
Partial Aborts for Transactions via First-Class Continuations

Matthew Le
Rochester Institute of Technology, USA

ml9951@cs.rit.edu

Matthew Fluet
Rochester Institute of Technology, USA

mtf@cs.rit.edu

Abstract
Software transactional memory (STM) has proven to be a useful
abstraction for developing concurrent applications, where program-
mers denote transactions with an atomic construct that delimits
a collection of reads and writes to shared mutable references. The
runtime system then guarantees that all transactions are observed to
execute atomically with respect to each other. Traditionally, when
the runtime system detects that one transaction conflicts with an-
other, it aborts one of the transactions and restarts its execution
from the beginning. This can lead to problems with both execution
time and throughput.

In this paper, we present a novel approach that uses first-class
continuations to restart a conflicting transaction at the point of a
conflict, avoiding the re-execution of any work from the beginning
of the transaction that has not been compromised. In practice, this
allows transactions to complete more quickly, decreasing execution
time and increasing throughput. We have implemented this idea
in the context of the Manticore project, an ML-family language
with support for parallelism and concurrency. Crucially, we rely on
constant-time continuation capturing via a continuation-passing-
style (CPS) transformation and heap-allocated continuations. When
comparing our STM that performs partial aborts against one that
performs full aborts, we achieve a decrease in execution time of up
to 31% and an increase in throughput of up to 351%.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features Concurrent program-
ming structures; D.3.4 [Programming Languages]: Processors
Run-time environments

General Terms Languages

Keywords Software Transactional Memory, First-Class Continu-
ations

1. Introduction
Software transactional memory (STM) [ST95, HM93] allows pro-
grammers to mark sections of code as transactional using an
atomic language construct (or using suitable library support). The
runtime system then guarantees that modifications of shared refer-
ences within transactions happen atomically with respect to other
concurrently running transactions. Using STM instead of other syn-

chronization methods such as mutex locks substantially simplifies
the development of concurrent applications, avoiding common pit-
falls such as deadlocks.

There are many different ways to enforce atomicity for STM.
In this work, we build on an algorithm that uses lazy versioning,
meaning that updates to shared references are not visible to other
threads until the end of the transaction. In this scheme, the runtime
system maintains a thread-local log recording which references
were read from and written to within a transaction. When a thread
writes to a reference, rather than modifying memory directly, it
creates a local copy of the reference and records the written value
on the copy. At the end of the transaction, the thread validates its
log and if no conflicts are detected, it commits all of the local copies
to the global store. If a conflict is detected, then it throws away the
log and restarts the transaction from the beginning.

One issue that is under active research is that of fairness. Con-
sider a situation where there are some threads executing long trans-
actions and other threads that are executing short transactions that
conflict with the long transactions. The threads executing the short
transactions will complete sooner, giving them a higher probabil-
ity of successfully validating and committing. These commits will
then invalidate the long running transactions causing them to fre-
quently abort. This issue has been addressed in the past by using
contention managers [SDMS09], but not without imposing signifi-
cant overheads.

In many compilers for functional languages, it is common to
perform a continuation-passing-style (CPS) transformation to en-
able further optimizations. Additionally, it has been shown that
continuations can be used to elegantly express concurrent program-
ming [Wan80, Shi97, RRX09] and serves as a fundamental compo-
nent of the Manticore scheduling infrastructure [FRR08]. In this
work we make use of first-class continuations to restore execution
of invalid transactions at the point of the first conflict, rather than
always resuming execution at the beginning of the transaction. In
practice, this avoids redundant work that has not been compromised
by another thread, allowing threads to complete more quickly and
increase throughput.

The idea of partially aborting transactions has been previously
attempted in the context of C [KH08]. However, in order to capture
a continuation in a non-CPS-converted language, the stack must be
copied, which has linear complexity in both space and time. This
makes capturing continuations at a fine granularity far too expen-
sive. In order to deal with this, they require the programmer to man-
ually insert “checkpoints,” where continuations are to be captured.
During the validation process, execution for aborted transactions
returns to the latest valid checkpoint in the transaction. Even with
manual checkpointing, the authors show a degradation in perfor-
mance on both benchmarks presented due to the high overhead of
stack copying.

When performing the CPS conversion of a program, each func-
tion is extended with an extra parameter called the return continua-
tion. When the function finishes, rather than returning to a previous

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada

ACM. 978-1-4503-3669-7/15/08

http://dx.doi.org/10.1145/2784731.2784736

230

context on the stack, it invokes the return continuation with its re-
sult. This return continuation is often thought of as “the rest of the
program,” as it contains everything that is to happen next. The sort
of checkpointing previously described can be implemented very ef-
ficiently by saving the return continuation when a transactional ref-
erence is read from and stored in the log. When a conflict is detected
during validation, the program state can then simply be restored by
invoking the continuation found in the log. What previously took
linear time and space in a direct style language can now be done in
constant time and space.

This paper makes the following contributions:

• We present an extension of the Transactional Locking II algo-
rithm, a modern, high performance STM algorithm, to partially-
abort transactions.

• We identify a significant overhead in garbage collection due to
live captured continuations and present a scheme to bound the
number of continuations held to a constant factor.

• We formalize the semantics of STM that performs partial aborts
and give a machine checked proof, using the Coq proof assis-
tant, that it yields equivalent final program states to a similar
implementation that performs full aborts.

• We present a detailed evaluation covering a number of standard
benchmarks common to the STM community. Results indicate
that the overhead of capturing continuations to support partial
aborts is negligible and can yield substantial performance im-
provements.

2. Baseline STM
We begin by describing the baseline full abort reference implemen-
tation that we later extend in Section 5. The full abort algorithm
that we compare against is based on the Transactional Locking II
(TL2) algorithm [DSS06]. TL2 is one of the top performing imple-
mentations of STM and is commonly used in evaluating new STM
algorithms [DR14, BBA15, ZHCB15]. The main novelty of TL2 is
its use of a global version clock for eagerly detecting conflicts and
ensuring atomicity. In this system, threads perform an atomic in-
crement of the global version clock at the beginning of each trans-
action. This version number is referred to as the read version for
the transaction and is used for detecting references that have been
altered since the start of the transaction. Additionally, each refer-
ence has a version number and a lock; the version number indicates
when the reference was last updated.

When a thread writes to a reference, it performs its write on a
thread local copy that it maintains in its write set. When reading
from a reference, the thread first consults its write set to check if it
has already made updates to the reference. If so, it reads the value
of its most recent update to the reference from its write set. If no
local copy exists, then it checks that the version number associated
with the reference is older than the read version it received at the
beginning of the transaction and that the reference’s lock is not
held. If these checks succeed, then it records the fact that it read
from the reference in its read set. If the version number associated
with the reference is newer than the read version or the reference’s
lock is held, then the log is discarded and the transaction is aborted
and restarted.

When committing a transaction, the thread first acquires the
locks associated with each reference that it wrote. If any locks
cannot be acquired, then the transaction is aborted in order to avoid
deadlock. After all locks are acquired, the read set is validated by
checking again that for each reference read, the version number
associated with the reference is older than the read version received
at the beginning of the transaction. If any are out of date, then the
write locks are released and the transaction is aborted. If the read

Values v ::= �x.e | ` | ()
Expressions e ::= v | x | e e | spawn e

| !e | e := e | tref e
| atomic e | inatomic(e)

Evaluation Context E ::= [·] | E e | v E
| !E | E := e | v := E | tref E
| inatomic(E)

Heap H ::= · | H, ` 7! (v, S)
Thread Pool T ::= · | ht; ei | T [T

Transaction Info t ::= · | hS;L; ei
Log L ::= · | L, ` 7!

w

v | L, ` 7!
r

E
Version Numbers S,C ::= N

Figure 1. Syntax

set is successfully validated, then an atomic increment of the global
version clock is performed to retrieve a new version number that is
referred to as the write version for the transaction. Lastly, for each
local copy in the write set, the value is written to the corresponding
reference, the write version is written into the version number
associated with the reference, and the lock is released.

This approach has received much praise for its ability to provide
a strong guarantee known as opacity [GK08] at a very low perfor-
mance cost. Opacity is a property that was proposed for STM that
requires three conditions hold:

1. For each committed transaction, all operations must appear to
the rest of the system as if they were performed as one atomic
operation.

2. Threads can not observe any operation performed by an aborted
transaction.

3. Every transaction must always maintain a consistent view of
memory.

As an example of opacity at work, consider the following pro-
gram:

val get : ’a STM.tref -> ’a = STM.get
val atomic : (unit -> ’a) -> ’a = STM.atomic
fun trans() =
let val x = get tref1

val y = get tref1
in if x = y then () else infiniteLoop()
end

val _ = atomic trans

In this example, atomic takes a function of type unit -> ’a
that is run atomically and get returns the value of a tref. As
mentioned previously, every time a read is performed, the thread
checks that the version associated with the tref is older than the
version number it received at the start of its transaction. If not,
then the transaction is aborted. If this check were not performed,
then it is possible that in the above example, tref1 is modified
in between the two reads, changing its value, and causing this to
go into an infinite loop. However, with eager conflict detection, a
conflict would be detected at the second read, and the transaction
would be aborted. By enforcing opacity, users are given a much
more intuitive notion of atomicity with which to work.

3. Semantics
We extend the baseline full abort algorithm with the ability to par-
tially abort transactions by resuming execution at the point of a
conflict, rather than always resuming execution at the beginning of
the transaction. We first present a formal semantics of our exten-

231

C;H;T !
x

C0
;H0

;T 0 x 2 {full, partial, replay}

C;H;T1 !
x

C0
;H0

;T 0
1

C;H;T1 [T2 !
x

C0
;H0

;T 0
1 [T2

PARL
C;H;T2 !

x

C0
;H0

;T 0
2

C;H;T1 [T2 !
x

C0
;H0

;T1 [T 0
2

PARR

C;H; h·; E[spawn e]i !
x

C;H; h·; E[()]i [h·; ei SPAWN
C;H; ht; E[(�x.e) v]i !

x

C;H; ht; E[e[x 7! v]]i BETA

` /2 Dom(L|
w

) H(`) = (v, S0
) S0 < S

C;H; hhS;L; e0i; E[!`]i !x

C;H; hhS;L, ` 7!
r

E; e0i; E[v]i
READG

L|
w

(`) = v

C;H; hhS;L; e0i; E[!`]i !x

C;H; hhS;L; e0i; E[v]i
READL

C;H; hhS;L; e0i; E[` := v]i !
x

C;H; hhS;L, ` 7!
w

v; e0i; E[()]i
WRITE

` /2 Dom(H)

C;H; h·; E[tref v]i !
x

C;H, ` 7! (v, C); h·; E[`]i ALLOC

e0 = E[inatomic(e)]
C;H; h·; E[atomic e]i !

x

C + 1;H; hhC; ·; e0i; e0i
ATOMIC

C;H; hhS;L; e0i; E[atomic e]i !
x

C;H; hhS;L; e0i; E[e]i
NATOMIC

validate(S;L;H;C) commit(H0
)

C;H; hhS;L; e0i; E[inatomic(v)]i !
x

C + 1;H0
; h·; E[v]i COMMIT

Figure 2. Operational Semantics (!
x

: common rules)

sion and then give a detailed description of the implementation in
Section 5.

3.1 Syntax
Figure 1 gives the syntax of the language. Values include lambda
expressions, transactional reference locations, and the unit value.
Expressions include values, variables, function application, trans-
actional dereference, update, allocation, spawning threads, and
atomic sections. Note that the inatomic expression form is an inter-
mediate form denoting a running transaction and is not part of the
surface language. Evaluation contexts are entirely conventional.

A heap is a mapping of transactional reference locations to val-
ues paired with a version number; we do not explicitly model a
transactional reference’s lock in the semantics. A thread pool is
a collection of threads, where each thread maintains some trans-
actional info. The transactional info can either be empty (denoted
by ·), if the thread is not currently in a transaction, or be a triple
containing the read version, a log, and the initial expression that the
transaction is executing. Note that the initial expression is not used
for the partial abort semantics, but is used for the full abort seman-
tics. A transactional log contains two kinds of mappings, one which
maps locations to values that were written, and one that maps loca-
tions to evaluation contexts indicating where to resume execution
if the location read from is found to be invalid.

3.2 Partial Abort Operational Semantics
In order to prove the correctness of performing partial aborts, we
relate our partial abort semantics to the original full abort baseline
semantics. Many rules are shared by the partial abort semantics
and the full abort semantics (and an auxiliary replay semantics to
be introduced in Section 3.4), so we have factored out all of the
common rules to a generic judgement denoted by !

x

, where x is
then instantiated by “full”, “partial”, or “replay”.

The small-step operational semantics transitions one program
state to another, where a program state consists of a monotonically
increasing version clock, a heap, and a thread pool. A source
program e starts with the version clock set to 0, the empty heap,
and a single thread h·; ei. A terminal program state consists of only
threads that have finished evaluating their expressions to values.

Rules PARL and PARR are used to nondeterministically choose
a thread to execute. The SPAWN rule is used to create a new

thread, where the newly created thread evaluates the expression
given to spawn. In order to simplify the semantics, we do not allow
threads to be created inside transactions. The BETA rule is used
for applying a function, where e[x 7! v] is the capture-avoiding
substitution of v for x in e.

The READG rule is used for reading from a tref in the global
heap that does not exist in the thread’s write set, where L|

w

is
the log restricted to the write mappings. The location of the tref
is looked up in the heap, yielding the value and version number
associated with the location. This rule additionally requires that
the version number associated with the location (S0) is older (less
than) than the thread’s read version (S), which enforces part of the
opacity property described in Section 2. In the conclusion of the
rule, we create a read mapping in the thread’s log from the location
read to the current evaluation context. The READL rule simply
returns the value found when looking up the location in the thread’s
log.

The WRITE rule records a write to a tref in the log, shadowing
any previous write mappings of the location in the log. The ALLOC
rule creates a new reference, which can only be performed outside
of a transaction. In the implementation, this restriction is not in
place; however, this substantially simplifies the proof of equiva-
lence discussed later.

The ATOMIC rule begins a transaction by grabbing a new read
version from the global clock and transitioning into the inatomic
intermediate form with transactional info initialized with the read
version, an empty log, and the initial intermediate form. In our
semantics, we do not allow nested transactions, so we treat them
as idempotent (the NATOMIC rule). As noted in [KH08], partial
aborts can be used to capture many common nested transaction
idioms.

The COMMIT rule is used to commit a transaction. This rule re-
lies on the validate judgement given in Figure 4; for now it suffices
to know that if validate applied to a log L yields commit(H 0

), then
the log could be validated in the current program state and H 0 is the
global heap with all locally written trefs committed. The COMMIT
rule requires that validate yields a commit and then continues with
the current heap replaced by the one returned by validation.

The !partial relation (Figure 3) describes the extension spe-
cific to performing partial aborts and simply requires the addi-
tion of two rules that also rely on the validate judgement. The

232

C;H;T !partial C
0
;H 0

;T 0

validate(S;L;H;C) abort(L0
; E 0

; `0)

C;H; hhS;L; e0i; ei !partial C + 1;H; hhC;L0
; e0i; E 0

[!`0]i ABORT PARTIAL

` /2 Dom(L|
w

) H(`) = (v, S0
) S0 > S validate(S;L, ` 7!

r

E ;H;C) abort(L0
; E 0

; `0)

C;H; hhS;L; e0i; E [!`]i !partial C + 1;H; hhC;L0
; e0i; E 0

[!`0]i READG PARTIAL

Figure 3. Operational Semantics (!partial: partial abort rules)

validate(S;L;H;C) commit(H0
) | abort(L0

; E 0
; `0)

validate(S; ·;H;C) commit(H)

CEMPTY

validate(S;L;H;C) abort(L0
; E 0

; `0)

validate(S;L, ` 7!
w

v;H;C) abort(L0
; E 0

; `0)
APWRITE

validate(S;L;H;C) abort(L0
; E 0

; `0)

validate(S;L, ` 7!
r

E;H;C) abort(L0
; E 0

; `0)
APREAD

validate(S;L;H;C) commit(H0
)

validate(S;L, ` 7!
w

v;H;C) commit(H0, ` 7! (v, C))

CPWRITE
validate(S;L;H;C) commit(H0

) H(`) = (v, S0
) S0 < S

validate(S;L, ` 7!
r

E;H;C) commit(H0
)

CPREAD

validate(S;L;H;C) commit(H0
) H(`) = (v, S0

) S0 > S

validate(S;L, ` 7!
r

E;H;C) abort(L; E; `) AREAD

Figure 4. Transactional Log Validation

ABORT PARTIAL rule is used to partially abort a transaction. If
validate applied to a log L yields abort(L0

; E 0
; `0), then the log

could not be fully validated in the current program state due to a
conflict, L0 is the prefix of the log that could be validated, and E 0 is
the continuation of the read of location `0 at which the conflict oc-
curred. The ABORT PARTIAL rule requires that validate yields an
abort and then continues with a new read version retrieved from the
global clock, the partially validated log, and the continuation ap-
plied to the read of the location. Note that the ABORT PARTIAL
rule is not syntax directed; rather, it can be applied nondetermin-
istically at any time that the log cannot be fully validated. In prac-
tice, the ABORT PARTIAL rule is applied when the transaction
has completed and the COMMIT rule does not apply.

The READG PARTIAL rule is used for eagerly detected con-
flicts. One might expect that the ABORT PARTIAL rule suffices to
capture the semantics of our full abort algorithm, where an eager
abort would correspond to the inapplicability of the READG rule
and, instead, applying ABORT PARTIAL. However, it is possible
for a thread to attempt to read a tref that was updated after it started
its transaction while also having a fully valid log (e.g., when the
log is empty and the first read is of a newly updated tref). Since the
whole log is valid, the ABORT PARTIAL rule is not applicable. In
the READG PARTIAL rule, we validate the log extended with a
mapping for this attempted read of the out-of-date tref, guarantee-
ing that validation will discover a point of conflict and abort.

3.3 Log Validation
Figure 4 gives the rules for validating a transactional log. This
judgement relates a 4-tuple containing a thread’s read version, its
log, the global heap, and a write version to be written into com-
mitted trefs, to a result indicating whether validation succeeded or
failed. If any read tref in the log is out of date, validation fails, yield-
ing the log prior to the invalid read and the continuation and loca-
tion of the invalid read. If validation succeeds, then validate yields
a new heap containing all of the local tref writes in the log commit-

ted to the global heap. Note that the log is validated in chronologi-
cal order; this ensures that if multiple conflicts are detected, the log,
continuation, and location correspond to the earliest conflict that
occurred, which is essential for the correctness of our algorithm.

The CEMPTY rule indicates that the empty log can trivially be
validated. The APWRITE and APREAD rules propagate an abort
through a write or read mapping in the log: if validation failed on
an earlier operation in the log, then the entire validation process
aborts; note that this propagates the earliest conflict information.
The CPWRITE rule propagates a commit through a write mapping,
by extending the committed global heap with a binding from the
location to the written value and the write version; note that if a
log records multiple updates to the same tref, then the latest one
will shadow all earlier ones in the final committed global heap.
The CPREAD rule propagates a commit through a valid read by
requiring that the write version associated with the read tref in the
current global heap is still older (less than) than the thread’s read
version. Finally, the AREAD rule initiates an abort at an invalid
read when the write version associated with the read tref in the
current global heap is newer (greater than) than the thread’s read
version; an abort result is returned with the portion of the log prior
to the invalid read, the continuation of the invalid read, and the
location of the invalid read.

3.4 Equivalence
The correctness of the full abort algorithm has been proven in pre-
vious work [KPH10]. In this paper, we simply prove that perform-
ing partial aborts yields the same final program states as perform-
ing full aborts and use this equivalence to deduce the correctness
of our extension. The semantics for the full abort algorithm con-
sists of the common rules (!

x

) and two additional !full rules (Fig-
ure 5. The ABORT FULL rule is used to fully abort a transaction.
Rather than making use of the log, continuation, and location re-
turned from validation, execution proceeds with an empty log and
the initial expression recorded at the beginning of the transaction.

233

C;H;T !full C
0
;H 0

;T 0

validate(S;L;H;C) abort(L0
; E 0

; `0)

C;H; hhS;L; e0i; ei !full C + 1;H; hhC; ·; e0i; e0i
ABORT FULL

` /2 Dom(L|
w

) H(`) = (v, S0
) S0 > S validate(S;L, ` 7!

r

E ;H;C) abort(L0
; E 0

; `0)

C;H; hhS;L; e0i; E [!`]i !full C + 1;H; hhC; ·; e0i; e0i
READG FULL

Figure 5. Operational Semantics (!full: full abort rules)

C;H;T !replay C0
;H 0

;T 0

` /2 Dom(L|
w

) H(`) = (v, S0
) S0 > S

C;H; hhS;L; e0i; E [!`]i !replay C;H; hhS;L, ` 7!
r

E ; e0i; E [v0]i
READG REPLAY

Figure 6. Operational Semantics (!replay: replay relation)

WellFormed(C;H; h·; ei)

C;H; hhS; ·; e0i; e0i !⇤
replay C;H; hhS;L; e0i; ei

WellFormed(C;H; hhS;L; e0i; ei)

WellFormed(C;H;T1) WellFormed(C;H;T2)

WellFormed(C;H;T1 [T2)

Figure 7. Thread Pool WellFormed Judgement

The READG FULL rule is used for eagerly detecting conflicts sim-
ilar to READG PARTIAL except that a full abort takes place and
there is no need for validation.

In order to show that our partial abort extension has the same
desirable properties as the full abort algorithm, we prove the fol-
lowing theorem:

Theorem 1 (Equivalence). 8e C H T , if Done(T),
then 0; ·; h·; ei !⇤

partial C;H;T iff 0; ·; h·; ei !⇤
full C;H;T .

where Done(T) specifies that every thread in T is not in a trans-
action and has evaluated its expression to a final value. The proof
proceeds by proving the two directions of the if and only if.

First, we give a well-formedness judgement in Figure 7. This
essentially says that for each thread currently in a transaction,
the transaction can be re-executed from the beginning to its
current state using a “replay” semantics, which consists of the
common rules (!

x

) and one additional !replay rule (Figure 6).
The READG REPLAY rule is very similar to the READG rule
except that the read is of an out-of-date tref; in this case, we allow
the thread to continue with a value that has been “pulled out of thin
air” (although, to be used in a derivation of the well-formedness
judgement, the READG REPLAY rule will necessarily choose the
value of the read found in the log of the thread state that it is trying
to recreate). This rule makes it easy to show that well-formedness
is preserved by the partial abort step relation (!partial); in particular,
when one thread commits via the COMMIT rule, other threads’
logs may become invalid due to the updates to the global heap,
yet they remain replay-able via the READG REPLAY rule. With
the WellFormed judgement, we can prove the forward direction of
Theorem 1 using the following theorem:

AheadOf(C;H; h·; ei; h·; ei)

C;H; hhS;L; e0i; ei !⇤
replay C;H; hhS;L0

; e0i; e0i
AheadOf(C;H; hhS;L; e0i; ei; hhS;L0

; e0i; e0i)

AheadOf(C;H;Tf1;Tp1) AheadOf(C;H;Tf2;Tp2)

AheadOf(C;H;Tf1 [Tf2;Tp1 [Tp2)

Figure 8. Thread Pool AheadOf Judgement

Theorem 2 (Partial Implies Full). 8C C0 H H 0 T T 0,
if WellFormed(C;H;T) and C;H;T !⇤

partial C
0
;H 0

;T 0,
then C;H;T !⇤

full C
0
;H 0

;T 0.

Proof Sketch. By induction on the derivation of
C;H;T !⇤

partial C
0
;H 0

;T 0 and case analysis of the last !partial
step taken. The only interesting cases are the ABORT PARTIAL
and READG PARTIAL rules. In these cases, partial abort steps
to the thread state returned from the validate judgement and full
abort steps to the initial expression recorded at the beginning of
the transaction. We need to show that full abort can “catch up”
to partial abort, which can be done by simulating the derivation
provided by well-formedness. Note that the replay of the aborted
thread does not require the READG REPLAY rule, since the
partially-aborted thread has been restarted with a valid log.

The other direction of the proof is slightly trickier. The problem
is that we need to show that if a full abort takes place, then there
is an equivalent partial abort step. Basically, we need a way of
specifying that the partial abort program state is “in the future
of” the full abort program state. To do so, we give an “ahead-of”
judgement in Figure 8 that relates two thread pools. The AheadOf
relation specifies that a transactional thread in one pool is related
to a corresponding transactional thread in the other pool if the first
thread can “catch up” to the second thread using the replay step
relation (!replay) and specifies that a non-transactional thread is
only related to an identical non-transactional thread. Therefore, if
AheadOf(C;H;Tf;Tp) and Tf is either the initial program state or
a final program state, then it must be the case that Tp = Tf. With
the AheadOf judgement, we can prove the backward direction of
Theorem 1 using the following theorem:

234

Theorem 3 (Full Implies Partial). 8C C0 H H 0 T
p

T 0
p

T
f

T 0
f

,
if AheadOf(C;H;T

f

;T
p

) and C;H;T
f

!⇤
full C

0
;H 0

;T 0
f

,
then C;H;T

p

!⇤
partial C

0
;H 0

;T 0
p

and AheadOf(C0
;H 0

;T 0
f

;T 0
p

).

Proof Sketch. By induction on C;H;T
f

!⇤
full C

0
;H 0

;T 0
f

and case analysis of the last !full step taken. The most
interesting case is the COMMIT rule. In this case, we
know that the full abort thread is ready to commit,
so it must be of the form hhS;L; e0i; E [inatomic(v)]i.
From AheadOf(C;H; hhS;L; e0i; E [inatomic(v)]i;T

p

),
we know that T

p

is of the form: hhS;L0
; e0i; e0i and

C;H; hhS;L; e0i; E [inatomic(v)]i !⇤
replay C;H; hhS;L0

; e0i; e0i,
but there is no way for this thread to take a step while re-
maining in the transaction, since it has finished evaluating
its expression to a value. Therefore, it must be the case that
T
p

= hhS;L; e0i; E [inatomic(v)]i, allowing it to also commit in
the partial abort semantics.

Note that many cases and supporting lemmas are left out for
brevity and that the proof sketches provided are only meant to
give the reader a high level intuition as to how the details of
the proof fit together. Full details about the proof can be found
in the Coq formalization at http://www.cs.rit.edu/˜ml9951/

icfp15-coq-proofs.tar.

4. Manticore
We have implemented our partial-abort extension in the context of
the Manticore project [FFR+07]. Manticore is an effort to design
and implement a functional programming language with support
for parallelism and concurrency. It consists of: the Parallel ML
(PML) language, a parallel dialect of Standard ML [MTHM97]
extended with implicit fine-grain parallelism [FRRS11] and with
explicit CML-style concurrency [Rep99, RRX09]; the pmlc com-
piler, a whole-program compiler from PML source to native x86-
64 (a.k.a., AMD64) code; and the Manticore runtime system,
which provides memory management, process abstraction, thread
scheduling, work stealing, and message passing. In this section, we
highlight a few details about the compiler and runtime system that
are relevant to the implementation of partial-abort transactions in
Manticore.

4.1 Compiler Architecture
The pmlc compiler is a whole-program compiler and has the
standard organization as a sequence of transformations between
and optimizations of various intermediate representations (IRs).
There are six distinct IRs in the pmlc compiler:

1. Parse tree - the result of parsing
2. AST - an explicitly-typed abstract syntax tree representation,

produced by type checking
3. BOM - a direct-style normalized �-calculus
4. CPS - a continuation-passing-style �-calculus
5. CFG - a first-order control-flow graph representation
6. MLTree - an expression-tree representation used by the ML-

RISC code-generation framework [GGR94]

4.1.1 BOM
The BOM IR plays a key role in the implementation of the Manti-
core runtime system. Although a small runtime kernel that imple-
ments garbage collection (see Section 4.2) and various machine-
level scheduler operations is written in C, the majority of the
Manticore runtime system, including the scheduling infrastructure
[FRR08] and the STM implementation of this work, is written in

(an unnormalized, external, concrete sytax for) BOM.1 In order
to compile a program, the pmlc compiler loads both PML source
code written by the user and BOM runtime code written by the de-
velopers. By defining much of the runtime system in external files
in BOM, it is easy to modify the implementation of many aspects
of the runtime system in an expressive language with higher-order
functions, pattern matching, and garbage collection. Furthermore,
since BOM is a compiler IR, the user application code and the run-
time system code can be combined and optimized together.

The BOM IR has several notable features:
• It supports first-class continuations with a binding form that

reifies the current continuation. First-class continuations are a
well-known language-level mechanism for expressing concur-
rency [Wan80, HFW84, Rep89, Ram90, Shi97, Rep99]; they
serve as the foundation for the Manticore scheduling infrastruc-
ture [FRR08] and are used in this work for efficiently perform-
ing partial aborts of transactions.

• It supports mutable tuples, whereby individual fields of the
tuple may be mutated in place. (In PML, tuples are immutable
and mutable references necessarily incur a level of indirection.)

• It includes atomic operations, such as compare-and-swap.

4.1.2 CPS, CFG, and Heap-Allocated Continuations
The CPS IR is the final higher-order representation used in the
compiler. For the translation from the BOM IR to the CPS IR,
the Danvy-Filinski CPS transformation [DF92] is used, but the
implementation is simplified by the fact that BOM is a normal-
ized direct-style representation. The translation from direct style to
continuation-passing style eliminates the special handling of con-
tinuations, so that capturing a continuation is effectively a variable-
variable copy and subject to copy propagation, and makes control
flow explicit. Using higher-order control-flow analysis, we perform
a number of further optimizations on the CPS IR program, such as
arity-raising [BR09] and aggressive inlining [BFL+14].

The CPS IR is translated to the CFG IR, a first-order control-
flow-graph representation, by applying closure conversion. The
transformation also handles the heap allocation of first-class con-
tinuations à la SML/NJ [App92]. Although heap-allocated con-
tinuations impose some extra overhead for sequential execution,
due to a high allocation rate of short-lived data and more frequent
garbage collections, they provide a number of advantages:
• Creating/capturing a continuation just requires the heap alloca-

tion of a small (< 100 bytes) object, so it is fast and imposes
little space overhead.

• Since continuations are immutable values, many nasty race
conditions in the scheduler can be avoided.

• Heap-allocated first-class continuations do not have the lifetime
limitations of one-shot [BWD96] and escaping [RP00, FR02]
continuations, which is essential for the work presented here.

4.2 Garbage Collection and Heap Architecture
The Manticore garbage collector is based on a novel combination
of the Doligez-Leroy-Gonthier (DLG) parallel collector [DL93,
DG94] and the Appel semi-generational collector [App89] and
is described more fully in previous work [ABFR11]. From the
DLG collector, we adopt an overall heap architecture with both
a private local heap for each virtual processor (an abstraction of
a hardware processor) and a global heap shared by all virtual

1 Technically, the pmlc compiler allows inline BOM, similar in spirit to
inline assembly, to be embedded in PML source files; this is the mechanism
by which features implemented in BOM are made available in the surface
language.

235

processors; the Appel collector is used to garbage collect the local
heaps. Threads executing on a virtual processor allocate new data
in the virtual processor’s local heap. When the local heap is full, a
minor collection is performed and, if necessary, a major collection
promotes live data from the local heap to the global heap. So that
minor and major collections of a virtual processor can be completed
without synchronizing with other virtual processors to establish a
root set, we adopt two invariants from the DLG collector: first,
there cannot be any pointers from the global heap into any local
heap, and, second, there cannot be any pointers from one local heap
into another local heap. In order to maintain these invariants, it is
occasionally necessary to explicitly promote newly allocated data
to the global heap in order to pass a reference to the data to another
virtual processor or to update a mutable object in the global heap
to reference the data.

5. Implementation
The STM library is implemented in the BOM IR, which as previ-
ously mentioned includes mutable references and first-class contin-
uations. This substantially simplifies the implementation, requiring
less than 400 lines of code and zero modifications to the compiler or
runtime kernel. Source code for our implementation can be found
at http://manticore.cs.uchicago.edu.

In BOM, a tref can be represented as:

type ’a tref = !(’a * long * long)

where the ! indicates that the type is a mutable tuple. The first
element of the tuple is for the contents of the tvar that are read from
and written to by the programmer. The second element is for the
version number of the tref and the last element serves as a lock for
the tref. A tref is locked by writing the thread’s read version into the
tref; a thread can use the lock value to determine if it has already
acquired a given lock.

Each thread maintains three pieces of information within its
thread local storage: a read version, a write set, and a read set. When
a thread begins executing a transaction, it acquires the read version
from the global clock.

5.1 Writes
Writing to a tref is the simplest operation. Each time a tref is
written, an entry is added to the write set that records both the tref
being written to and the value being written. Note that we do not
perform destructive updates in the write set when the same tref is
written to more than once during the transaction. This is necessary
to properly restore the state of the write set when performing partial
aborts (see Section 5.4).

5.2 Reads
Each time a tref is read, the write set is first consulted to determine
if the tref has been written to during the transaction; if so, then the
value of the most recent entry for the tref in the write set is returned.
If there is no entry for the tref in the write set, then the tref is
checked for validity, by comparing the version number associated
with the tref to the thread’s read version. If the tref is valid, then
an entry is added to the read set that records the tref being read,
the current continuation, and a pointer to the current write set as
depicted in Figure 9. If the tref is out of date, then we acquire a
version number from the global clock and validate the read set as
described in Section 5.4, which will determine if a partial abort is
necessary.

5.3 Commit
When committing a transaction, a thread first acquires the lock for
every tref recorded in the write set. Next, a write version is acquired

T1

T2

T3

T4

T5

K1

K2

K3

K4

K5

TA

TB

TC

TD

TE

V1

V2

V3

V4

V5

Write Set Read Set

Figure 9. Layout of Read/Write sets

from the global clock and the read set is validated as described in
the next section. If any part of the read set is invalid with respect
to the read version, then an abort occurs and returns execution to
the point of conflict. If validation succeeds, then for each tref in
the write set, we write the recorded value into the tref, update the
version number associated with the tref to the write version, and
release the tref lock.

5.4 Read Set Validation
When validating the read set, whether after detecting an eager
conflict or during a commit, the validation is performed with
respect to the thread’s read version. During the tail-recursive
traversal of the read set, we maintain a checkpoint parameter
of type: (’a tref * ’a cont * read_set) option,
where NONE corresponds to having seen no out of date tref. If a
tref is found to be out of date, then we update the checkpoint pa-
rameter to SOME(tr, k, rs), where tr, k, and rs are the tref
read from, the continuation captured at the read, and the remaining
read set respectively. We then traverse the remaining portion of the
read set in order to find any earlier conflicts. After traversing the en-
tire read set, if the checkpoint is of the form SOME(tr, k, rs),
then we perform the following steps:

• Update the thread’s read set to rs
• Update the write set to the portion of the write set that rs points

to (see Figure 9)
• Update the read version to the version number received prior to

validation
• Throw to k

If, after traversing the entire read set, the checkpoint is of the form
NONE, then we do one of two things. If we validated the read set
because a transaction is trying to commit, then we continue with
the commit phase by pushing the thread’s write set into the global
store. If we validated because a conflict was eagerly detected in a
read, then we update the thread’s read version to the version number
acquired before validation and continue with the transaction; the
value read from the tref during the eager conflict detection is now
likely to be valid with respect to the new read version.

There is an interesting connection to be made here with a previ-
ously proposed optimization of similar full-abort STM implemen-
tations known as timebase extension [RFF07]. In that work, the
authors propose to validate the read set every time a tref is found to
be out of date when reading. If the entire read set is still valid, then

236

Full Abort Partial Abort Partial Abort
(Unbounded) (Bounded)

Execution Time 9.220 s 9.271 s 6.836 s
Aborts 11,325 9,150 7,850

GC Time 1.27 s 3.91 s 0.848 s
Allocation 132,549 M 95,401 M 103,898 M

Figure 10. Linked List Stats (Full Abort vs. Partial Abort)

the transaction can continue with a new read version that the thread
acquires before performing validation. If validation fails, then the
transaction aborts and restarts from the beginning. This optimiza-
tion falls out naturally from performing partial aborts when a con-
flict is detected eagerly and generalizes the previously proposed
method by being able to salvage a portion of the transaction if the
entire read set cannot be validated.

5.5 Garbage Collection
The implementation presented thus far sounds good in theory; how-
ever, in practice, it does not yield impressive results. As a pre-
liminary benchmark, we tested this implementation on an ordered
linked list benchmark, where each thread performs 4,000 opera-
tions including lookup, insertion, and deletion from the list. We
found that the partial abort implementation performed marginally
slower than the full abort reference implementation. When taking a
closer look at the performance, we found that keeping a continua-
tion for each tref that was read had substantial impacts on garbage
collection performance.

Figure 10 contains the results of the linked list benchmark. In-
terestingly enough, the partial abort implementation discussed thus
far (Column 2) aborts fewer transactions, causing it to perform less
work, and in turn allocate less data, yet spends 3X time perform-
ing garbage collection compared to full abort. The reason for these
unexpected results is due to the liveness of the continuations being
recorded in the read set. In the full abort implementation, a return
continuation is allocated, passed into the read function, the tref is
read from, and the return continuation is thrown to. Once the re-
turn continuation is invoked, there remain no more references to
it, allowing the garbage collector to reclaim the space taken up by
the closure. In the partial abort implementation, however, we main-
tain a pointer to this closure until either an abort takes place or the
transaction commits. For the linked list benchmark, the read sets
become very large (4,000+ entries), causing a substantial discrep-
ancy in the heaps between the full abort and partial abort (with an
unbounded number of continuations) implementations.

5.6 Bounding Continuations
In an effort to deal with the garbage collection issue, we have
devised a scheme to limit the number of continuations held by any
transaction to a constant factor. This constant factor is determined
based on the size of the heap, rather than tuned in an application-
specific manner. The same constant is used for each benchmark
presented in Section 6.

The first change made to support bounded continuations is that
elements in the read set may or may not contain a continuation. This
requires a slight modification of the commit and eager detection
code, where we now revert control to the latest safe checkpoint,
which is not necessarily the exact point of the conflict. Second, we
have changed the representation of the read set from a traditional
linked list to a skip list as depicted in Figure 11. There still exists
a long path, which passes through every node in the linked list;
however, there is also now a short path which only passes through
items in the linked list that contain a continuation. Lastly, each

T1

T2

T3

T4

T5

K1

K3

K5

TA

TB

TC

TD

TE

V1

V2

V3

V4

V5

Write Set Read Set

Figure 11. Skip List Representation of Read Set

thread maintains a counter that controls the frequency at which
continuations are captured.

Threads begin by capturing a continuation at every read from a
tref. As soon as the maximum number of continuations is reached
(20 in our implementation), we walk the short path of the read set
and drop the continuation for every other entry. Then the frequency
is updated to capture a continuation at every other read. Figure 11
shows the read set after this filtering has occurred, so when the next
tref is read from (T6), we will not capture a continuation and will
not add it to the short path, but when T7 is read, a continuation
will be captured and added to the short path. Once the maximum is
reached a second time, we again drop every other continuation and
start capturing every 4 continuations. The frequency continues to
double each time the bound is reached and the read set is filtered.

This approach allows us to limit the number of continuations to
a constant factor, while maintaining an even distribution of check-
points throughout the transaction: even if a conflicting read does
not have a continuation, the latest safe checkpoint will nonetheless
salvage a good portion of the transaction. It is also worth noting
that by using the skip list, we can perform the filtering operation in
constant time.

Looking back at Figure 10, we can see that this does in fact
have dramatic savings in just about every respect. The execution
time improved by nearly 26% relative to the full abort implementa-
tion. Additionally, the number of aborted transactions was reduced
even further compared to the partial abort implementation with un-
bounded continuations. The amount of allocated data sits some-
where between full and unbounded partial abort. It is less than
full abort implementation, because fewer transactions are being
aborted, so less work is being done, corresponding to less alloca-
tion. However, the read set requires that additional information be
maintained and uses slightly more space than the unbounded par-
tial abort implementation. That said, the time spent doing GC is
substantially better than unbounded partial abort and slightly bet-
ter than full abort. The improved garbage collection time over full
abort can be attributed to the fact that less data is being allocated.

5.7 Chronologically Ordered Read Sets
One downside to the linked list representation we have chosen for
our read set is that the entire list needs to be scanned to detect a
conflict when performing partial aborts. Since a read item is consed
onto the head of the list each time, the natural order of traversing
the list corresponds to the reverse chronological order. This is

237

FA Time PA Time Change in Time FA Aborts PA Aborts PA % Partial Aborts Change in Aborts
Delaunay Mesh 6.54 6.49 -0.73% 124,105.26 90,193.74 16.43% -27.33%

Labyrinth 17.26 11.79 -31.67% 193.02 157.22 83.64% -18.55%
Linked List 9.19 6.72 -26.94% 11,538.46 7,996.62 87.9% -30.7%

Red Black Tree 8.92 10.03 +12.55% 3,684.88 4,557.72 93.73% +23.68%
Vacation 2.99 2.45 -18.00% 12,040.56 10,970.96 88.61% -8.89%
KMeans 3.34 3.41 +2.08% 28,799.38 10,537.1 0.00% -63.42%

STMBench7 6.53 6.12 -6.33% 150.02 236.67 3.77% +57.75%
Sudoku 2.9 2.63 -9.1% 18,820.24 17,946.46 86.47% -4.65%

Figure 12. Benchmark Results (FA corresponds to Full Abort and PA Corresponds to Partial Abort with Bounded Continuations)

fine for the full abort implementation, since it is only concerned
with whether a conflict exists or not; thus, if traversing in reverse
chronological order, as soon as a conflict is found the transaction
can abort without looking at the rest of the list. When performing
partial aborts, in order to preserve correctness, we must scan the
entire list, to ensure that the chronologically earliest conflict is
found.

The ability to append onto the end of a linked list could po-
tentially speed up the read set validation process substantially, by
maintaining a read set that is in chronological order. Unfortunately,
the Manticore heap layout precludes us from doing this efficiently.
As mentioned in Section 4.2, the split heap representation used in
Manticore requires that we maintain two invariants. First, there can-
not be any pointers from the global heap into any local heap, and
second, there cannot be any pointers from a local heap into another
local heap.

Implementing a chronologically ordered read set can potentially
violate the first invariant. If a garbage collection occurs in a local
heap, it is possible that the read set can get promoted to the global
heap. If we then allocate a new node for an entry in the read set
and append it on to the end of the list, we will have the tail of
the linked list, which exists in the global heap, pointing to a newly
allocated node that exists in a local heap. The way to get around this
is to promote newly allocated elements into the global heap before
appending them onto the end of the list. Unfortunately, in order
to preserve the heap invariants, everything transitively reachable
also needs to be promoted, which includes the closure of the return
continuation, adding significant overhead to every read.

6. Evaluation
Our benchmark machine is a Dell PowerEdge R815 machine,
equipped with 48 cores and 128 GB of physical memory. This
machine runs x86 64 Ubuntu Linux 10.04.2 LTS, kernel ver-
sion 2.6.32-67. The 48 cores are provided by four 12 core AMD
Opteron 6172 “Magny Cours” processors; each core operates at
2.1 GHz and is equipped with 64 KB of instruction and data L1
cache and 512 KB of L2 cache; each processor is equipped with
two 6 MB L3 caches (each of which is shared by six cores).

6.1 Benchmarks
To quantify the performance benefit of partial aborts, we have
selected eight benchmarks typically used in evaluating STM; many
come from the STAMP benchmark suite [CCKO08]. Benchmarks
were chosen to provide a wide spectrum of workloads including
long transactions, short transactions, and a mix of the two. In
this evaluation, we only consider the partial abort implementation
that includes the bounded continuation optimization described in
Section 5.6, where we limit the number of continuations to 20 for
each transaction.

Linked List Linked List implements an ordered linked list, where
each node in the linked list is represented as a tref. The list is

(sequentially) initialized with 4,000 elements and then each thread
performs 3,000 operations, consisting of queries, insertions, and
deletions with a ratio of 2:4:1 [SLM08]. This benchmark consists
of very long transactions, which present excellent opportunities for
partial aborts.

Delaunay Mesh (STAMP) Delaunay Mesh implements Rup-
pert’s algorithm for Delaunay mesh refinement. The mesh is rep-
resented as a graph of triangles, where each triangle is represented
as a tref. Additionally, there is a shared work queue that is pro-
tected by a tref. This benchmark consists of both very short trans-
actions (enqueuing/dequeuing from the work queue) and medium-
short transactions (refining the mesh).

Labyrinth (STAMP) Labyrinth implements Lee’s parallel rout-
ing algorithm [WKL07]. The objective is to find a path for all
source-destination pairs concurrently without having any overlap-
ping paths. This benchmark exhibits very long transactions with
large write sets.

Red Black Tree Red Black Tree implements a concurrent self
balancing binary search tree, where each node is protected by a
tref. The tree is (sequentially) initialized with 100,000 elements
and then each thread performs 500,000 operations, consisting of
queries, insertions, and deletions with a ratio of 1:1:1. This bench-
mark exhibits medium-length transactions.

Vacation (STAMP) Vacation simulates a travel reservation sys-
tem. The reservation system consists of a database represented as a
binary search tree with a tref at each node. Clients are able to make
and cancel reservations and the travel reservation system is able
to add and remove available reservations. This benchmark exhibits
medium length transactions.

KMeans (STAMP) KMeans implements a clustering algorithm
commonly used in data mining and machine learning. A transaction
is used to protect the update of the cluster centers, which amounts
to incrementing a counter by a constant. This benchmark consists
of very small transactions (1 read and 1 write) permitting zero
opportunities for partially-aborting a transaction.

Sudoku Sudoku implements a concurrent sudoku puzzle solver
[PSS+08] for 16 X 16 sized puzzles. Each cell in the puzzle is
protected by a tref. In each iteration of the solving process the board
is pruned, where one thread prunes across the rows, one across the
columns, and one across the boxes. Threads can potentially prune
the same element of the board, which makes use of transactions.
This benchmark has medium length transactions.

STMBench7 STMBench7 [GKV07] is a benchmark specifically
designed for evaluating transactional memory systems. The bench-
mark simulates an in-memory object graph for a CAD/CAM sys-
tem, where threads perform randomly selected operations contain-
ing different transactional workloads (long, short, large write sets,
etc.).

238

Fr
eq

ue
nc

y

0

450

900

1350

1800

Location (Percentage of Transaction’s Read Set)
0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Eager Commit Time

�2

Figure 13. Red Black Tree Partial Abort Positions

6.2 Benchmark Results
Figure 12 presents results for the previously described benchmarks.
Each benchmark is the average of 50 executions, each utilizing four
threads. In terms of number of aborted transactions, partial abort
performs better in the majority of cases, aborting more transactions
only on Red Black Tree and STMBench7. Interestingly, partial
abort reduces execution time by 6.33% on STMBench7 despite
the fact that it aborts 57.75% more transactions and only 3.77%
of the aborts were partial aborts. The reason for this is that some
transactions in this benchmark are very large, so even a few partial
aborts can have dramatic effects on execution time.

As is expected, the benchmarks that contain many large transac-
tions benefit the most from performing partial aborts. Linked List
and Labyrinth perform substantially better when partial aborts are
performed, decreasing execution time by 26.94% and 31.67%, re-
spectively. Most of the benchmarks that have medium length trans-
actions also perform quite well, decreasing executing time 6%-
18%, with the exception of Red Black Tree.

After looking into why the performance for Red Black Tree was
so poor, we found that the position that we typically partially-abort
to is very early on in the transactions. The problem is that when
inserting or deleting from the tree, a path of nodes is read until
the desired node is found. After inserting or deleting, the thread
then rebalances the tree, which ends up re-reading that same path
of nodes. If a conflict occurs on any node on that path, then we
must abort back to the first read from that tref. In this case, the
full abort implementation will detect the conflict early on; however,
when performing partial aborts, we must traverse the entire read set
in order to find the earliest safe checkpoint. Thus, we pay a large
overhead in finding a safe place to abort to, but we get little benefit
out of the partial abort since it occurs so close to the beginning of
the transaction.

Figure 13 contains a histogram describing this phenomenon.
The bars are split into two categories, the dark colored portion
represents conflicts that were detected eagerly (during a read) and
the light colored portion represents conflicts that were detected at
the end of a transaction. The x-axis indicates what portion of the
transaction the thread partially aborted to with respect to the length
of the read set. We can see that the vast majority of the aborts
restored control to a position within the first 30% of the transaction.
Note that almost all conflicts that aborted to the 30-100% portion
of the transaction were eager conflicts, so the total number of reads
performed at the point of validation is less, yielding a smaller

To
ta

l O
pe

ra
tio

ns
 P

er
fo

rm
ed

0

1500

3000

4500

6000

Cores
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Full Abort Partial Abort

�3

Figure 14. Total Operations

Pe
rc

en
ta

ge
 In

cr
ea

se

0

100

200

300

400

Cores
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

�4

Figure 15. Percentage Throughput Increase Relative to Full Abort

benefit than a partial abort performed at commit time. We believe
that performance would improve dramatically if a chronologically
ordered skip list could be used for the read set, allowing validation
to efficiently take place.

For Delaunay Mesh Refinement, we see a minor speedup of
0.73%. This unimpressive improvement can be attributed to the
mix of very short and medium-short transactions. When enqueu-
ing/dequeueing from the work queue, there is no chance of par-
tially aborting, which also drives up the number of full aborts for
this benchmark: of the total aborts, only 16.43% are partial aborts.

KMeans also exhibits poor performance; however, this is to be
expected as there is zero opportunity for partially aborting any
transactions. This benchmark was used to serve as a baseline in
order to see what kind of overheads are introduced from keeping
the extra information in the read set. Interestingly enough, KMeans
performs fewer aborts under the partial abort implementation de-
spite the fact that it is not partially aborting anything. This can be
attributed to the fact that if a thread detects an eager conflict and is
able to validate its entire read set, it can continue with the transac-
tion without aborting. Since read sets are very small in this bench-
mark, this happens quite often.

239

6.3 Throughput
One of the arguments we use to motivate partial aborts is that of
fairness and throughput. In a context where some threads are ex-
ecuting short transactions that conflict with long running transac-
tions, we would prefer the probability of a transaction committing
to be as uniform as possible. To that effect, we have evaluated the
throughput of partial aborts on an ordered linked list benchmark,
where half of the threads perform their operations only on the first
50% of the linked list and the other half perform their operations
only on the second half of the list. Thus, the threads operating in the
first half have a much higher probability of committing their trans-
action. Each execution is run for 10 seconds and the total number
of operations completed by the threads working in the second half
of the list is recorded.

Figures 14 and 15 contain the results of this experiment, giv-
ing the number of completed operations performed by second-half
threads (Figure 14) and the percentage increase in throughput (mea-
sured by completed operations) relative to full abort (Figure 15).
Again, operations are only counted for the threads working in the
second half of the list, as they are the ones at a disadvantage that we
are interested in quantifying. Note that the number of threads along
the x-axis indicates the total number of threads in the benchmark,
so at the 48 core mark, there are 24 threads operating in the first
half of the list and 24 threads working in the second half of the list.

Clearly, scalability is poor for the linked list benchmark; how-
ever, this is to be expected. This is an inherently sequential appli-
cation, so, as contention gets higher, the number of aborted trans-
actions goes up. That said, the partial abort implementation does
perform much better than the full abort implementation. For full
abort, the best total throughput occurs when there is only one thread
working on each half of the linked list and degrades substantially
as additional threads are added. The partial abort implementation
performs better than full abort across the board on all configura-
tions. Furthermore, there are five instances (cores 40-48), where
the percentage increase in throughput exceeds 300%, maxing out
at 351%.

7. Related Work
The most closely related work is [KH08], where the authors first
proposed partially aborting transactions. The main difference is
in the implementation of partially aborting transactions. Here, the
authors need to perform stack copying in order to safely revert
control to a checkpoint in the event of a violation. In our work,
we make use of the CPS transformation to perform checkpointing
much more efficiently. Additionally, we provide a novel mechanism
for controlling the number of checkpoints created that performs
well across many of our benchmarks.

Gupta et al. also explored checkpointing transactions in
[GSA10]. They attempt to control the number of checkpoints cre-
ated by associating a conflict probability with each transactional
location based on the number of times it is accessed within a trans-
action. Additionally, they use a frequency counter similar to what
we present, however, this is a uniform constant that does not adapt
as the transaction proceeds. This constant, is then application spe-
cific and would need to be tuned for each program.

Nested transactions have been proposed in a number of varia-
tions [MBM+06, NMAT+07, HS07], where atomic blocks can be
nested arbitrarily. At the end of an atomic block, the read set is
validated, and the transaction commits after the outermost atomic
block can be validated. Figure 16 shows how nested transactions
are commonly used as a checkpointing mechanism. On the left, we
have a nested transaction towards the end of the outermost trans-
action. If validation fails in the inner transaction, then execution
returns to the beginning of the second atomic, rather than going all

atomic{
...
atomic{

....
}

}

atomic{
atomic{

....
}
...

}

Figure 16. Common Nested Transactional Idioms

the way back to the beginning. In the second example, the inner
atomic is placed at the beginning, so that the log will be validated
early in the hope of not wasting time executing the remainder of the
outermost transaction if there is a violation at the beginning. These
two idioms are essentially subsumed by checkpointing and eager
conflict detection.

Timestamp extension [RFF07] has been used in many recently
proposed STM systems [FFR08, SDMS09, RFF06], where a new
stamp is fetched from the global clock and the read set is validated
when an eager conflict is detected. If the entire read set can be
validated, then the transaction is able to proceed with the new
time stamp, avoiding many spurious aborts. As was mentioned in
Section 5.2, eager conflict detection with partial aborts generalizes
this technique by additionally being able to salvage a portion of the
transaction if validation of the entire log fails.

Ziarek et al. proposed a language abstraction called the sta-
bilizer [ZSJ06], which establishes a checkpoint in the context of
concurrent message passing and transient faults. If a thread needs
to re-execute a section of code due to a transient fault that in-
cludes message passing communication with another thread, then
all threads involved revert to a safe checkpoint. This requires that
transitive dependencies be tracked via an incremental graph con-
struction scheme. Additionally, since checkpoints are created man-
ually, they do not encounter the same problems that lead us to our
bounded continuation optimization.

Checkpointing is a fundamental part of recent work on self-
adjusting computation [LWFA08]. In this work, a selective CPS
transformation is used for functions that are annotated as self ad-
justing so that continuations can efficiently be captured. The au-
thors note significant overheads due to maintaining pointers to con-
tinuations and report all times without time spent doing garbage
collection. We believe that our approach to bounding the number
of continuations held at any given point could be used to solve this
problem.

8. Conclusion
In this paper we presented an extension of a full-abort transactional
memory algorithm that is able to efficiently support partial aborts
for transactions. Previous attempts at this have required that check-
points be explicitly inserted by the programmer, which we argue is
burdensome and ineffective. Many of the benchmarks presented in
Section 6 have unpredictable abort patterns. For example, with the
linked list benchmark, there is equal probability of aborting at every
tref in the linked list read from, which does not lead to any obvious
point to manually place a checkpoint. Our approach to bounding
the number of continuations maintained in the read set automati-
cally learns the right granularity to capture continuations, leading
to an efficient and easy to use implementation.

A second argument for transparently checkpointing transac-
tions, is that it adapts with the composition of transactions. Com-
positionality is one commonly cited attractive feature of STM. If
programmers are to manually insert checkpoints in their code, it is
possible that a checkpoint makes sense in a given context, but when
composed with other transactions, no longer has desirable perfor-

240

mance. By automatically adjusting the frequency at which contin-
uations are captured on a per transaction basis, we are able to find
the right granularity regardless of composition.

Although the work presented here is based on the Transactional
Locking II algorithm, our partial abort extension could easily be
added on top of other lazy versioning STMs. In fact, we currently
have a preliminary version of NoRec [DSS10] that has been ex-
tended with partial aborts. We leave it to future work to explore
adding partial aborts to STMs that use encounter-time locking as
opposed to lazy versioning.

We credit the initial design decisions of the Manticore runtime
system for the elegance and simplicity of our implementation.
Basing the scheduling infrastructure on first-class continuations led
to very flexible scheduling policies [Rai10], but also allowed us to
implement our partial abort STM extension quite easily. The entire
implementation is less than 400 lines of BOM code and did not
require any modifications of the compiler or core runtime system.
Furthermore, we believe that a number of extensions to our STM
library can easily be added on top with little effort. For example, we
could easily add manual checkpointing in the following manner:

local val cpTRef = STM.new 0
in fun checkpoint() = (STM.get cpTRef; ())
end

Since no thread has the ability to write to cpTRef, it will always
serve as a safe checkpoint in a thread’s read set.

We are also interested in exploring user defined checkpointing
policies in the future. Capturing continuations uniformly works
well for the majority of benchmark applications that we presented
in this work, however, certain applications, such as red black tree
have odd conflict patterns that the programmer could characterize
in a more ad hoc manner.

Acknowledgments
This research is supported by the National Science Foundation
under Grants CCF-0811389 and CCF-101056

References
[ABFR11] Auhagen, S., L. Bergstrom, M. Fluet, and J. Reppy. Garbage

Collection for Multicore NUMA Machines. In MSPC 2011:
Memory Systems Performance and Correctness, San José,
California, USA, June 2011. ACM.

[App89] Appel, A. W. Simple generational garbage collection and fast
allocation. Software – Practice and Experience, 19(2), 1989,
pp. 171–183.

[App92] Appel, A. W. Compiling with Continuations. Cambridge
University Press, Cambridge, England, 1992.

[BBA15] Baldassin, A., E. Borin, and G. Araujo. Performance implica-
tions of dynamic memory allocators on transactional memory
systems. In Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming
(PPoPP ’15), San Francisco, CA, February 2015. ACM, pp.
87–96.

[BFL+14] Bergstrom, L., M. Fluet, M. Le, J. Reppy, and N. Sandler.
Practical and effective higher-order optimizations. In Pro-
ceedings of the 19th ACM SIGPLAN International Confer-
ence on Functonal Programming ICFP ’14, Gothenburg,
Sweden, September 2014. ACM, pp. 81–93.

[BR09] Bergstrom, L. and J. Reppy. Arity raising in manticore.
In 21st International Workshop on the Implementation of
Functional Languages (IFL ’09), Lecture Notes in Computer
Science. Springer-Verlag, September 2009, pp. 90–106.

[BWD96] Bruggeman, C., O. Waddell, and R. K. Dybvig. Representing
control in the presence of one-shot continuations. In Pro-
ceedings of the SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’96). ACM, May
1996, pp. 99–107.

[CCKO08] Cao Minh, C., J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08, September 2008.

[DF92] Danvy, O. and A. Filinski. Representing control: A study of
the CPS transformation. Mathematical Structures in Com-
puter Science, 2(4), 1992, pp. 361–391.

[DG94] Doligez, D. and G. Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In Conference Record
of the 21st Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL ’94), Portland, Oregon, United
States, January 1994. ACM, pp. 70–83.

[DL93] Doligez, D. and X. Leroy. A concurrent, generational garbage
collector for a multithreaded implementation of ML. In Con-
ference Record of the 20th Annual ACM Symposium on Prin-
ciples of Programming Languages (POPL ’93), Charleston,
South Carolina, United States, January 1993. ACM, pp. 113–
123.

[DR14] Diegues, N. and P. Romano. Time-warp: Lightweight abort
minimization in transactional memory. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming (PPoPP ’14), Orlando, FL, February
2014. ACM, pp. 167–178.

[DSS06] Dice, D., O. Shalev, and N. Shavit. Transactional locking ii.
In Proceedings of the 20th International Distributed Comput-
ing Conference, vol. 4167 of Lecture Notes in Computer Sci-
ence, Stockholm, Sweden, 2006. Springer-Verlag, pp. 194–
208.

[DSS10] Dalessandro, L., M. F. Spear, and M. L. Scott. Norec: Stream-
lining stm by abolishing ownership records. In PPoPP ’10,
Bangalore, India, 2010. ACM, pp. 67–78.

[FFR+07] Fluet, M., N. Ford, M. Rainey, J. Reppy, A. Shaw, and
Y. Xiao. Status Report: The Manticore Project. In Proceed-
ings of the 2007 ACM SIGPLAN Workshop on ML. ACM,
October 2007, pp. 15–24.

[FFR08] Felber, P., C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Princi-
ples & Practice of Parallel Programming (PPoPP ’08), Salt
Lake City, UT, February 2008. ACM, pp. 237–246.

[FR02] Fisher, K. and J. Reppy. Compiler support for lightweight
concurrency. Technical memorandum, Bell Labs, March
2002. Available from http://moby.cs.uchicago.
edu/.

[FRR08] Fluet, M., M. Rainey, and J. Reppy. A scheduling framework
for general-purpose parallel languages. In Proceedings of the
13th ACM SIGPLAN International Conference on Functional
Programming ICFP ’08, Victoria, BC, Canada, September
2008. ACM, pp. 241–252.

[FRRS11] Fluet, M., M. Rainey, J. Reppy, and A. Shaw. Implicitly-
threaded parallelism in Manticore. Journal of Functional
Programming, 20(5–6), 2011, pp. 537–576.

[GGR94] George, L., F. Guillame, and J. Reppy. A portable and
optimizing back end for the SML/NJ compiler. In Fifth
International Conference on Compiler Construction, April
1994, pp. 83–97.

[GK08] Guerraoui, R. and M. Kapalka. On the correctness of trans-
actional memory. In PPoPP ’08, Salt Lake City, UT, USA,
2008. ACM, pp. 175–184.

[GKV07] Guerraoui, R., M. Kapalka, and J. Vitek. STMBench7: a
benchmark for software transactional memory. In Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, Lisbon, Portugal, 2007. ACM,
pp. 315–324.

[GSA10] Gupta, M., R. K. Shyamasundar, and S. Agarwal. Clus-
tered checkpointing and partial rollbacks for reducing con-

241

flict costs in stms. International Journal of Computer Appli-
cations, 1(22), 2010, pp. 82–87.

[HFW84] Haynes, C. T., D. P. Friedman, and M. Wand. Continuations
and coroutines. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming. ACM,
August 1984, pp. 293–298.

[HM93] Herlihy, M. and J. E. B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In ISCA ’93,
San Diego, California, USA, 1993. ACM, pp. 289–300.

[HS07] Harris, T. and S. Stipic. Abstract nested transactions. In
TRANSACT 2007, January 2007.

[KH08] Koskinen, E. and M. Herlihy. Checkpoints and continuations
instead of nested transactions. In SPAA ’08, Munich, Ger-
many, 2008. ACM, pp. 160–168.

[KPH10] Koskinen, E., M. Parkinson, and M. Herlihy. Coarse-grained
transactions. In Conference Record of the 37th Annual
ACM Symposium on Principles of Programming Languages
(POPL ’10), Madrid, Spain, 2010. ACM, pp. 19–30.

[LWFA08] Ley-Wild, R., M. Fluet, and U. A. Acar. Compiling self-
adjusting programs with continuations. In Proceedings of the
13th ACM SIGPLAN International Conference on Functional
Programming ICFP ’08, Victoria, BC, Canada, September
2008. ACM, pp. 321–334.

[MBM+06] Moravan, M. J., J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in logtm. In ASPLOS XII, San Jose,
California, USA, 2006. ACM, pp. 359–370.

[MTHM97] Milner, R., M. Tofte, R. Harper, and D. MacQueen. The Defi-
nition of Standard ML (Revised). The MIT Press, Cambridge,
MA, 1997.

[NMAT+07] Ni, Y., V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking,
R. L. Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman.
Open nesting in software transactional memory. In PPoPP
’07, San Jose, California, USA, 2007. ACM, pp. 68–78.

[PSS+08] Perfumo, C., N. Sönmez, S. Stipic, O. Unsal, A. Cristal,
T. Harris, and M. Valero. The limits of software transac-
tional memory (STM): Dissecting Haskell STM applications
on a many-core environment. In Proceedings of the 5th Con-
ference on Computing Frontiers (CF ’08), Ischia, Italy, May
2008. ACM, pp. 67–78.

[Rai10] Rainey, M. Effective Scheduling Techniques for High-Level
Parallel Programming Languages. Ph.D. dissertation, Uni-
versity of Chicago, August 2010. Available from http:
//manticore.cs.uchicago.edu.

[Ram90] Ramsey, N. Concurrent programming in ML. Techni-
cal Report CS-TR-262-90, Department of Computer Science,
Princeton University, April 1990.

[Rep89] Reppy, J. H. First-class synchronous operations in Standard
ML. Technical Report TR 89-1068, Department of Computer
Science, Cornell University, December 1989.

[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge
University Press, Cambridge, England, 1999.

[RFF06] Riegel, T., P. Felber, and C. Fetzer. A lazy snapshot algorithm
with eager validation. In Proceedings of the 20th Interna-
tional Distributed Computing Conference, vol. 4167 of Lec-
ture Notes in Computer Science, Stockholm, Sweden, 2006.
Springer-Verlag, pp. 284–298.

[RFF07] Riegel, T., C. Fetzer, and P. Felber. Time-based transactional
memory with scalable time bases. In SPAA ’07, San Diego,
California, USA, 2007. ACM, pp. 221–228.

[RP00] Ramsey, N. and S. Peyton Jones. Featherweight concur-
rency in a portable assembly language. Unpublished pa-
per available at https://www.cs.tufts.edu/˜nr/
pubs/c--con-abstract.html, November 2000.

[RRX09] Reppy, J., C. Russo, and Y. Xiao. Parallel Concurrent ML. In
Proceedings of the 14th ACM SIGPLAN International Con-
ference on Functional Programming ICFP ’09, Edinburgh,
Scotland, UK, August–September 2009. ACM, pp. 257–268.

[SDMS09] Spear, M. F., L. Dalessandro, V. J. Marathe, and M. L.
Scott. A comprehensive strategy for contention management
in software transactional memory. In PPoPP ’09, Raleigh,
NC, USA, 2009. ACM, pp. 141–150.

[Shi97] Shivers, O. Continuations and threads: Expressing machine
concurrency directly in advanced languages. In Proceedings
of the Second ACM SIGPLAN Workshop on Continuations
(CW ’97). ACM, January 1997.

[SLM08] Sulzmann, M., E. S. Lam, and S. Marlow. Comparing
the performance of concurrent linked-list implementations in
haskell. In DAMP ’09, Savannah, GA, USA, 2008. ACM, pp.
37–46.

[ST95] Shavit, N. and D. Touitou. Software transactional memory.
In Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing, Ottowa, Ontario,
Canada, 1995. ACM, pp. 204–213.

[Wan80] Wand, M. Continuation-based multiprocessing. In Confer-
ence Record of the 1980 ACM Conference on Lisp and Func-
tional Programming. ACM, August 1980, pp. 19–28.

[WKL07] Watson, I., C. Kirkham, and M. Lujan. A study of a transac-
tional parallel routing algorithm. In PACT ’07. IEEE Com-
puter Society, 2007, pp. 388–398.

[ZHCB15] Zhang, M., J. Huang, M. Cao, and M. D. Bond. Low-
overhead software transactional memory with progress guar-
antees and strong semantics. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles & Practice of Par-
allel Programming (PPoPP ’15), San Francisco, CA, Febru-
ary 2015. ACM, pp. 97–108.

[ZSJ06] Ziarek, L., P. Schatz, and S. Jagannathan. Stabilizers: a mod-
ular checkpointing abstraction for concurrent functional pro-
grams. In Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Functional Programming ICFP ’06,
Portland, Oregon, USA, September 2006. ACM, pp. 136–
147.

242

