accumulated in one of these contexts.

26 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Contexts and partial results nicely handle the processing of leaves of unequal length.
When themap2SeqUntil function is applied to two leaves of unequal length, it simply
returns a partial result that includes the remaining elements from the longer sequence. The
map2Until function need only step the context of the shorter linear sequence to find the
next leaf with which to resume themap2SeqUntil processing. We do need to distinguish
map2SeqUntil returning with a partial result due to the polling function,in which case
map2Until should also return a partial result (signaling that a task should be pushed
to the work-stealing deque), frommap2SeqUntil returning with a partial result do to
exhausting one of the leaves, in which casemap2Until should not return a partial result.
The implementation straightforwardly extends to maps of arbitrary arity.

5 Evaluation

We have already demonstrated in Section 3 that, with ETS, manual tuning of the chunk
size is essential to obtain acceptable parallel performance across all of our benchmarks.
In this section, we present the results of additional experiments that demonstrate that LTS
performance is always close to the best, hand-tuned ETS. Furthermore, these additional
experiments demonstrate that no hand tuning was necessary to achieve good performance
with LTS.

5.1 Experimental method

Our benchmark machine is a Dell PowerEdge R815 server, outfitted with 48 cores and
128 GB physical memory. This machine runs x8664 Ubuntu Linux 10.04.2 LTS, kernel
version 2.6.32-27. The 48 cores are provided by four 12 core AMD Opteron 6172 “Magny
Cours” processors (Carver, 2010; Conwayet al., 2010), Each core operates at 2.1 GHz and
has 64 KB each of instruction and data L1 cache and 512 KB of L2 cache. There are two
6 MB L3 caches per processor, each of which is shared by six cores, for a total of 48 MB
of L3 cache.

We ran each experiment 10 times, and we report the average performance results in our
graphs and tables. For most of these experiments the standard deviation was below 2%,
thus we omit the error bars from our plots.

5.2 Benchmarks

For our empirical evaluation, we ran one synthetic benchmark and seven benchmark pro-
grams picked from our benchmark suite. Our maximum leaf sizeis 1024, which is one
setting that provided good performance on our test machine across all seven benchmarks.

The Barnes-Hut benchmark is ann-body simulation that calculates the gravitational
forces betweenn particles as they move through two-dimensional space (Barnes & Hut,
1986). The Barnes-Hut computation consists of two phases. In the first, the simulation
volume is divided into square cells via a quadtree, so that only particles from nearby cells
need to be handled individually and particles from distant cells can be grouped together
and treated as large particles. The second phase calculatesgravitational forces using the
quadtree to accelerate the computation. We represent the sequence of particles by a rope

Lazy Tree Splitting 27

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48
ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(a) Barnes-Hut

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48 ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(b) Raytracer

Fig. 8. Performance of LTS and ETS

28 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48 ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(a) Quicksort

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48 ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(b) SMVM

Fig. 9. Performance of LTS and ETS

Lazy Tree Splitting 29

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48 ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(a) DMM

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48 ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(b) Black-Scholes

Fig. 10. Performance of LTS and ETS

30 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

number of processors

sp
ee

du
p

1 8 16 24 32 40 48

1

8

16

24

32

40

48 ETS (SST=20)
ETS (SST=27)
ETS (SST=214)
LTS

(a) Nested Sums

Fig. 11. Performance of LTS and ETS

of mass-point and velocity pairs and the quadtree by an algebraic data type where every
node is annotated with a mass point. Our benchmark runs for 20iterations over 3,000,000
particles generated from a random Plummer distribution (Plummer, 1911). The program is
adapted from a Data-Parallel Haskell program (Peyton Joneset al., 2008).

The Raytracer benchmark renders a 2,000× 2,000 image in parallel as a two-dimensional
sequence, which is then written to a file. The original program was written in ID (Nikhil,
1991) and implements a simple ray tracer that does not use anyacceleration data structures.
The sequential version outputs each pixel to the image file asit is computed, whereas the
parallel version first builds an intermediate rope of pixelsand later flushes the rope to a
file.

The Quicksort benchmark sorts a rope of 10 million integers in parallel. Our program is
adapted from one that was originally written for NESL (Scandal Project, n.d.).

The SMVM benchmark is a sparse-matrix by dense-vector multiplication. The matrix
contains 1,091,362 elements and the vector 16,614.

The DMM benchmark is a dense-matrix by dense-matrix multiplication in which each
matrix is 600× 600. We represent a matrix column as a rope of scalars and a matrix as a
rope of columns.

The Black-Scholes benchmark computes the price of Europeanoptions analytically us-
ing a partial differential equation. We store the options ina rope.

The Nested Sums benchmark is a synthetic benchmark that exhibits irregular paral-
lelism. Its basic form is as follows:

let fun upTo i = range (0, i)
in mapP sumP (mapP upTo (range (0, 5999)))
end

Lazy Tree Splitting 31

PML
Benchmark MLton Seq. LTS Best ETS 48 LTS 48 LTS 48 Speedup

DMM 6.79 21.86 20.59 1.01 0.91 24.05
Raytracer 166.36 253.57 247.20 6.28 5.75 44.10

SMVM 5.21 15.31 13.52 0.64 0.81 18.86
Quicksort 28.41 59.39 65.26 1.33 1.64 36.21

Barnes Hut 165.84 502.17 521.63 24.27 29.57 16.98
Black Scholes 3.96 8.20 8.18 0.24 0.24 34.17
Nested Sums 7.19 25.93 25.86 2.30 1.02 25.42

Table 1. Summary of performance. Execution time in seconds.

The program generates an 6,000-element array of 6,000-integer arrays and returns an array
containing the sum of each subarray.

5.3 Lazy vs.eager tree splitting

Figures 8, 9, 10, and 11 show the performance of LTS and ETS side by side. Each graph
contains four speedup curves for a single benchmark, with one curve for LTS and three
curves for ETS with small, medium, and large settings ofSST . We chose these particular
SST values because they cover various extremes of performance,as shown in Figure 3.
Observe that, in each graph, the LTS speedup is close to the greatest ETS configuration
and that the performance curves of most of the ETS configurations are flat.

In Table 1, we present performance measurements for each of our benchmarks run in
several different sequential configurations, as well as on 48 processors. The first column of
data presents timing results for MLton. MLton is a sequential whole-program optimizing
compiler for Standard ML (MLton, n.d.; Weeks, 2006), which is the “gold standard” for
ML performance. The second data column gives the baseline performance of the natural
sequential PML versions of the benchmarks (i.e., parallel operations are replaced with their
natural sequential equivalents). We are about a factor of 1.5-3.0x slower than MLton for all
of the benchmarks except Nested Sums. Considering MLton’s suite of aggressive optimiza-
tions and maturity, the sequential performance of PML is encouraging. Our slower perfor-
mance can be attributed to at least two factors. First, the MLton compiler monomorphizes
the program and then aggressively flattens the resulting monomorphic data representations,
whereas Manticore does no such monomorphization and the resulting code often involves
boxed data representations. Second, our profiling shows higher GC overheads in our sys-
tem. These issues can be addressed by improving the sequential performance of Manticore.
The last two columns report the parallel execution time and speedup on 48 cores. Over-
all, the speedups are quite good. The Barnes-Hut benchmark,however, achieves a modest
speedup, which we believe stems from a limit on the amount of parallelism in the program.
This hypothesis is supported by the fact that increasing theinput size improves the speedup
results.

Observe that, in many cases, the 48-core LTS performance falls behind the best 48-
core ETS performance. This gap may indicate that LTS involves some overhead costs that

32 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Maximum leaf size

sp
ee

du
p

Barnes Hut
Black Scholes
DMM

Raytracer
Nested Sums
Quicksort

SMVM

20 22 24 26 28 210 212 214

0

8

16

24

32

40

48

Fig. 12. The effect of varying the maximum leaf size on 48 processors

are heavier than those of ETS. To break down the sources of these overheads, first recall
that LTS requires the program to make one or more zipper traversals and that each zipper
traversal requires heap allocations. To estimate the zipper overhead, we can compare the
execution times in the columns labeled Seq. and LTS in Table 1. The LTS column contains
the execution time of the benchmarks using the LTS runtime mechanisms (e.g., zippers),
but without parallelism. We see that in the sequential case,the LTS version is about 24%
slower, which is indeed a significant cost. By comparison, the ETS traversal uses a natural
structural recursion in which the state is maintained via the run-time call stack. In many

Lazy Tree Splitting 33

compilers, including Manticore, the natural recursion is often more efficient than a zipper
because compiler optimizations are more effective at optimizing natural-recursive code and
because the natural-recursive code can benefit from stack asopposed to heap allocation.

We also ran an experiment to measure LTS overheads in MLton, because MLton offers
better sequential performance and uses a more-conventional C-style call stack, whereas
Manticore uses heap-allocated continuations to representthe call stack (Appel, 1992; Fluet
et al., 2007b). In this experiment we, ran SMVM sequentially usingLTS and ETS versions
and found that the LTS and ETS versions completed in 8.49 and 4.99 seconds, respec-
tively, indicating a 70% advantage for the ETS version. A likely contributor to this gap
is the difference in heap allocation: LTS and ETS versions allocated 6.4GB and 2.8GB,
respectively. In spite of these costs, the extra heap allocations in LTS do not necessarily
harm its scalability, because, in Manticore, the allocatedzipper objects are almost always
reclaimed by the same processor that performed the allocation.

Another possibility we considered is that LTS suffers because of communication costs
from extra task migrations. Profiling data that we gathered suggests otherwise, however,
because the data shows no significant difference in the number of steals between LTS and
the best ETS configuration. Furthermore, our profiling data shows that the per-processor
utilization for the best ETS configuration is never more than3% greater than that of LTS,
which is almost within our 2% error bar.

There is still a question of whether our technique trades onetuning parameter,SST , for
another, the maximum leaf size. We address this concern in two ways. First, observe that
even if performance is sensitive to the leaf size, this problem is specific to ropes, but neither
ETS nor LTS. Second, we have measured the effect of the maximum leaf size on perfor-
mance. Figure 12 shows the speedups for our benchmarks as a function of maximum leaf
size on 48 processors. The results show that all of benchmarks perform well for maximum
leaf sizes in the set{512, 1024, 2048}, so our choice of1024 is justified. One concern is
DMM, which is sensitive toM because it does many subscript operations on its two input
ropes. One could reduce this sensitivity by using a flatter rope representation that provides
a faster subscript operation.

6 Related work

Adaptive parallel loop schedulingThe original work on lazy binary splitting presents a
dynamic scheduling approach for paralleldo-all loops (Tzanneset al., 2010). Their
work addresses splitting ranges of indices, whereas ours addresses splitting trees where
tree nodes are represented as records allocated on the heap.

In the original LBS work, they use aprofitable parallelism threshold(PPT) to reduce
the number of hungry-processor checks. ThePPT is an integer which determines how
many iterations a given loop can process before doing a hungry-processor check. Our per-
formance study hasPPT = 1 (i.e., one hungry-processor check per iteration) because we
have not implemented the necessary compiler mechanisms to do otherwise.

Robisonet al.propose a variant of EBS called auto partitioning (Robisonet al., 2008),
which provides good performance for many programs and does not require tuning.10 Auto

10 Auto partitioning is currently the default chunking strategy of TBB (Intel, 2008).

34 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

partitioning derives some limited adaptivity by employingthe heuristic that when a task
detects it has been migrated it splits its chunk into at leastsome fixed number of subchunks.
The assumption is that if a steal occurs, there are probably other processors that need work,
and it is worthwhile to split a chunk further. As discussed byTzannes,et al.(Tzanneset al.,
2010), auto partitioning has two limitations. First, fori levels of loop nesting,P processors,
and a small, constant parameterK, it creates at least(K ×P)i chunks, which is excessive
if the number of processors is large. Second, although it hassome limited adaptivity, auto
partitioning lacks performance portability with respect to the context of the loop, which
limits its effectiveness for scheduling programs written in the liberal loop-nesting style of
an NDP language.

Cutting off excess parallelismOne approach to the granularity problem is to try to limit
the total number of tasks that get created, so as to guaranteethat the total cost of schedul-
ing can be well amortized. Variations of the cutoff-based approach have been studied by
Loidl and Hammond (Loidl & Hammond, 1995) in the context of Haskell and Lopezet
al. (Lopezet al., 1996) and Tick and Zhong (Tick & Zhong, 1993) in the context of logic
programming. Their key idea is that, if a given task is small,the scheduler executes the task
as a sequential computation, that is, completely free of scheduling costs. A limitation of
the cutoff-based approaches is that they rely on there beinga reasonably-accurate way of
predicting the task-execution time. Predicting executiontime is difficult for many classes
of programs, such as ray tracers, where execution time depends heavily on properties of
the input data set, and is not feasible in general. In cases where prediction is not feasible,
LTS can still be an effective approach, because LTS does not depend on prediction. LTS is
concerned only with reducing the scheduling cost per task.

Flattening and fusionNESL is a nested data-parallel dialect of ML (Blellochet al., 1994).
The NESL compiler uses a program transformation calledflattening, which transforms
nested parallelism into a form of data parallelism that mapswell onto SIMD architectures.
Note that SIMD operations typically require array elementsto have a contiguous layout in
memory. Flattened code maps well onto SIMD architectures because the elements of flat-
tened arrays are readily stored in adjacent memory locations. In contrast, LTS is a dynamic
technique that has the goal of scheduling nested parallelism effectively on MIMD architec-
tures. A flattened program may still use LBS (or LTS) to schedule the execution of array
operations on MIMD architectures, so in that sense, flattening and LTS are orthogonal.

There is, of yet, no direct comparison between an NDP implementation based on LTS
and an implementation based on flattening. One major difference is that LTS uses a tree
representation whereas flattening uses contiguous arrays.As such, the LTS representa-
tion has two disadvantages. First, tree random access is more expensive. For a rope it is
O(log n) time, wheren is the length of a given rope. Second, there is a large constant fac-
tor overhead imposed by maintaining tree nodes. One way to reduce these costs is to use
a “bushy” representation that is similar to ropes but where the branching factor is greater
than two and child pointers are stored in contiguous arrays.

Data-parallel fusion is a program transformation that eliminates data-parallel operations
under certain circumstances. It is implemented in the NESL (Chatterjee, 1993) and Data
Parallel Haskell (Chakravartyet al., 2008) compilers, but not in Manticore currently. Fu-

Lazy Tree Splitting 35

sion typically improves task granularity thanks to increasing the work per task. To see why,
consider the expression

mapP f (mapP g xs)

and its fused counterpart

mapP (f o g) xs

Combining the twomapPs yields a computation which both generates fewer logical tasks
– only one per array element instead of two – and sacrifices no parallelism. Although it
improves granularity, fusion is limited as a granularity-control mechanism, because the
transformation applies only when there are pairs of operations that can be fused. As such,
additional mechanisms, such as LTS, are crucial for addressing granularity control in gen-
eral.

Parallel depth-first schedulingWork by Greiner and Blelloch proposes an implementation
of NDP based on a scheduling policy, called Parallel Depth First (PDF), that is designed
to minimize space usage (Blelloch & Greiner, 1996). The practicality of PDF on modern
machines is severely limited because the policy relies on a centralized task queue. Narlikar
and Blelloch address this issue by proposing a scheduling policy called DFDeques, which
is a hybrid of PDF and work stealing (Narlikar & Blelloch, 1999). Although DFDeques
addresses the inefficiency of having a centralized queue, the scheduling costs involved
in DFDeques are similar to those of plain work stealing, because the granularity-control
mechanism of DFDeques involves switching from PDF to work stealing every time a fixed
amount of memory has been allocated. LBS and LTS further improve on plain work steal-
ing by optimizing for the special cases of loops and NDP operations.

Ct Ct is an NDP extension to C++ (Ghuloumet al., 2007). Soet al. describe a fusion
technique for Ct that is similar to the fusion technique of DPH (Soet al., 2006). The fusion
technique used by Ct is orthogonal to LTS for the same reasonsas for the fusion technique
of DPH. The work on Ct does not directly address the issue of building an automatic
chunking strategy, which is the main contribution of LTS.

GpH GpH introduced the notion of anevaluation strategy, (Trinderet al., 1998) which
is a part of a program that is dedicated to controlling some aspects of parallel execution.
Strategies have been used to implement eager-splitting-like chunking for parallel compu-
tations. We believe that a mechanism like an evaluation strategy could be used to build a
clean implementation of lazy tree splitting in a lazy functional language.

Cilk Cilk is a parallel dialect of the C language extended with linguistic constructs for
expressing fork-join parallelism (Frigoet al., 1998). Cilk is designed for parallel function
calls but not loops, whereas our approach addresses both.

7 Conclusion

We have described the implementation of NDP features in the Manticore system. We have
also presented a new technique for parallel decomposition,lazy tree splitting, inspired by

36 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

the lazy binary splitting technique for parallel loops. We presented an efficient implemen-
tation of LTS over ropes, making novel use of the zipper technique to enable the necessary
traversals. Our techniques can be readily adapted to tree data structures other than ropes
and are not limited to functional languages. A work-stealing thread scheduler is the only
special requirement of our technique.

LTS compares favorably to ETS, requiring no application-specific or machine-specific
tuning. For any of our benchmarks, LTS outperforms most or all configurations of ETS,
and is, at worst, only 27% slower than the optimally tuned ETSconfiguration. As argued
here by us and elsewhere by others (Tzanneset al., 2010), the ETS approach is not feasible
in general because, in order to achieve acceptable performance, the programmer has to tune
each instance of a given parallel tree operation to the givencontext in which the operation
appears and for each machine on which it is to be run. LTS achieves good performance
without the need for tuning.

Acknowledgments

We would like to thank the anonymous referees and editor for their helpful comments
and suggestions. This work was performed in part while John Reppy was serving at the
National Science Foundation. It was also supported in part by National Science Founda-
tion Grants CCF-0811389, CCF-0811419, and CCF-1010568. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of the National
Science Foundation or the U.S. Government.

References

Appel, Andrew W. (1989). Simple generational garbage collection and fast allocation.Software –
practice and experience, 19(2), 171–183.

Appel, Andrew W. (1992).Compiling with continuations. Cambridge, England: Cambridge Univer-
sity Press.

Barnes, Josh, & Hut, Piet. (1986). A hierarchicalO(N logN) force calculation algorithm.Nature,
324(Dec.), 446–449.

Blelloch, Guy E. 1990a (Nov.).Prefix sums and their applications. Tech. rept. CMU-CS-90-190.
School of Computer Science, Carnegie Mellon University.

Blelloch, Guy E. (1990b).Vector models for data-parallel computing. Cambridge, MA, USA: MIT
Press.

Blelloch, Guy E. (1996). Programming parallel algorithms.Communications of the ACM, 39(3),
85–97.

Blelloch, Guy E., & Greiner, John. (1996). A provable time and space efficient implementation of
NESL. Pages 213–225 of: Proceedings of the 1996 ACM SIGPLAN international conference on
functional programming. New York, NY: ACM.

Blelloch, Guy E., Chatterjee, Siddhartha, Hardwick, Jonathan C., Sipelstein, Jay, & Zagha, Marco.
(1994). Implementation of a portable nested data-parallellanguage. Journal of parallel and
distributed computing, 21(1), 4–14.

Blumofe, Robert D., & Leiserson, Charles E. (1999). Scheduling multithreaded computations by
work stealing.Journal of the ACM, 46(5), 720–748.

Lazy Tree Splitting 37

Boehm, Hans-J., Atkinson, Russ, & Plass, Michael. (1995). Ropes: an alternative to strings.Software
– practice and experience, 25(12), 1315–1330.

Burton, F. Warren, & Sleep, M. Ronan. (1981). Executing functional programs on a virtual tree of
processors.Pages 187–194 of: Functional programming languages and computer architecture
(fpca ’81). New York, NY: ACM.

Carver, Tracy. 2010 (Mar.). Magny-cours and direct connect architecture 2.0. Avail-
able from http://developer.amd.com/documentation/articles/pag es/
Magny-Cours-Direct-Connect-\-Architecture-2.0.aspx .

Chakravarty, Manuel M. T., Leshchinskiy, Roman, Peyton Jones, Simon, Keller, Gabriele, & Marlow,
Simon. (2007). Data Parallel Haskell: A status report.Pages 10–18 of: Proceedings of the ACM
SIGPLAN workshop on declarative aspects of multicore programming. New York, NY: ACM.

Chakravarty, Manuel M. T., Leshchinskiy, Roman, Peyton Jones, Simon, & Keller, Gabriele. (2008).
Partial Vectorisation of Haskell Programs.Proceedings of the ACM SIGPLAN workshop on declar-
ative aspects of multicore programming. New York, NY: ACM.

Chatterjee, Siddhartha. (1993). Compiling nested data-parallel programs for shared-memory multi-
processors.ACM transactions on programming languages and systems, 15(3), 400–462.

Conway, Pat, Kalyanasundharam, Nathan, Donley, Gregg, Lepak, Kevin, & Hughes, Bill. (2010).
Cache hierarchy and memory subsystem of the AMD Opteron processor.IEEE micro, 30, 16–29.

Fluet, Matthew, Rainey, Mike, Reppy, John, Shaw, Adam, & Xiao, Yingqi. (2007a). Manticore: A
heterogeneous parallel language.Pages 37–44 of: Proceedings of the ACM SIGPLAN workshop
on declarative aspects of multicore programming. New York, NY: ACM.

Fluet, Matthew, Ford, Nic, Rainey, Mike, Reppy, John, Shaw,Adam, & Xiao, Yingqi. (2007b). Sta-
tus Report: The Manticore Project.Pages 15–24 of: Proceedings of the 2007 ACM SIGPLAN
workshop on ML. New York, NY: ACM.

Fluet, Matthew, Rainey, Mike, Reppy, John, & Shaw, Adam. (2008a). Implicitly-threaded parallelism
in Manticore.Pages 119–130 of: Proceedings of the 13th ACM SIGPLAN international conference
on functional programming. New York, NY: ACM.

Fluet, Matthew, Rainey, Mike, & Reppy, John. (2008b). A scheduling framework for general-purpose
parallel languages.Pages 241–252 of: Proceedings of the 13th ACM SIGPLAN international
conference on functional programming. New York, NY: ACM.

Frigo, Matteo, Leiserson, Charles E., & Randall, Keith H. 1998 (June). The implementation of the
Cilk-5 multithreaded language.Pages 212–223 of: Proceedings of the SIGPLAN conference on
programming language design and implementation (PLDI ’98).

Ghuloum, Anwar, Sprangle, Eric, Fang, Jesse, Wu, Gansha, & Zhou, Xin. 2007 (Oct.).
Ct: A flexible parallel programming model for tera-scale architectures. Tech. rept. In-
tel. Available at http://techresearch.intel.com/UserFiles/en-us/File/
terascale/Whitepaper-Ct.pdf .

Halstead Jr., Robert H. (1984). Implementation of multilisp: Lisp on a multiprocessor.Pages 9–17
of: Conference record of the 1984 ACM symposium on Lisp and functional programming. New
York, NY: ACM.

Hinze, Ralf, & Paterson, Ross. (2006). Finger trees: a simple general-purpose data structure.Journal
of functional programming, 16(2), 197–217.

Huet, Gérard. (1997). The zipper.Journal of functional programming, 7(5), 549–554.

Intel. (2008). Intel threading building blocks reference manual. Intel Corporation. Available from
http://www.threadingbuildingblocks.org/ .

Keller, Gabriele. (1999).Transformation-based implementation of nested data parallelism for dis-
tributed memory machines. Ph.D. thesis, Technische Universität Berlin, Berlin, Germany.

Leiserson, Charles E. (2009). The Cilk++ concurrency platform. Pages 522–527 of: Proceedings of
the 46th annual design automation conference. New York, NY: ACM.

38 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Leshchinskiy, Roman. (2005).Higher-order nested data parallelism: Semantics and implementation.
Ph.D. thesis, Technische Universität Berlin, Berlin, Germany.

Loidl, Hans Wolfgang, & Hammond, Kevin. (1995). On the Granularity of Divide-and-Conquer
Parallelism. Pages 8–10 of: Proceedings of the glasgow workshop on functional programming.
Springer-Verlag.

Lopez, P., Hermenegildo, M., & Debray, S. (1996). A methodology for granularity-based control of
parallelism in logic programs.Journal of symbolic computation, 21(June), 715–734.

McBride, Conor. (2008). Clowns to the left of me, jokers to the right (pearl): dissecting data struc-
tures.Pages 287–295 of: Conference record of the 35th annual ACM symposium on principles of
programming languages (popl ’08). New York, NY: ACM.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997).The Definition of Standard
ML (revised). Cambridge, MA: The MIT Press.

MLton. The MLton Standard ML compiler. Available athttp://mlton.org .

Narlikar, Girija J., & Blelloch, Guy E. (1999). Space-efficient scheduling of nested parallelism.ACM
transactions on programming languages and systems, 21(1), 138–173.

Nikhil, Rishiyur S. 1991 (July).ID language reference manual. Laboratory for Computer Science,
MIT, Cambridge, MA.

Peyton Jones, Simon, Leshchinskiy, Roman, Keller, Gabriele, & Chakravarty, Manuel M. T. (2008).
Harnessing the multicores: Nested data parallelism in haskell. Pages 138–138 of: Proceedings
of the 6th asian symposium on programming languages and systems. New York, NY: Springer-
Verlag.

Plummer, H. C. (1911). On the problem of distribution in globular star clusters.Monthly notices of
the royal astronomical society, 71(Mar.), 460–470.

Rainey, Mike. 2007 (Jan.).The Manticore runtime model. M.Phil. thesis, University of Chicago.
Available fromhttp://manticore.cs.uchicago.edu .

Rainey, Mike. (2009). Prototyping nested schedulers. Felleisen, Matthias, Findler, Robby, & Flatt,
Matthew (eds),Semantics engineering with plt redex. Cambridge, MA, USA: MIT Press.

Robison, Arch, Voss, Michael, & Kukanov, Alexay. (2008). Optimization via Reflection on Work
Stealing in TBB.Ieee international symposium on parallel and distributed processing. Los Alami-
tos, CA: IEEE Computer Society Press.

Scandal Project.A library of parallel algorithms written NESL.Available fromhttp://www.cs.
cmu.edu/ ˜ scandal/nesl/algorithms.html .

So, Byoungro, Ghuloum, Anwar, & Wu, Youfeng. (2006). Optimizing data parallel operations on
many-core platforms.First workshop on software tools for multi-core systems.

Tick, Evan, & Zhong, Xiaoxiong. (1993). A compile-time granularity analysis algorithm and its
performance evaluation.Pages 271–295 of: Selected papers of the international conference on
fifth generation computer systems (fgcs ’92). New York, NY: Springer-Verlag.

Trinder, Philip W., Hammond, Kevin, Loidl, Hans-Wolfgang,& Peyton Jones, Simon L. (1998).
Algorithm + strategy = parallelism.Journal of functional programming, 8(1), 23–60.

Tzannes, Alexandros, Caragea, George C., Barua, Rajeev, & Vishkin, Uzi. (2010). Lazy binary-
splitting: a run-time adaptive work-stealing scheduler.Pages 179–190 of: Proceedings of the 2010
ACM SIGPLAN symposium on principles & practice of parallel programming. New York, NY:
ACM.

Weeks, Stephen. 2006 (Sept.).Whole program compilation in MLton. Invited talk at ML ’06
Workshop. Invited talk; slides available athttp://mlton.org/pages/References/
attachments/060916-mlton.pdf .

Lazy Tree Splitting 39

type ’a seq = ’a list
fun joinSeq (seq1, seq2) = List.append (seq1, seq2)
fun revSeq seq = List.rev seq
fun mapSeq f seq = List.map f seq
fun mapUntilSeq cond f seq = let
fun lp (seq, acc) =

(case seq
of [] => Done (revSeq acc)
| x::seq’ =>

if cond () then
More (seq, revSeq acc)

else
lp (seq’, (f x)::acc))

in
lp (seq, [])

end

Fig. A 1. ThemapUntilSeq operation for lists

A Proofs

A.1 mapSeqUntil is shape preserving

Figure A 1 gives an implementation ofmapUntilSeq for sequences implemented as lists.
Although our actual implementation uses contiguous arraysfor sequences, the implemen-
tation here demonstrates the essential behavior, in which the function maintains an implicit
context with processed elements to the left and unprocessedelements to the right.

With the following lemma and theorem, we can conclude that our implementation of
mapSeqUntil can be used safely bymapLTS.

Lemma 1
For any sequenceseq , any sequenceacc , any predicatecond , with f = fn x => x ,
if lp (seq, acc) returnsDone pseq’ , then

pseq’ = joinSeq (seq, revSeq acc)

and if it returnsMore (useq’, pseq’) , then

joinSeq (useq’, pseq’) = joinSeq (seq, revSeq acc)

Proof
By structural induction onseq .

Theorem 2(mapUntilSeq is shape preserving)
Property 3 holds for the implementation ofmapSeqUntil .

For any sequenceseq and any predicatecond , if mapUntilSeq cond (fn x => x) seq
returnsDone seq’ , then

seq’ = seq

and if it returnsMore (useq’,pseq’) , then

joinSeq (pseq’, useq’) = seq

40 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Proof

By Lemma 1.

A.2 mapLTSUntil is well-behaved

The well-behavedness of ourmapLTSUntil operation, namely, that it satisfies Prop-
erty 2, will depend upon a number of properties about the context and cursor operations.
For instance, theleftmost operation preserves the represented rope as well as its length
and size:

Lemma 2

For any roperp and any contextctx , if leftmost (rp, ctx) returns(seq’, ctx’) ,
then

plug (Leaf seq’, ctx’) = plug (rp, ctx)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength ctx) ++ (0, length rp)

and

(ctxSize ctx’) ++ (0, 1) = (ctxSize ctx) ++ (0, size rp)

Proof

By assumption,

leftmost (rp, ctx) = (seq’, ctx’) (1)

The proof is by structural induction onrp .

• Suppose that

rp = Leaf seq (2)

Therefore,

(seq’, ctx’)
= leftmost (rp, ctx) by (1)
= leftmost (Leaf seq, ctx) by (2)
= (seq, ctx) by defn ofleftmost

and

seq’ = seq (3)

and

ctx’ = ctx (4)

Hence,

plug (Leaf seq’, ctx’)
= plug (Leaf seq, ctx) by (3) and (4)
= plug (rp, ctx) by (2)

Lazy Tree Splitting 41

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength ctx) ++ (0, lengthSeq seq) by (3) and (4)
= (ctxLength ctx) ++ (0, length (Leaf seq)) by defn oflength
= (ctxLength ctx) ++ (0, length rp) by (2)

and

(ctxSize ctx’) ++ (0, 1)
= (ctxSize ctx) ++ (0, 1) by (4)
= (ctxSize ctx) ++ (0, size (Leaf seq)) by defn ofsize
= (ctxSize ctx) ++ (0, size rp) by (2)

• Suppose that

rp = Cat (lrp, rrp) (5)

Therefore,

(seq’, ctx’)
= leftmost (rp, ctx) by (1)
= leftmost (Cat (lrp, rrp), ctx) by (5)
= leftmost (lrp, MCLeft (ctx, rrp)) by defn ofleftmost

and

(seq’, ctx’) = leftmost (lrp, MCLeft (ctx, rrp)) (6)

By the induction hypothesis withlrp , MCLeft (ctx, rrp) , and (6),

plug (Leaf seq’, ctx’)
= plug (lrp, MCLeft (ctx, rrp))

(7)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength (MCLeft ctx, rpp)) ++ (0, length lrp)

(8)
and

(ctxSize ctx’) ++ (0, 1)
= (ctxSize (MCLeft ctx, rpp)) ++ (0, size lrp)

(9)

Hence,

plug (Leaf seq’, ctx’)
= plug (lrp, MCLeft (ctx, rpp)) by (7)
= plug (Cat (lrp, rrp), ctx) by defn ofplug
= plug (rp, ctx) by (5)

42 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength (MCLeft ctx, rpp)) ++ (0, length lrp)

by (8)
= (ctxLength ctx) ++ (0, length rrp) ++ (0, length lrp)

by defn ofctxLength
= (ctxLength ctx) ++ (0, (length rrp) + (length lrp))

by defn of++
= (ctxLength ctx) ++ (0, (length lrp) + (length rrp))

by defn of+
= (ctxLength ctx) ++ (0, length (Cat (lrp, rrp)))

by defn oflength
= (ctxLength ctx) ++ (0, length rp) by (5)

and

(ctxSize ctx’) ++ (0, 1)
= (ctxSize (MCLeft ctx, rpp)) ++ (0, size lrp)

by (9)
= (ctxSize ctx) ++ (0, size rrp) ++ (0, size lrp)

by defn ofctxSize
= (ctxSize ctx) ++ (0, (size rrp) + (size lrp))

by defn of++
= (ctxSize ctx) ++ (0, (size lrp) + (size rrp))

by defn of+
= (ctxSize ctx) ++ (0, size (Cat (lrp, rrp)))

by defn ofsize
= (ctxSize ctx) ++ (0, size rp) by (5)

Similarly, thenext operation preserves the represented rope as well as its length and
size:

Lemma 3
For any roperp and any contextctx , if next (rp, ctx) returnsDone rp’ , then

rp’ = plug (rp, ctx)

and if it returnsMore (seq’, ctx’) , then

plug (Leaf seq’, ctx’) = plug (rp, ctx)

and
(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (length rp, 0)

and

(ctxSize ctx’) ++ (0, 1) = (ctxSize ctx) ++ (size rp, 0)

Proof

Lazy Tree Splitting 43

The proof is by structural induction onctx .

• Suppose that

ctx = MCTop (1)

Hence,

next (rp, ctx)
= next (rp, MCTop) by (1)
= Done rp by defn ofnext

and, furthermore,

rp
= plug (rp, MCTop) by defn ofplug
= plug (rp, ctx) by (1)

as required whennext (rp, ctx) returnsDone rp .

• Suppose that

ctx = MCLeft (ctx’, rrp) (2)

Hence,

next (rp, ctx)
= next (rp, MCLeft (ctx’, rrp)) by (2)
= More (seq’’, ctx’’) by defn ofnext

where

(seq’’, ctx’’) = leftmost (rrp, MCRight (rp, ctx’))
(3)

By Lemma 2 withrrp , MCRight (rp, ctx’) , and (3),

plug (Leaf seq’’, ctx’’)
= plug (rrp, MCRight (rp, ctx’))

(4)

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)
= (ctxLength (MCRight (rp, ctx’))) ++ (0, length rrp)

(5)
and

(ctxSize ctx’’) ++ (0, 1)
= (ctxSize (MCRight (rp, ctx’))) ++ (0, size rrp)

(6)
Furthermore,

plug (Leaf seq’’, ctx’’)
= plug (rrp, MCRight (rp, ctx’)) by (4)
= plug (Cat (rp, rrp), ctx’) by defn ofplug
= plug (rp, MCLeft (ctx’, rrp)) by defn ofplug

44 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)
= (ctxLength (MCRight (rp, ctx’))) ++ (0, length rrp)

by (5)
= (ctxLength ctx’) ++ (length rp, 0) ++ (0, length rrp)

by defn ofctxLength
= (ctxLength ctx’) ++ (0, length rrp) ++ (length rp, 0)

by defn of++
= (ctxLength (MCLeft (ctx’, rrp))) ++ (length rp, 0)

by defn ofctxLength
= (ctxLength ctx) ++ (length rp, 0) by (2)

and

(ctxSize ctx’’) ++ (0, 1)
= (ctxSize (MCRight (rp, ctx’))) ++ (0, size rrp)

by (6)
= (ctxSize ctx’) ++ (size rp, 0) ++ (0, size rrp)

by defn ofctxSize
= (ctxSize ctx’) ++ (0, size rrp) ++ (size rp, 0)

by defn of++
= (ctxsize (MCLeft (ctx’, rrp))) ++ (size rp, 0)

by defn ofctxSize
= (ctxSize ctx) ++ (size rp, 0) by (2)

as required whennext (rp, ctx) returnsMore (seq’’, ctx’’) .

• Suppose that

ctx = MCRight (lrp, ctx’) (7)

Hence,

next (rp, ctx)
= next (rp, MCRight (lrp, ctx’)) by (7)
= next (Cat (lrp, rp), ctx’) by defn ofnext

and

next (rp, ctx) = next (Cat (lrp, rp), ctx’) (8)

Proceed by cases on the result ofnext (Cat (lrp, rp), ctx’) .

— Suppose that the result isDone rp’’ .
Therefore,

next (Cat (lrp, rp), ctx’) = Done rp’’ (9)

By the induction hypothesis withCat (lrp, rp) , ctx’ , and (9),

rp’’ = plug (Cat (lrp, rp), ctx’) (10)

Lazy Tree Splitting 45

Hence,

next (rp, ctx)
= next (Cat (lrp, rp), ctx’) by (8)
= Done rp’’ by (9)

and, furthermore,

rp’’
= plug (Cat (lrp, rp), ctx’) by (10)
= plug (rp, MCRight (lrp, ctx’)) by defn ofplug
= plug (rp, ctx) by (7)

as required whennext (rp, ctx) returnsDone rp’’ .
— Suppose that the result isMore (seq’’, ctx’’) .

Therefore,

next (Cat (lrp, rp), ctx’) = More (seq’’, ctx’’)
(11)

By the induction hypothesis withCat (lrp, rp) , ctx’ , and (11),

plug (Leaf seq’’, ctx’’) = plug (Cat (lrp, rp), ctx’)
(12)

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)
= (ctxLength ctx’) ++ (length (Cat (lrp, rp)), 0)

(13)
and

(ctxSize ctx’’) ++ (0, 1)
= (ctxSize ctx’) ++ (size (Cat (lrp, rp)), 0)

(14)
Hence,

next (rp, ctx)
= next (Cat (lrp, rp), ctx’) by (8)
= More (seq’’, ctx’’) by (11)

and, furthermore,

plug (Leaf seq’’, ctx’’)
= plug (Cat (lrp, rp), ctx’) by (12)
= plug (rp, MCRight (lrp, ctx’)) by defn ofplug
= plug (rp, ctx) by (7)

46 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)
= (ctxLength ctx’) ++ (length (Cat (lrp, rp)), 0)

by (13)
= (ctxLength ctx’) ++ (length lrp + length rp, 0)

by defn oflength
= (ctxLength ctx’) ++ (length lrp, 0) ++ (length rp, 0)

by defn of++
= (ctxLength (MCRight (lrp, ctx’))) ++ (length rp, 0)

by defn ofctxLength
= (ctxLength ctx) ++ (length rp, 0) by (7)

and

(ctxSize ctx’’) ++ (0, 1)
= (ctxSize ctx’) ++ (size (Cat (lrp, rp)), 0)

by (14)
= (ctxSize ctx’) ++ (size lrp + size rp, 0)

by defn ofsize
= (ctxSize ctx’) ++ (size lrp, 0) ++ (size rp, 0)

by defn of++
= (ctxsize (MCRight (lrp, ctx’))) ++ (size rp, 0)

by defn ofctxSize
= (ctxSize ctx) ++ (size rp, 0) by (7)

as required whennext (rp, ctx) returnsMore (seq’’, ctx’’) .

The following lemmas and theorem enable us to use this implementation ofmapLTSUntil
in ourmapLTS.

Lemma 4
For any sequenceseq and any contextctx , with f = fn x => x ,

mSeq (seq, ctx) = plug (Leaf seq, ctx)

Proof
The proof is by strong induction onsnd (ctxSize ctx) .
The induction hypothesis is:

for anyseq’ andctx’
such thatsnd (ctxSize ctx’) < snd (ctxSize ctx) ,

mSeq (seq’, ctx’) = plug (Leaf seq’, ctx’)

Proceed by cases on the result ofnext (Leaf seq, ctx) .

• Suppose that the result isDone rp’ .
Therefore,

next (Leaf seq, ctx) = Done rp’ (1)

Lazy Tree Splitting 47

By Lemma 3 withLeaf seq , ctx , and (1)

rp’ = plug (Leaf seq, ctx) (2)

Hence,

mSeq (seq, ctx)
= rp’ by defn ofmSeqand (1)
= plug (Leaf seq, ctx) by (2)

• Suppose that the result isMore (seq’, ctx’) .
Therefore,

next (Leaf seq, ctx) = More (seq’, ctx’) (3)

Note that

mapSeq (fn x => x) seq’ = seq’ (4)

is assumed to hold of an implementation ofmapSeq.
By Lemma 3 withLeaf seq , ctx , and (3)

plug (Leaf seq’, ctx’) = plug (Leaf seq, ctx) (5)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength ctx) ++ (length (Leaf seq), 0)

(6)

and
(ctxSize ctx’) ++ (0, 1)

= (ctxSize ctx) ++ (size (Leaf seq), 0)
(7)

Note that

snd (ctxSize ctx)
= snd ((ctxSize ctx) ++ (size (Leaf seq), 0))

by defn ofsnd and++
= snd ((ctxSize ctx’) ++ (0, 1)) by (7)
= snd (ctxSize ctx’) + 1 by defn ofsnd and++

Hence,

snd (ctxSize ctx’) < snd (ctxSize ctx) (8)

By the induction hypothesis withseq’ , ctx’ , and (8),

mSeq (seq’, ctx’) = plug (Leaf seq’, ctx’) (9)

Hence,

mSeq (seq, ctx)
= mSeq (mapSeq (fn x => x) seq’, ctx’)

by defn ofmSeqand (3)
= mSeq (seq’, ctx’) by (4)
= plug (Leaf seq’, ctx’) by (9)
= plug (Leaf seq, ctx) by (5)

48 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Lemma 5
For any sequenceseq , any contextctx , any predicatecond , with f = fn x => x , if
m (seq, ctx) returnsDone rp’ , then

rp’ = plug (Leaf seq, ctx)

and if it returnsMore cur’ , then

root cur’ = plug (Leaf seq, ctx)

and
snd (ctxLength ctx) + (lengthSeq seq)

≥ snd (curLength cur’)

and

snd (curLength cur’) ≥ 2

Proof
The proof is by strong induction onsnd (ctxSize ctx) .
The induction hypothesis is:

for anyseq’ andctx’
such thatsnd (ctxSize ctx’) < snd (ctxSize ctx) ,
if m (seq’, ctx’) returnsDone rp’’ ,
then

rp’’ = plug (Leaf seq’, ctx’)
and if it returnsMore cur’’ ,
then

root cur’’ = plug (Leaf seq’, ctx’)
and

snd (ctxLength ctx’) + (lengthSeq seq’)
≥ snd (curLength cur’’)

and
snd (curLength cur’’) ≥ 2

Proceed by cases on the result ofmapUntilSeq cond (fn x => x) seq .

• Suppose that the result isDone pseq’ .
Therefore,

mapUntilSeq cond (fn x => x) seq = Done pseq’ (1)

By Property 3 withseq , cond and (1),

pseq’ = seq (2)

Proceed by cases on the result ofnext (Leaf pseq’, ctx) .

— Suppose that the result isDone rp’ .
Therefore,

next (Leaf pseq’, ctx) = Done rp’ (3)

Lazy Tree Splitting 49

By Lemma 3 withLeaf pseq’ , ctx , and (3),

rp’ = plug (Leaf pseq’, ctx) (4)

Hence,

m (seq, ctx)
= Done rp’ by defn ofm, (1), and (3)

and, furthermore,

rp’
= plug (Leaf pseq’, ctx) by (4)
= plug (Leaf seq, ctx) by (2)

as required whenm (seq, ctx) returnsDone rp’ .
— Suppose that the result isMore (seq’, ctx’) .

Therefore,

next (Leaf pseq’, ctx) = More (seq’, ctx’) (5)

By Lemma 3 withLeaf pseq’ , ctx , and (5),

plug (Leaf seq’, ctx’) = plug (Leaf pseq’, ctx)
(6)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)
= (ctxLength ctx) ++ (length (Leaf pseq’), 0)

(7)
and

(ctxSize ctx’) ++ (0, 1)
= (ctxSize ctx) ++ (size (Leaf pseq’), 0)

(8)

snd (ctxSize ctx)
= snd ((ctxSize ctx) ++ (size (Leaf pseq’), 0))

by defn ofsnd and++
= snd ((ctxSize ctx’) ++ (0, 1)) by (8)
= snd (ctxSize ctx’) + 1 by defn ofsnd and++

Hence,

snd (ctxSize ctx’) < snd (ctxSize ctx) (9)

Proceed by cases on the result ofm (seq’, ctx’) .

– Suppose that the result isDone rp’’ .
Therefore,

m (seq’, ctx’) = Done rp’’ (10)

By the induction hypothesis withseq’ , ctx’ , and (9),

rp’’ = plug (Leaf seq’, ctx’) (11)

50 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Hence,

m (seq, ctx)
= m (seq’, ctx’) by defn ofm, (1), and (5)
= Done rp’’ by (10)

and, furthermore,

rp’’
= plug (Leaf seq’, ctx’) by (11)
= plug (Leaf pseq’, ctx) by (6)
= plug (Leaf seq, ctx) by (2)

as required whenm (seq, ctx) returnsDone rp’’ .

– Suppose that the result isMore cur’’ .
Therefore,

m (seq’, ctx’) = More cur’’ (12)

By the induction hypothesis withseq’ , ctx’ , and (9),

root cur’’ = plug (Leaf seq’, ctx’) (13)

and

snd (ctxLength ctx’) + (lengthSeq seq’)
≥ snd (curLength cur’’)

(14)

and

snd (curLength cur’’) ≥ 2 (15)

Hence,

m (seq, ctx)
= m (seq’, ctx’) by defn ofm, (1), and (5)
= More cur’’ by (12)

and, furthermore,

root cur’’
= plug (Leaf seq’, ctx’) by (13)
= plug (Leaf pseq’, ctx) by (6)
= plug (Leaf seq, ctx) by (2)

and

snd (ctxLength ctx) + (lengthSeq seq)
≥ snd (ctxLength ctx)
= snd ((ctxLength ctx) ++ (length (Leaf pseq’), 0))

by defn ofsnd and++
= snd ((ctxLength ctx’) ++ (0, lengthSeq’))

by (7)
= snd (ctxLength ctx’) + (lengthSeq seq’)

by defn ofsnd and++
≥ snd (curLength cur’’) by (14)

Lazy Tree Splitting 51

and

snd (curLength cur’’)
≥ 2 by (15)

as required whenm (seq, ctx) returnsMore cur’’ .

• Suppose that the result isMore (useq’, pseq’) .
Therefore,

mapUntilSeq cond (fn x => x) seq = More (useq’, pseq’)
(16)

By Property 3 withseq , cond and (16),

joinSeq (pseq’, useq’) = seq (17)

Proceed by cases on the result ofsnd (curLength ((pseq’,useq’), ctx)) >= 2 .

— Suppose that the result istrue .
Therefore,

snd (curLength ((pseq’, useq’), ctx)) ≥ 2 (18)

Hence,

m (seq, ctx)
= More ((pseq’, useq’), ctx)

by defn ofm, (16), and (18)

and

root ((pseq’, useq’), ctx)
= plug (Leaf (joinSeq (pseq’, useq’)), ctx) by defn ofroot
= plug (Leaf seq, ctx) by (17)

and

snd (ctxLength ctx) + (lengthSeq seq)
= snd (ctxLength ctx) + (lengthSeq (joinSeq (pseq’, useq’)))

by (17)
= snd (ctxLength ctx) + (lengthSeq pseq’) + (lengthSeq useq’)

by defn oflengthSeq
andjoinSeq

≥ snd (ctxLength ctx) + (lengthSeq useq’)
= snd ((ctxLength ctx) ++ (lengthSeq pseq’, lengthSeq useq’))

by defn ofsnd and++
= snd (curLength ((pseq’, useq’), ctx)) by defn ofcurLength

and

snd (curLength ((pseq’, useq’), ctx))
≥ 2 by (18)

as required when m (seq, ctx) returns
More ((pseq’, useq’), ctx) .

— Suppose that the result isfalse .

52 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Therefore,

snd (curLength ((pseq’, useq’), ctx)) < 2 (19)

Note that

mapSeq (fn x => x) useq’ = useq’ (20)

is assumed to hold of an implementation ofmapSeq.
By Lemma 4 withseq , ctx ,

mSeq (seq, ctx) = plug (Leaf seq, ctx) (21)

Hence,

m (seq, ctx)
= Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx))

by defn ofm, (16), and (19)

and

mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)
= mSeq (joinSeq (pseq’, useq’), ctx) by (20)
= mSeq (seq, ctx) by (17)
= plug (Leaf seq, ctx) by (21)

as required when m (seq, ctx) returns
Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)) .

Theorem 3(mapLTSUntil is well-behaved)
Property 2 holds for the implementation ofmapLTSUntil .

For any roperp and any predicatecond , if mapLTSUntil cond (fn x => x) rp
returnsDone rp’ , then

rp’ = rp

and if it returnsMore cur’ , then

root cur’ = rp

and

length rp ≥ lengthRight cur’

and

lengthRight cur’ ≥ 2

Proof
Note that

mapLTSUntil cond (fn x => x) rp
= m (seq, ctx) by defn ofmapLTSUntil

where

(seq, ctx) = leftmost (rp, MCTop) (1)

Lazy Tree Splitting 53

By Lemma 2 withrp , MCTop, and (1),

plug (Leaf seq, ctx) = plug (rp, MCTop) (2)

and

(ctxLength ctx) ++ (0, lengthSeq seq)
= (ctxLength MCTop) ++ (0, length rp)

(3)

and

(ctxSize ctx) ++ (0, 1) = (ctxSize MCTop) ++ (0, size rp)
(4)

Proceed by cases on the result ofm (seq, ctx) .

• Suppose that the result isDone rp’ .
Therefore,

m (seq, ctx) = Done rp’ (5)

By Lemma 5 withctx , cond , and (5),

rp’ = plug (Leaf seq, ctx) (6)

Hence,

mapLTSUntil cond (fn x => x) rp
= m (seq, ctx) by defn ofmapLTSUntil
= Done rp’ by (5)

and

rp’
= plug (Leaf seq, ctx) by (6)
= plug (rp, MCTop) by (2)
= rp by defn ofplug

as required when mapLTSUntil cond (fn x => x) rp returns
Done rp’ .

• Suppose that the result isMore cur’ .
Therefore,

m (seq, ctx) = More cur’ (7)

By Lemma 5 withctx , cond , and (7),

root cur’ = plug (Leaf seq, ctx) (8)

and

snd (ctxLength ctx) + (lengthSeq seq) ≥ snd (curLength cur’)
(9)

and

snd (curLength cur’) ≥ 2 (10)

54 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Hence,

mapLTSUntil cond (fn x => x) rp
= m (seq, ctx) by defn ofmapLTSUntil
= More cur’ by (7)

and
root cur’

= plug (Leaf seq, ctx) by (8)
= plug (rp, MCTop) by (2)
= rp by defn ofplug

and

length rp
= snd((0, 0) ++ (0, length rp))

by defn ofsnd and++
= snd((ctxLength MCTop) ++ (0, length rp))

by defn ofctxLength
= snd((ctxLength ctx) ++ (0, lengthSeq seq))

by (3)
= snd(ctxLength ctx) + (lengthSeq seq)

by defn ofsnd and++
≥ snd (curLength cur’) by (9)

and
snd (curLength cur’)

≥ 2 by (10)

as required when mapLTSUntil cond (fn x => x) rp returns
More cur’ .

A.3 split and join are well-behaved

The well-behavedness of oursplit and join operations will depend on the property
that thezipCursor operation is a left-inverse of theunzipCursor operation.

Lemma 6
For any (zipped) contextctx ,

zipCtx (unzipCtx ctx) = ctx

Proof
By structural induction onctx .

Lemma 7
For any (zipped) cursorcur ,

zipCursor (unzipCursor cur) = cur

Proof

Lazy Tree Splitting 55

By Lemma 6.

We have thatdivideRopes (rps, n) returns(rps1, rp, k, rps2) such
thatrps1 @ [rp] @ rps2 is equal torps andk is the index inrp at which thenth

element ofrps is found.

Lemma 8
For any nonempty list of ropesrps and any integer n, such that 0 ≤ n
and n ≤ sumLengths rps , if divideRopes (rps, n) returns
(rps1, rp, k, rps2) , then

rps1 @ [rp] @ rps2 = rps

and

length rp ≤ k

and

k = n - (sumLengths rps1)

Proof
By structural induction onrps .

We have that theroot operation is a left-inverse of thesplitAtAsCur operation and
also thatsplitAtAsCur returns a cursor in which the “hole” occurs between thenth and
n+1st elements of the roperp .

Lemma 9
For any roperp and any integern, such that0 ≤ n andn ≤ length rp , if splitAtAsCur (rp, n)
returnscur , then

root cur = rp

and

curLength cur = (n, (length rp) - n)

Proof
By structural induction onrp .

Finally, we have that thedecodeRope operation is a left-inverse of theencodeRopes
operation.

Lemma 10
For any nonempty list of ropesrps ,

decodeRope (encodeRope rps) = rps

Proof
By structural induction onrps .

With the following theorem, we can conclude that our implementation ofsplit and
join can be used safely bymapLTS.

Theorem 4(split andjoin are well-behaved)

56 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

Property 1 holds for the implementations ofsplit andjoin .

For any cursorcur , if split cur returns(rp1, rp2, reb) , then

join (rp1, rp2, reb) = cur

and

length rp1 = (lengthRight cur) div 2

and

length rp2 = (lengthRight cur) - ((lengthRight cur) div 2)

Proof
By Lemmas 7, 8, 9 and 10.

A.4 mapLTS is shape preserving

Theorem 1(mapLTSis shape preserving)
For any roperp ,

mapLTS (fn x => x) rp = rp

Proof
The proof is by strong induction onlength rp .
The induction hypothesis is:

for anyrp’
such thatlength rp’ < length rp ,

mapLTS (fn x => x) rp’ = rp’

Proceed by cases on the result ofmapLTSUntil hungryProcs (fn x => x) rp .

• Suppose that the result isDone rp’ .
Therefore,

mapLTSUntil hungryProcs (fn x => x) rp = Done rp’
(1)

By Property 2 withrp andhungryProcs and (1),

rp’ = rp (2)

Therefore,

mapLTS (fn x => x) rp
= rp’ by defn ofmapLTSand (1)
= rp by (2)

• Suppose that the result isMore cur’ .
Therefore,

mapLTSUntil hungryProcs (fn x => x) rp = More cur’
(3)

Lazy Tree Splitting 57

By Property 2 withrp andhungryProcs and (3),

root cur’ = rp (4)

and

length rp ≥ lengthRight cur’ (5)

and

lengthRight cur’ ≥ 2 (6)

Note thatlengthRight cur’ ≥ 2 implies that

lengthRight cur’ > (lengthRight cur’) div 2 (7)

and

(lengthRight cur’) div 2 ≥ 1 (8)

By Property 1,

join (rp1, rp2, reb) = cur’ (9)

and

length rp1 = (lengthRight cur’) div 2 (10)

and

length rp2
= (lengthRight cur’) - ((lengthRight cur’) div 2)

(11)
Note that

length rp1
= (lengthRight cur’) div 2 by (10)
< lengthRight cur’ by (7)
≤ length rp by (5)

Hence,

length rp1 < length rp (12)

By the induction hypothesis withrp1 and (12),

mapLTS (fn x => x) rp1 = rp1 (13)

Note that

length rp2
= (lengthRight cur’) - ((lengthRight cur’) div 2)

by (11)
≤ (lengthRight cur’) - 1 by (8)
< lengthRight cur’
≤ length rp by (5)

Hence,

length rp2 < length rp (14)

58 L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw

By the induction hypothesis withrp2 and (14),

mapLTS (fn x => x) rp2 = rp2 (15)

Note that, by the definitions ofmapLTSandpar2 ,

rp1’ = mapLTS (fn x => x) rp1 (16)

and

rp2’ = mapLTS (fn x => x) rp2 (17)

Therefore,

mapLTS (fn x => x) rp
= root (join (rp1’, rp2’, reb))

by defn ofmapLTSand (3)
= root (join (rp1, rp2’, reb)) by (16) and (13)
= root (join (rp1, rp2, reb)) by (17) and (15)
= root cur’ by (9)
= rp by (4)

