
Parallel Concurrent ML

John Reppy
University of Chicago
jhr@cs.uchicago.edu

Claudio V. Russo
Microsoft Research

crusso@microsoft.com

Yingqi Xiao
University of Chicago

xiaoyq@cs.uchicago.edu

Abstract
Concurrent ML (CML) is a high-level message-passing language
that supports the construction of first-class synchronous abstrac-
tions called events. This mechanism has proven quite effective over
the years and has been incorporated in a number of other languages.
While CML provides a concurrent programming model, its imple-
mentation has always been limited to uniprocessors. This limitation
is exploited in the implementation of the synchronization protocol
that underlies the event mechanism, but with the advent of cheap
parallel processing on the desktop (and laptop), it is time for Paral-
lel CML.

Parallel implementations of CML-like primitives for Java and
Haskell exist, but build on high-level synchronization constructs
that are unlikely to perform well. This paper presents a novel, par-
allel implementation of CML that exploits a purpose-built opti-
mistic concurrency protocol designed for both correctness and per-
formance on shared-memory multiprocessors. This work extends
and completes an earlier protocol that supported just a strict subset
of CML with synchronization on input, but not output events. Our
main contributions are a model-checked reference implementation
of the protocol and two concrete implementations. This paper fo-
cuses on Manticore’s functional, continuation-based implementa-
tion but briefly discusses an independent, thread-based implemen-
tation written in C# and running on Microsoft’s stock, parallel run-
time. Although very different in detail, both derive from the same
design. Experimental evaluation of the Manticore implementation
reveals good performance, dispite the extra overhead of multipro-
cessor synchronization.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications—Applicative (functional) languages; Concurrent,
distributed, and parallel languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Languages, Performance

Keywords concurrency, parallelism, message passing

1. Introduction
Concurrent ML (CML) [Rep91, Rep99] is a statically-typed
higher-order concurrent language that is embedded in Standard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00.

ML [MTHM97]. CML extends SML with synchronous message
passing over typed channels and a powerful abstraction mecha-
nism, called first-class synchronous operations, for building syn-
chronization and communication abstractions. This mechanism
allows programmers to encapsulate complicated communication
and synchronization protocols as first-class abstractions, which en-
courages a modular style of programming where the actual un-
derlying channels used to communicate with a given thread are
hidden behind data and type abstraction. CML has been used suc-
cessfully in a number of systems, including a multithreaded GUI
toolkit [GR93], a distributed tuple-space implementation [Rep99],
and a system for implementing partitioned applications in a dis-
tributed setting [YYS+01]. The design of CML has inspired many
implementations of CML-style concurrency primitives in other
languages. These include other implementations of SML [MLt],
other dialects of ML [Ler00], other functional languages, such
as HASKELL [Rus01], SCHEME [FF04], and other high-level lan-
guages, such as JAVA [Dem97].

One major limitation of the CML implementation is that it is
single-threaded and cannot take advantage of multicore or multi-
processor systems.1 With the advent of the multicore and manycore
era, this limitation must be addressed. In a previous workshop pa-
per, we described a partial solution to this problem; namely a pro-
tocol for implementing a subset of CML, called Asymmetric CML
(ACML), that supports input operations, but not output, in choice
contexts [RX08]. This paper builds on that previous result by pre-
senting an optimistic-concurrency protocol for CML synchroniza-
tion that supports both input and output operations in choices. In
addition to describing this protocol, this paper makes several addi-
tional contributions beyond the previous work.

• We present a reference implementation of the protocol written
in SML extended with first-class continuations.

• To check the correctness of the protocol, we have used stateless
model-checking techniques to test the reference code.

• We have two different parallel implementations of this proto-
col: one in the Manticore system and one written in C#. While
the implementations are very different in their details — e.g.,
the Manticore implementation relies heavily on first-class con-
tinuations, which do not exist in C# — both implementations
were derived from the reference implementation.

• We describe various messy, but necessary, aspects of the imple-
mentation.

• We present an empirical evaluation of the Manticore implemen-
tation, which shows that it provides acceptable performance
(about 2.5× slower than the single-threaded implementation).

1 In fact, almost all of the existing implementations of events have this limi-
tation. The only exceptions are presumably the Haskell and Java implemen-
tations, which are both built on top of concurrency substrates that support
multiprocessing.

The remainder of this paper is organized as follows. In the next
section, we give highlights of the CML design. We then describe
the single-threaded implementation of CML that is part of the SM-
L/NJ system in Section 3. This discussion leads to Section 4, which
highlights a number of the challenges that face a parallel imple-
mentation of CML. Section 5 presents our main result, which is
our optimistic-concurrency protocol for CML synchronization. We
have three implementations of this protocol. In Section 6, we de-
scribe our reference implementation, which is written in SML us-
ing first-class continuations. We have model checked this imple-
mentation, which we discuss in Section 7. There are various imple-
mentation details that we omitted from the reference implementa-
tion, but which are important for a real implementation. We discuss
these in Section 8. We then give an overview of our two parallel
implementations of the protocol: one in the Manticore system and
one in C#. We present performance data for both implementations
in Section 10 and then discuss related work in Section 11.

2. A CML overview
Concurrent ML is a higher-order concurrent language that is em-
bedded into Standard ML [Rep91, Rep99]. It supports a rich set of
concurrency mechanisms, but for purposes of this paper we focus
on the core mechanism of communication over synchronous chan-
nels. The interface to these operations is

val spawn : (unit -> unit) -> unit

type ’a chan

val channel : unit -> ’a chan
val recv : ’a chan -> ’a
val send : (’a chan * ’a) -> unit

The spawn operation creates new threads, the channel function
creates new channels, and the send and recv operations are used
for message passing. Because channels are synchronous, both the
send and recv operations are blocking.

2.1 First-class synchronization
The most notable feature of CML is its support for first-class syn-
chronous operations. This mechanism was motivated by two obser-
vations about message-passing programs [Rep88, Rep91, Rep99]:

1. Most inter-thread interactions involve two or more messages
(e.g., client-server interactions typically require a request, reply,
and acknowledgment messages).

2. Threads need to manage simultaneous communications with
multiple partners (e.g., communicating with multiple servers or
including the possibility of a timeout in a communication).

For example, consider the situation where a client is interacting
with two servers. Since the time that a server needs to fill a request
is indeterminate, the client attempts both transactions in parallel
and then commits to whichever one completes first. Figure 1 illus-
trates this interaction for the case where the first server responds
first. The client-side code for this interaction might look like that
in Figure 2. In this code, we allocate fresh reply channels and con-
dition variables2 for each server and include these with the request
message. The client then waits on getting a reply from one or the
other server. Once it gets a reply, it signals a negative acknowl-
edgement to the other server to cancel its request and then applies
the appropriate action function to the reply message. Notice how
the interactions for the two servers are intertwined. This property

2 By condition variable, we mean a write-once unit-valued synchronization
variable. Waiting on the variable blocks the calling thread until it is signaled
by some other thread. Once a variable has been signaled, waiting on it no
longer blocks.

act1

request

reply / ack

nack

request

Server1 Server2Client

Figure 1. A possible interaction between a client and two servers

let val replCh1 = channel() and nack1 = cvar()
val replCh2 = channel() and nack2 = cvar()

in
send (reqCh1, (req1, replCh1, nack1));
send (reqCh2, (req2, replCh2, nack2));
select [
(replCh1, fn repl1 => (

signal nack2; action1 repl1)),
(replCh2, fn repl2 => (

signal nack1; action2 repl2))
]

end

Figure 2. Implementing interaction with two servers

type ’a event

val recvEvt : ’a chan -> ’a event
val sendEvt : (’a chan * ’a) -> unit event

val never : ’a event
val always : ’a -> ’a event

val choose : (’a event * ’a event) -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val guard : (unit -> ’a event) -> ’a event
val withNack : (unit event -> ’a event) -> ’a event

val sync : ’a event -> ’a

Figure 3. CML’s event API

makes the code harder to read and maintain. Furthermore, adding a
third or fourth server would greatly increase the code’s complexity.

The standard Computer Science solution for this kind of prob-
lem is to create an abstraction mechanism. CML follows this ap-
proach by making synchronous operations first class. These val-
ues are called event values and are used to support more compli-
cated interactions between threads in a modular fashion. Figure 3
gives the signature for this mechanism. Base events constructed
by sendEvt and recvEvt describe simple communications on
channels. There are also two special base-events: never, which
is never enabled and always, which is always enabled for syn-

datatype server
= S of (req * repl chan * unit event) chan

fun rpcEvt (S ch, req) = withNack (
fn nack => let

val replCh = channel()
in

send (ch, (req, replCh, nack));
recvEvt replCh

end)

Figure 4. The implementation of rpcEvt

chronization. These events can be combined into more complicated
event values using the event combinators:

• Event wrappers (wrap) for post-synchronization actions.
• Event generators (combinators guard and withNack) for

pre-synchronization actions and cancellation (withNack).
• Choice (choose) for managing multiple communications. In

CML, this combinator takes a list of events as its argument, but
we restrict it to be a binary operator here. Choice of a list of
events can be constructed using choose as a “cons” operator
and never as “nil.”

To use an event value for synchronization, we apply the sync
operator to it.

Event values are pure values similar to function values. When
the sync operation is applied to an event value, a dynamic instance
of the event is created, which we call a synchronization event. A
single event value can be synchronized on many times, but each
time involves a unique synchronization event.

Returning to our client-server example, we can now isolate the
client-side of the protocol behind an event-valued abstraction.

type server
type req = ...
type repl = ...
val rpcEvt : (server * req) -> repl event

With this interface, the client-side code becomes much cleaner
sync (choose (

wrap (rpcEvt (server1, req1), action1),
wrap (rpcEvt (server2, req2), action2)

))

The implementation of the rpcEvt function is also straightfor-
ward and is given in Figure 4. Most importantly, the details of the
client-server protocol are now hidden behind an abstraction, which
improves the code’s readability, modularity, and maintainability.

3. The single-threaded implementation
Our parallel protocol has a similar high-level structure and event-
representation as the original single-threaded implementation of
CML [Rep99]. In this section, we review these aspects of the
single-threaded design to set the stage for the next section.

3.1 Event representation
An event value is represented as a binary tree, where the leaves
are wrapped base-event values and the interior nodes are choice
operators.3 This canonical representation of events relies on the

3 Strictly speaking, the CML implementation represents events as a two-
level tree, where the root is a list of base-events, but we are treating choice
as a binary operator in this paper.

following equivalences for pushing wrapper functions to the leaves:

wrap(wrap(ev, g), f) = wrap(ev, f ◦ g)

wrap(choose(ev1, ev2), f1) =

choose(wrap(ev1, f),wrap(ev2, f))

Figure 5 illustrates the mapping from a nesting of wrap and
choose combinators to its canonical representation.

3.2 Synchronization
The heart of the implementation is the protocol for synchronization
on a choice of events. The implementation of this protocol is split
between the sync operator and the base-event constructors (e.g.,
sendEvt and recvEvt). As described above, the base events are
the leaves of the event representation. Each base event is a record
of three functions: pollFn, which tests to see if the base-event is
enabled (e.g., there is a message waiting); doFn, which is used to
synchronize on an enabled event; and blockFn, which is used to
block the calling thread on the base event. In the single-threaded
implementation of CML, we rely heavily on the fact that sync is
executed as an atomic operation. The single-threaded protocol is as
follows:

1. Poll the base events in the choice to see if any of them are
enabled. This phase is called the polling phase.

2. If one or more base events are enabled, pick one and synchro-
nize on it using its doFn. This phase is called the commit phase.

3. If no base events are enabled we execute the blocking phase,
which has the following steps:

(a) Enqueue a continuation for the calling thread on each of the
base events using its blockFn.

(b) Switch to some other thread.

(c) Eventually, some other thread will complete the synchro-
nization.

Because the implementation of sync is atomic, the single-threaded
implementation does not have to worry about the state of a base
event changing between when we poll it and when we invoke the
doFn or blockFn on it.

4. Issues
There are a number of challenges that must be met in the design of
a protocol for CML synchronization.

One issue that implementations must address is that a given
event may involve multiple occurrences of the same channel. For
example, the following code nondeterministicly tags the message
received from ch with either 1 or 2:

sync (choose (
wrap (recvEvt ch, fn x => (1, x)),
wrap (recvEvt ch, fn y => (2, y))

))

A naı̈ve implementation might lock all of the channels involved in
a synchronization, which would result in deadlock, unless reentrant
locks were used.

One must also avoid deadlock when multiple threads are simul-
taneously attempting communication on the same channel. For ex-
ample, if thread P is executing

sync (choose (recvEvt ch1, recvEvt ch2))

at the same time that thread Q is executing

sync (choose (recvEvt ch2, recvEvt ch1))

we have a potential deadlock if the implementation of sync at-
tempts to hold a lock on both channels simultaneously (i.e., where

choose

choose

wrap

wrap wrap

wrap

recv send

recv

choose

choose

wrap

wrap wrap

wrap

recv send

recv
wrap

Figure 5. The canonical-event transformation

type ’a evt

val choose : (’a evt * ’a evt) -> ’a evt
val wrap : ’a evt * (’a -> ’b) -> ’b evt
val sync : ’a evt -> ’a

type ’a chan
val recvEvt : ’a chan -> ’a evt
val sendEvt : (’a chan * ’a) -> unit evt

Figure 6. Primitive CML operations

P holds the lock on ch1 and attempts to lock ch2, while Q holds
the lock on ch2 and attempts to lock ch1).

Another problem is that a thread can both offer to send and
receive on the same channel at the same time as in this example:

sync (choose (
wrap (recvEvt ch, fn x => SOME x),
wrap (sendEvt ch, fn () => NONE)

))

In this case, it is important that the implementation not allow these
two communications to match.4

Lastly, the implementation of the withNack combinator re-
quires fairly tricky bookkeeping. Fortunately, it is possible to im-
plement the full set of CML combinators on top of a much smaller
kernel of operations, which we call primitive CML. While imple-
menting primitive CML on a multiprocessor is challenging, it is
significantly simpler than a monolithic implementation. The signa-
ture of this subset is given in Figure 6. 5

To support full CML, we use an approach that was suggested by
Matthew Fluet [DF06]. His idea is to move the bookkeeping used to
track negative acknowledgments out of the implementation of sync
and into guards and wrappers. In this implementation, negative ac-
knowledgments are signaled using the condition variables (cvars)
described earlier. Since we must create these variables at synchro-
nization time, we represent events as suspended computations (or
thunks). The event type has the following definition:

datatype ’a event
= E of (cvar list

* (cvar list * ’a thunk) evt) thunk

where the thunk type is type ’a thunk = unit -> ’a.
The outermost thunk is a suspension used to delay the evaluation

4 This problem was not an issue for the asymmetric protocol described in
our previous work [RX08].
5 This subset is equivalent to the original version of first-class synchronous
operations that appeared in the PML language [Rep88].

of guards until synchronization time. When evaluated, it produces
a list of cvars and a primitive event. The cvars are used to signal
the negative acknowledgments for the event. The primitive event,
when synchronized, will yield a list of those cvars that need to
be signaled and a thunk that is the suspended wrapper action for
the event. More details of this implementation can be found in our
previous paper [RX08].

5. An optimistic protocol for CML
In this section, we present our main result, which is our protocol
for CML synchronization on shared-memory multiprocessors. Our
approach to avoiding the pitfalls described above is to use an
optimistic protocol that does not hold a lock on more than one
channel at a time and avoids locking whenever possible. The basic
protocol has a similar structure to the sequential one described
above, but it must deal with the fact that the state of a base event
can change during the protocol. This fact means that the commit
phase may fail and that the blocking phase may commit. As before,
the synchronization protocol is split between the sync operator
and the base events. The sync operator executes the following
algorithm:

1. The protocol starts with the polling phase, which is done in a
lock-free way.

2. If one or more base events are enabled, pick one and attempt to
synchronize on it using its doFn. This attempt may fail because
of changes in the base-event state since the polling was done.
We repeat until either we successfully commit to an event or we
run out of enabled events.

3. If there are no enabled base events (or all attempts to synchro-
nize failed), we enqueue a continuation for the calling thread
on each of the base events using its blockFn. When block-
ing the thread on a particular base event, we may discover that
synchronization is now possible, in which case we attempt to
synchronize immediately.

This design is guided by the goal of minimizing synchronization
overhead and maximizing concurrency.

The implementations of the doFn and blockFn for a partic-
ular base-event constructor depend on the details of the underly-
ing communication object, but we can describe the synchroniza-
tion logic of these operations as state diagrams that abstract away
the details of the implementation.

For each dynamic instance of a synchronization, we create an
event-state variable that we use to track the state of the protocol.
This variable has one of three states:

WAITING

CLAIMED

SYNCHED

owner attempting synchronization
in blockFn

owner synchronizes on
the event in blockFn

owner in doFN or
other thread

Figure 7. Allowed event-state-variable transitions

b=?

CAS(b,W,S)

b=S

b=S b=C

b=W

get b

START

SUCCESS

Figure 8. State diagram for the doFn protocol

WAITING — this is the initial state and signifies that the event is
available for synchronization.

CLAIMED — this value signifies that the owner of the event is
attempting to complete a synchronization.

SYNCHED — this value signifies that the event has been synchro-
nized.

The state variable is supplied to the blockFn during the blocking
phase and is stored in the waiting queues, etc. of the communica-
tion objects. Figure 7 shows the state transitions that are allowed
for an event-state variable. This diagram illustrates an important
property of state variables: a variable may change from WAITING
to SYNCHED at any time (once it is made visible to other threads),
but a CLAIMED variable is only changed by its owner.

An important property of the commit phase is that the event
state has not yet been “published” to other threads, so it cannot
change asynchronously. This fact means that the doFn part of the
protocol is fairly simple, as is shown in Figure 8. We use W, C,
and S to represent the event state values in this diagram; states are
represented as ovals, actions as rectangles, and atomic compare-
and-swap (CAS) tests as diamonds. The outgoing edges from a
CAS are labelled with the cell’s tested value. The first step is to
attempt to get a match from the communication object. We expect
that such an object exists, because of the polling results, but it might
have been consumed before the doFn was called. Assuming that it
is present, however, and that it has state variable b, we attempt to
synchronize on the potential match. We then attempt to change its

a=?; b=?

CAS(a,W,C)

a=C; b=? a=S; b=?

CAS(b,W,S) a=C; b=? a := W

a=C; b=S

a=C; b=S

a=W

a=S

b=S b=C

b=W

a := W

get b

FAIL

START

a := S a=S; b=S

SUCCESS

unget b

Figure 9. State diagram for the blockFn protocol

state from WAITING to SYNCHED using a CAS instruction. There
are three possibilities:

b = WAITING: in this case, the CAS will have changed b to
SYNCHED and the doFn has successfully committed the syn-
chronization.

b = CLAIMED: in this case, the owner is trying to synchronize on
some other base event that is associated with b, so we spin until
either it succeeds or fails.

b = SYNCHED: in this case, the event is already synchronized, so
we try to get another event.

The state diagram for the blockFns is more complicated be-
cause the state variable for the event may already be enqueued on
some other communication object. For example, consider the case
where thread A executes the synchronization

sync (choose (recvEvt ch1, recvEvt ch2))

Assuming that A calls the blockFn for ch1 first, then some other
thread may be attempting to send A a message on ch1 while A
is attempting to receive a message on ch2. Figure 9 gives the
state diagram for a thread with event-state variable a, attempting
to match a communication being offered by a thread with event-
state variable b. As with the doFn diagram, we start by attempting
to get an item from the communication object. Given such an item,
with state variable b, we attempt to set our own state variable a
to CLAIMED to prevent other threads from synchronizing on our
event. We use a CAS operation to do so and there are two possible
situations:

a = WAITING: in this case, the CAS will have changed a to
CLAIMED and we continue with the protocol.

a = SYNCHED: in this case, A’s event has already been synchro-
nized and we can schedule some other thread to run, but before

type ’a queue

val queue : unit -> ’a queue
val isEmpty : ’a queue -> bool
val enqueue : (’a queue * ’a) -> unit
val dequeue : ’a queue -> ’a option
val dequeueMatch : (’a queue * (’a -> bool))

-> ’a option
val undequeue : (’a * ’a queue) -> unit

Figure 10. Specification of queue operations

doing so, we need to put b back into the communication object’s
queue.

Once we have successfully set a to CLAIMED, we know that its
value will not be changed by another thread. At this point, we
attempt to change b from WAITING to SYNCHED as we did in the
doFn diagram. There are three possibilities:

b = WAITING: in this case, the CAS will have changed b to
SYNCHED, so we set a to SYNCHED to mark that we have
successfully committed the synchronization.

b = CLAIMED: in this case, the owner is trying to synchronize on
some other base event that is associated with b, so we reset a to
WAITING and spin try to match b again.

b = SYNCHED: in this case, the event is already synchronized, so
we reset a to WAITING and try to get another event.

This protocol is somewhat similar to a two-variable STM transac-
tion, except that we do not need a read log, since we never reset b’s
value and we always reset a to WAITING when rolling back.

6. A reference implementation
To make the protocol more concrete, we present key excerpts from
our reference implementation in this section.

6.1 Preliminaries
We present our reference implementation using SML syntax with
a few extensions. To streamline the presentation, we elide several
aspects that an actual implementation must address, such as thread
IDs and processor affinity, but we discuss these in Section 8.

6.1.1 Queues
Our implementation uses queues to track pending messages and
waiting threads in channels. We omit the implementation details
here, but give the interface to the queue operations that we use
in Figure 10. Most of these operations are standard and have
the expected semantics, but the last two are less common. The
dequeueMatch function dequeues the first element of the queue
that satisfies the given predicate and the undequeue operation
pushes an item onto the front of the queue.

6.1.2 Threads and thread scheduling
As in the uniprocessor implementation of CML, we use first-class
continuations to implement threads and thread-scheduling. The
continuation operations have the following specification:

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

We represent the state of a suspended thread as a continuation:

type thread = unit cont

The interface to the scheduling system is two atomic operations:

val enqueueRdy : thread -> unit
val dispatch : unit -> ’a

The first enqueues a ready thread in the scheduling queue and the
second transfers control to the next ready thread in the queue.

6.1.3 Low-level synchronization
Our implementation also relies on the atomic compare-and-swap
instruction. We also assume the existence of spin locks. These low-
level operations have the following interface:

val CAS : (’a ref * ’a * ’a) -> ’a

type spin_lock
val spinLock : spin_lock -> unit
val spinUnlock : spin_lock -> unit

6.2 The representation of events
We start with the representation of events and event-states:
datatype event_status
= WAITING | CLAIMED | SYNCHED

type event_state = event_status ref

datatype ’a evt
= BEVT of {

pollFn : unit -> bool,
doFn : ’a cont -> unit,
blockFn : (event_state * ’a cont) -> unit

}
| CHOOSE of ’a evt * ’a evt

In our reference implementation we use first-class continuations to
represent thread state. Notice that both the doFn and blockFn
functions take a continuation argument. This continuation is the
resume continuation for when the event is synchronized on.

6.3 Implementing sync
The sync operation is given in Figure 11 and directly follows
the logic described in the previous section. It starts with a polling
phase, then attempts to commit on any enabled events, and, failing
that, blocks the thread on the base events. The main omitted detail
is that it passes its return continuation as an argument to the doFn
and blockFn calls. Note that we also allocate a new event-state
variable that is passed into the blockFn calls.

It is worth noting that we implement the sync operation as
a single pass of invoking the blockFn for each base event. The
problem with this approach is that it implements a biased choice
that always favors the left alternative over the right. Although we do
not describe it here, the structure that we use allows us to support
priorities and/or fairness mechanisms for choice (see Chapter 10
of [Rep99] for more discussion).

6.4 Implementing wrap
The implementation of wrap, given in Figure 12, is not directly in-
volved in the synchronization protocol, but it is responsible for
maintaining the canonical representation of event values. The
wrap function pushes its action argument f to the leaves of
the event, where it composes f with the base event’s doFn and
blockFn functions. This composition requires some horrible con-
tinuation hacking to implement.

6.5 Implementing sendEvt
To illustrate how the synchronization protocol works in a concrete
example, we examine the reference code for the sendEvt event
base-event constructor (the recvEvt function follows the same
synchronization pattern). This operation works on the following
representation of channels:

fun sync ev = callcc (fn resumeK => let
(* optimistically poll the base events *)

fun poll (BEVT{pollFn, doFn, ...}, enabled) =
if pollFn()

then doFn::enabled
else enabled

| poll (CHOOSE(ev1, ev2), enabled) =
poll(ev2, poll(ev1, enabled))

(* attempt an enabled communication *)
fun doEvt [] = blockThd()
| doEvt (doFn::r) = (

doFn resumeK;
(* if we get here, that means that the *)
(* attempt failed, so try the next one *)

doEvt r)
(* record the calling thread’s continuation *)

and blockThd () = let
val flg = ref WAITING
fun block (BEVT{blockFn, ...}) =

blockFn (flg, resumeK)
| block (CHOOSE(ev1, ev2)) = (

block ev1; block ev2)
in

block ev;
dispatch ()

end
in

doEvt (poll (ev, []))
end)

Figure 11. The reference implementation of sync

fun wrap (BEVT{pollFn, doFn, blockFn}, f) = BEVT{
pollFn = pollFn,
doFn = fn k => callcc (fn retK =>

throw k
(f (callcc (fn k’ => (doFn k’;

throw retK ()))))),
blockFn = fn (flg, k) => callcc (fn retK =>

throw k
(f (callcc (fn k’ => (blockFn(flg, k’);

throw retK ())))))
}

| wrap (CHOOSE(ev1, ev2), f) =
CHOOSE(wrap(ev1, f), wrap(ev2, f))

Figure 12. The reference implementation of wrap

datatype ’a chan = Ch of {
lock : spin_lock,
sendq : (event_state * ’a * unit cont) queue,
recvq : (event_state * ’a cont) queue

}

Each channel has a pair of queues: one for waiting senders and one
for waiting receivers. It also has a spin lock that we use to protect
the queues. It is important to note that we only lock one channel at
a time, which avoids the problem of deadlock.

The high-level structure of the sendEvt function is
fun sendEvt (Ch{lock, sendq, recvq, ...}, msg) =

let
fun pollFn () = not(isEmpty recvq)
fun doFn k = ...
fun blockFn (myFlg : event_state, k) = ...
in

BEVT{
pollFn = pollFn,
doFn = doFn,
blockFn = blockFn}

end

fun doFn k = let
fun tryLp () = (case dequeue recvq

of NONE => spinUnlock lock
| SOME(flg, recvK) => let

fun matchLp () = (
case CAS (flg, WAITING, SYNCHED)
of WAITING => (

spinUnlock lock;
enqueueRdy k;
throw recvK msg)

| CLAIMED => matchLp ()
| _ => tryLp ()

(* end case *))
in
if (deref flag <> SYNCHED)
then matchLp ()
else tryLp ()

end
(* end case *))

in
spinLock lock;
tryLp ()

end

Figure 13. The sendEvt doFn code

It defines the three base-event functions for the operation and
makes an event value out of them. Note that the polling func-
tion just tests to see if the queue of waiting receivers is not empty.
There is no point in locking this operation, since the state may
change before the doFn is invoked.

The bulk of the sendEvt implementation is in the doFn and
blockFn functions, which are given in Figures 13 and 14 respec-
tively. The doFn implementation consists of a single loop (tryLp)
that corresponds to the cycle in Figure 8. If the doFn is success-
ful in matching a receive operation, it enqueues the sender in the
ready queue and throws the message to the receiver’s resumption
continuation. The blockFn code also follows the corresponding
state diagram closely. It consists of two nested loops. The outer
loop (tryLp) corresponds to the left-hand-side cycle in Figure 9,
while the inner loop (matchLp) corresponds to the right-hand-side
cycle.

6.6 Asymmetric operations
In addition to synchronous message passing, CML provides a
number of other communication primitives. These primitives have
the property that they involve only one active thread at a time (as is
the case for asymmetric-CML), which simplifies synchronization.
In Figure 15, we give the reference implementation for the cvar
type and waitEvt event constructor. In this case, the doFn is
trivial, since once a cvar has been signaled its state does not
change. The blockFn is also much simplier, because there is only
one event-state variable involved.

7. Verifying the protocol
Designing and implementing a correct protocol, such as the one
described in this paper, is very hard. To increase our confidence
in the protocol design, we have used stateless model checking to
verify the reference implementation. Our approach is based on the
ideas of the CHESS model checker [MQ07], but we built our own
tool tailored to our problem. We used this tool to guide the design
of the protocol; in the process, we uncovered several bugs and
missteps in the design that we were able to correct.

Our approach to model checking was to implement a virtual ma-
chine in SML that supported a scheduling infrastructure and mem-
ory cells with both atomic and non-atomic operations. The imple-

fun blockFn (myFlg : event_state, k) = let
fun notMe (flg’, _, _) = not(same(myFlg, flg’))
fun tryLp () = (case dequeueMatch (recvq, notMe)

of SOME(flg’, recvK) => let
(* a receiver blocked since we polled *)

fun matchLp () = (
case CAS(myFlg, WAITING, CLAIMED)
of WAITING => (
(* try to claim the matching event *)
case CAS (flg’, WAITING, SYNCHED)
of WAITING => ((* we got it! *)

spinUnlock lock;
myFlg := SYNCHED;
enqueueRdy k;
throw recvK msg)

| CLAIMED => (
myFlg := WAITING;
matchLp ())

| SYNCHED => (
myFlg := WAITING;
tryLp ())

(* end case *))
| sts => (
undequeue ((flg’, recvK), recvq);
spinUnlock lock;
dispatch ())

(* end case *))
in

if (!flg’ <> SYNCHED)
then matchLp ()
else tryLp ()

end
| NONE => (

enqueue (sendq, (myFlg, msg, k));
spinUnlock lock)

(* end case *))
in

spinLock lock;
tryLp ()

end

Figure 14. The sendEvt blockFn code

mentation of the virtual machine operations are allowed to inject
preemptions into the computation. We used SML/NJ’s first-class
continuations to implement a roll-back facility that allowed both
the preempted and non-preempted execution paths to be explored.
To keep the number of paths explored to a tractable number, we
bound the number of preemptions to 3 on any given trace.6

Our reference implementation was then coded as a functor over
the virtual machine API. On top of this we wrote a number of test
cases that we ran through the checker. These tests required explor-
ing anywhere from 20,000 to over one million distinct execution
traces.

Our experience with this tool was very positive. Using this
tool exposed both a bug in the basic design of our protocol and
a couple of failures to handle various corner cases. We strongly
recommend such automated testing approaches to developers of
concurrent language implementations. Perhaps the best proof of its
usefulness is that when we ported the reference implementation to
the Manticore runtime system, it worked “out of the box.”

6 Experience shows that bounding the preemptive context switches is an
effective way to reduce the state space, while still uncovering many concur-
rency bugs [MQ07].

datatype cvar = CV of {
lock : spin_lock,
state : bool ref,
waiting : (event_state * thread) list ref

}

fun waitEvt (CV{lock, state, waiting}) = let
fun pollFn () = !state
fun doFn k = throw k ()
fun blockFn (flg : event_state, waitK) = (

spinLock lock;
if !state
then (

spinUnlock lock;
case CAS(flg, WAITING, SYNCHED)
of WAITING => throw waitK ())
| _ => dispatch ()

(* end case *))
else let
val wl = !waiting
in
waiting := (flg, waitK) :: wl;
spinUnlock lock

end)
in
BEVT{
pollFn = pollFn,
doFn = doFn,
blockFn = blockFn}

end

Figure 15. The waitEvt event constructor

8. The messy bits
To keep the sample code clean and uncluttered, we have omitted
several implementation details that we discuss in this section.

8.1 Locally-atomic operations
This implementation uses spin-lock-style synchronization at the
lowest level. One problem with spin locks is that if a lock-holder is
preempted and a thread on another processor attempts to access the
lock, the second thread will spin until the first thread is rescheduled
and releases the lock. To avoid this problem, the Manticore runtime
provides a lightweight mechanism to mask local preemptions. We
run sync as a locally-atomic operation, which has two benefits.
One is that threads do not get preempted when holding a spin lock.
The second is that certain scheduling structures, such as the per-
processor thread queue, are only by the owning processor and, thus,
can be accessed without locking.

8.2 Thread affinity
In the above implementation, we assume a single, global, schedul-
ing queue for threads that are ready to run. In the Manticore runtime
system, however, there is a separate thread queue for each proces-
sor. If a thread on processor P blocks on sending a message and
then a thread on processor Q wakes it up by receiving the message,
we want the sender to be rescheduled on P ’s queue. To this end,
we include the thread’s host processor in the blocking information.

8.3 Avoiding space leaks
Another issue that the implementation must deal with is removing
the “dead” elements from channel waiting queues. While setting
the event-state flag to SYNCHED marks a queue item as dead,
it does not get removed from the waiting queue. Consider the
following loop:

fun lp () = sync (choose (
wrap (recvEvt ch1, fn x => ...),
wrap (recvEvt ch2, fn x => ...)))

If there is a regular stream of messages on channel ch1, but never a
sender on channel ch2, the waiting-sender queue for channel ch2
will grow longer and longer.

To fix this problem, we need to remove dead items from the
waiting queues on insert. Since scanning a queue for dead items is a
potentially expensive operation, we want to scan only occasionally.
To achieve this goal, we add two counters to the representation of
a waiting queue. The first keeps track of the number of elements in
the queue and the second defines a threshold for scanning. When
inserting an item, if the number of items in the queue exceeds the
threshold, then we scan the queue to remove dead items. We then
reset the threshold to max(n+k1, k2∗n), where n is the number of
remaining items, and k1 and k2 are tuning parameters.7 For actively
used channels with few senders and receivers, the threshold is never
exceeded and we avoid scanning. For actively used channels that
have large numbers of senders and receivers, the threshold will
grow to accommodate the larger number of waiting threads and will
subsequently not be exceeded. But for channels, like ch2 above,
that have many dead items, the threshold will stay low (equal to
k1) and the queues will not grow without bound.

One should note that there is still the possibility that large data
objects can be retained past their lifetime by being inserted into a
queue that is only rarely used (and doesn’t exceed its threshold).
We could address this issue by making the garbage collector aware
of the structure of queue items, so that the data-pointer of a dead
item could be nullified, but we do not believe that this problem is
likely and worth the extra implementation complexity.

8.4 Reducing bus traffic
In the reference implementation, we often spin on tight loops per-
forming CAS instructions. In practice, such loops perform badly,
because of the bus traffic created by the CAS operation. It is gener-
ally recommended to spin on non-atomic operations (e.g., loads and
conditionals) until it appears that the CAS will succeed [HS08].

9. Parallel implementations of the protocol
In Section 6, we presented a reference implementation of the CML
synchronization protocol described in Section 5. We have translated
this reference implementation into two parallel implementations.
One is a continuation-based implementation as part of the Manti-
core system [FFR+07]. Although very different in detail, both de-
rive from the same design. In this section, we describe some spe-
cific aspects of these translations. We report on the performance of
the Manticore and C# implementations in Section 10.

9.1 A continuation-based implementation
The Manticore implementation is written in a low-level functional
language that serves as one of the intermediate representations of
our compiler. This language can be viewed as a stripped-down ver-
sion of ML with a few extensions. Specifically, it supports first-
class continuations via a continuation binder and it provides ac-
cess to mutable memory objects8 and operations (including CAS).
While the actual code is more verbose, the translation from the ref-
erence implementation was direct.

The Manticore runtime system is designed to emphasize sepa-
ration between processors [FRR08]. While this design helps with
scalability, it does impose certain burdens on the implementation
of the CML primitives. One aspect is that each processor has its
own local scheduling queue, which other processors are not al-
lowed to access. Thus, to schedule a thread on a remote proces-
sor requires pushing it on a concurrent stack that each processor

7 We currently set k1 = 10 and k2 = 1.5.
8 Manticore’s surface language does not have mutable storage.

maintains (called the landing pad) and then waiting until the re-
mote processor notices it and schedules it. The effect of this design
is that message passing and remote thread creation have increased
latency (cf. Section 10).

9.2 A thread-based implementation
Although we described our CML implementation elegantly using
first-class continuations, their use is by no means essential. Any
continuations are used at most once and can readily be replaced
by calls to threading primitives. To demonstrate this claim, we
implemented a version of Parallel CML in C# [TG2] running on
Microsoft’s Common Language Runtime [CLR].

The CLR does not support first-class continuations but can
make use of parallel hardware. The framework libraries provide
access to low-level synchronization primitives such as CAS, spin
waiting and volatile reads and writes of machine words. This is
in addition to the expected higher-level synchronization constructs
such as CLR monitors that ultimately map to OS resources. The
CLR thus provides a useful test-bed for our algorithms.

CML’s event constructors have a natural and unsurprising trans-
lation to C# classes deriving from an abstract base class of events.
The main challenge in translating our CML reference implemen-
tation lies in eliminating uses of callcc. However, since CML
only uses a value of type ’a cont to denote a suspended com-
putation waiting to be thrown some value, we can represent these
continuations as values of the following abstract class:

internal abstract class Cont<T> {
internal void Throw(T res) { Throw(() => res); }
internal abstract void Throw(Thunk<T> res);

}

Here, Thunk<T> is the type of a first-class method - a delegate
- with no argument and return type T. In general, the thrown
value res will be a delayed computation of type Thunk<T> to
accommodate the composition of post-synchronization functions
using wrap - these must be lazily composed then executed on the
receiving end of a synchronization. Now we can capture a waiting
thread using a concrete subclass of Cont<T>:

internal class SyncCont<T> : Cont<T> {
private Thunk<T> res;
private bool Thrown;
internal override void Throw(Thunk<T> res) {
lock (this) {
this.res = res; Thrown = true;
Monitor.Pulse(this);

}
}
internal virtual T Wait() {
lock (this) {
while (!Thrown) Monitor.Wait(this);

}
return res();

}
}

In order to suspend itself, a thread allocates a new SyncCont<T>
value, k, does some work, and eventually calls k.Wait() to
receive the result res() of this or another thread’s intervening
or future call to k.Throw(res): k is essentially a condition
variable carrying a suspended computation.

For example, consider the callcc-based SML implementa-
tion of sync in Figure 11. Note that the current continuation
resumeK, that encloses the entire body of sync ev, is just to
return to the caller of sync. The call to doFn will either trans-
fer control to the outer resumeK continuation once, when suc-
cessful, or return if it fails. Similarly, the blockFn may com-
plete synchronization, transferring control to resumeK, or return;

in which case the call to sync ev blocks by entering the sched-
uler to dispatch another thread. Finally, the scheduler ensures
that at most one thread will continue with resumeK.

This is our C# implementation of method Sync:

public abstract class Evt<T> {
internal abstract
List<BEVT<T>> Poll(List<BEVT<T>> enabled);

internal abstract
bool Block(Evt_State state, Cont<T> resumeK);

public T Sync() {
List<BEVT<T>> enabled = Poll(null);
T t = default(T);
while (enabled != null) {
if (enabled.head.DoFn(ref t)) return t;
enabled = enabled.tail;

}
var resumeK = new SyncCont<T>();
Block(new Evt_State(), resumeK);
return resumeK.Wait();

}
}

The DoFn(ref t) method call cannot directly transfer control
when it succeeds - unlike the CML doFn resumeK; application
in Figure 11. Instead, DoFn returns true to indicate a successful
commit, or false to indicate commit-failure. As a side-effect, it
also updates the location t with any T-result that its caller should
return. If the commit phase succeeds, the code simply returns the
value of t and skips the blocking phase. Otherwise, it allocates
a new SyncCont<T> instance, resumeK, queues resumeK on
all the base events and exits with a call to resumeK.Wait(),
blocking unless the Block call managed to commit. Notice that,
unlike the CML code for sync, the C# code delays creating a
resumeK continuation until the commit phase is known to have
failed, avoiding the additional heap-allocation, synchronization and
potential context switch inherent in a more direct translation of
the callcc-based code. In the message-passing benchmark of
Section 10.4, this optimization improves performance by at least
10% over the literal translation of the reference implementation.

Since CLR threads are expensive operating system threads, it
is useful to avoid the overhead of blocking by using asynchronous
calls when possible. To this end, we extended the CML event sig-
nature with an additional Async operation that, instead of blocking
on the return of a value, immediately queues a callback that takes
a value, to be invoked as a CLR task on completion of the event.9

Enabling this requires a new class of continuations whose Throw
method queues a CLR task but that has no Wait method:

internal class AsyncCont<T> : Cont<T> {
private Action<T> k;
internal AsyncCont(Action<T> k) { this.k = k; }
internal override void Throw(Thunk<T> res)
{ P.QueueTask(() => k(res())); }

}

The code for method Async(k) takes a continuation action k
and follows the same logic as Sync:

public void Async(Action<T> k) {
List<BEVT<T>> enabled = Poll(null);
T t = default(T);
while (enabled != null) {
if (enabled.head.DoFn(ref t)) {
QueueTask(() => k(t));
return;

}
enabled = enabled.tail;

9 A full implementation would also need to take a failure callback and
properly plumb exceptions in the body of method Async(k).

Spawn benchmark
System Threads/sec. Ratio
CML 2,628,000 1.00
Manticore (1P) 1,235,000 0.47
Manticore (2P) 330,300 0.13

Ping-pong benchmark
System Messages/sec. Ratio
CML 1,608,000 1.00
Manticore (1P) 697,800 0.43
Manticore (2P) 271,400 0.17

Ping-pong benchmark

Figure 16. Micro-benchmark results

}
var resumeK = new AsyncCont<T>(k);
Block(new Evt_State(), resumeK);

}

Here, Action<T> is the type of a first-class method expecting a
T argument that returns void. Instead of returning t or blocking
on resumeK.Wait(), as in the code for Sync(), Async(k)
immediately returns control, having either queued () => k(t)
as a new asynchronous task or saved k for a future synchronization
through a successful call to Block(...,resumeK):

The Async method makes it possible to use C# iterators to
provide a form of light-weight, user-mode threading. Although
somewhat awkward, iterators let one write non-blocking tasks in a
sequential style by yield-ing control to a dispatcher that advances
the iterator through its states [CS05]. In particular, by yielding
CML events, and having the dispatcher queue an action to resume
the iteration asynchronously on completion of each event, we can
arrange to multiplex a large number of lightweight tasks over a
much smaller set of CLR worker threads.

10. Performance
This section presents some preliminary benchmark results for our
two implementations. To test the Manticore implementation of the
protocol, we compare the results against the CML implementation,
which is distributed as part of SML/NJ (Version 110.69). These
tests were run on a system with four 2GHz dual-core AMD Opteron
870 processors and 8Gb of RAM. The system is running Debian
Linux (kernel version 2.6.18-6-amd64). Each benchmark was run
ten times; we report the average wall-clock time.

10.1 Micro-benchmarks
Our first two experiments measure the cost of basic concurrency
operations: namely, thread creation and message passing.

Spawn This program repeatedly spawns a trivial thread and then
waits for it to terminate. In the two-processor case, the parent
thread runs on one machine and creates children on the other.

Ping-pong This program involves two threads that bounce mes-
sages back and forth. In the two-processor case, each thread
runs on its own processor.

For Manticore, we measured two versions of these programs: one
that runs on a single processor and one that runs on two processors.
Note that these benchmarks do not exhibit parallelism; the two-
processor version is designed to measure the extra overhead of
working across processors (see Section 9.1). The results for these
experiments are given in Figure 16. For each experiment, we report
the measured rate and the ratio between the measured rate and the

CML version (a higher ratio is better). As can be seen from these
numbers, the cost of scheduling threads on remote processors is
significantly higher.

10.2 Parallel ping-pong
While the above programs do not exhibit parallelism, it is possible
to run multiple copies of them in parallel, which is predictor of
aggragate performance across a large collection of independently
communicating threads. We ran eight copies (i.e., 16 threads) of
the ping-pong benchmark simultaneously. For the multiprocessor
version, each thread of a communicating pair was assigned to a
different processor.

System Messages/sec. Ratio
(vs. CML) (vs. 1P)

CML 1,576,000 1.00
Manticore (1P) 724,000 0.46 1.00
Manticore (2P) 412,000 0.26 0.57
Manticore (4P) 734,000 0.47 1.01
Manticore (8P) 1,000,000 0.63 1.38

As expected, this benchmark demonstrates that we will get speedups
on parallel hardware when computations are independent. It is
worth noting that if we had assigned pairs of communicating
threads to the same processor (instead of different ones), we would
expect even better results, since we would not be paying the inter-
processor communication overhead.

10.3 Primes
The Primes benchmark computes the first 2000 prime numbers
using the Sieve of Erastothenes algorithm. The computation is
structured as a pipeline of filter threads as each new prime is found,
a new filter thread is added to the end of pipeline. We ran both
single and multiprocessor versions of the program; the filters were
assigned in a round-robin fashion. We report the time and speedup
relative to the CML version in the following table:

System Time Speedup
(sec.) (vs. CML) (vs. 1P)

CML 1.34 1.00
Manticore (1P) 3.08 0.43 1.00
Manticore (2P) 3.37 0.40 0.91
Manticore (4P) 1.61 0.83 1.91
Manticore (8P) 0.92 1.45 3.35

Even though the computation per message is quite low in this
program, we see a speed up on multiple processors.

10.4 C# Performance
We also measured the performance of the C# implementation on a
system with two 2.33MHz quad-core Intel Xeon E5345 processors
and 4GB of memory, running 32-bit Vista Enterprise SP1 and CLR
4.0 Beta 1. Each benchmark was run ten times allowing the OS to
schedule on 1 to 8 cores; we report the average wall-clock time.
Since we have no uniprocessor implementation (such as CML) to
compare with, we resort to taking the single-processor runs as our
baseline.

Our first C# benchmark is the parallel ping-pong program from
above. The implementations use proper threads synchronising us-
ing blocking calls to Sync. The mapping of threads to processors
was left to the OS scheduler.

Procs Messages/sec. Ratio
1 37,100 1.00
2 68,400 1.84
4 75,000 2.02
8 84,700 2.28

As before, the benchmark demonstrates that we will get speedups
on parallel hardware when computations are independent.

Our second C# benchmark is an asynchronous, task-based im-
plementation of the primes benchmark from above. Note that the
synchronous version that uses one CLR thread per prime filter ex-
hausts system resources after around 1000 threads (as expected),
but the task based implementation, written using C# iterators yield-
ing Evt<Unit> values, scales better, handling both larger inputs
and benefiting from more processors.

Procs Time (sec.) Speedup
1 6.68 1.00
2 4.70 1.42
4 3.07 2.17
8 2.49 2.68

10.5 Summary
The results presented in this section demonstrate that the extra over-
head required to support parallel execution (i.e., atomic memory
operations and more complicated protocols) does not prevent ac-
ceptable performance. As we would expect, the single-threaded im-
plementation of CML is much faster than the parallel implemen-
tations (e.g., about 2.5 times faster than the Manticore 1P imple-
mentation). Since the performance of most real applications is not
dominated by communication costs, we expect that the benefits of
parallelism will easily outweigh the extra costs of the parallel im-
plementation. We also expect that improvements in the Manticore
compiler, as well as optimization techniques for message-passing
programs [RX07], will reduce the performance gap between the
single-threaded and multi-threaded implementations.

These experiments also demonstrate that there is a significant
cost in communicating across multiple processors in the Manti-
core system. Scheduling threads for the same processor will re-
duce message-passing costs. On the other hand, when the two com-
municating threads can compute in parallel, there is an advantage
to having them on separate processors. Thus, we need scheduling
policies that keep threads on the same processor when they are not
concurrent, but distribute them when they are. There is some ex-
isting research on this problem by Vella [Vel98] and more recently
Ritson [Rit08] that we may be able to incorporate in the Manticore
runtime.

11. Related work
Various authors have described implementations of choice proto-
cols using message passing as the underlying mechanism [BS83,
Bor86, Kna92, Dem98]. While these protocols could, in principle,
be mapped to a shared-memory implementation, we believe that
our approach is both simpler and more efficient.

Russell described a monadic implementation of CML-style
events on top of Concurrent Haskell [Rus01]. His implementa-
tion uses Concurrent Haskell’s M-vars for concurrency control and
he uses an ordered two-phase locking scheme to commit to com-
munications. A key difference in his implementation is that choice
is biased to the left, which means that he can commit immediately
to an enabled event during the polling phase. This feature greatly
simplifies his implementation, since it does not have to handle
changes in event status between the polling phase and the commit
phase. Russell’s implementation did not support multiprocessors
(because Concurrent Haskell did not support them at the time), but
presumably would work on a parallel implementation of Concur-
rent Haskell. Donnelly and Fluet have implemented a version of
events that support transactions on top of Haskell’s STM mecha-
nism [DF06]. Their mechanism is quite powerful and, thus, their
implementation is quite complicated.

This paper builds on our previous protocol for asymmetric
CML. In addition to generalizing the protocol to handle output
guards, this paper provides a more complete story, including verifi-
cation, multiple parallel implementations, and performance results.

In earlier work, we reported on specialized implementations of
CML’s channel operations that can be used when program analysis
determines that it is safe [RX07]. Those specialized implementa-
tions fit into our framework and can be regarded as complementary.

12. Conclusion
We have described what we believe to be the first efficient par-
allel implementation of CML that supports fully symmetric input
and output events. We found the application of state-less model
checking to be a valuable tool during the development of the pro-
tocol, both uncovering bugs and increasing our confidence in the
final design of a reasonably intricate and novel synchronization
protocol. Our dual parallel implementations, both the continuation
passing for Manticore and the thread-based implementation in C#,
demonstrate that the underlying protocols have wider applicability
than just Manticore. We evaluated the performance of the contin-
uation based implementation and found it within a factor of 2.5 of
the single-threaded implementation. More significantly, the parallel
implementation will allows speedups on parallel hardware. Inter-
esting future work would be to further evaluate the performance of
the C# implementation and to use Microsoft’s CHESS framework
to model-check its code.

Acknowledgments
The extension of the asymmetric protocol [RX08] to the symmet-
ric case was done while the first author was a Visiting Researcher at
Microsoft Research Cambridge. The machine used for the bench-
marks was supported by NSF award 0454136. This research was
also supported, in part, by NSF award 0811389. Mike Rainey pro-
vided help with fitting the implementation into the Manticore run-
time infrastructure.

References
[Bor86] Bornat, R. A protocol for generalized occam. SP&E, 16(9),

September 1986, pp. 783–799.

[BS83] Buckley, G. N. and A. Silberschatz. An effective implementa-
tion for the generalized input-output construct of CSP. ACM
TOPLAS, 5(2), April 1983, pp. 223–235.

[CLR] The .NET Common Language Runtime. See http:
//msdn.microsoft.com/en-gb/netframework/.

[CS05] Chrysanthakopoulos, G. and S. Singh. An asynchronous mes-
saging library for C#. In Synchronization and Concurrency in
Object-Oriented Languages (SCOOL), OOPSLA 2005 Work-
shop. UR Research, October 2005.

[Dem97] Demaine, E. D. Higher-order concurrency in Java. In
WoTUG20, April 1997, pp. 34–47. Available from http:
//theory.csail.mit.edu/˜edemaine/papers/
WoTUG20/.

[Dem98] Demaine, E. D. Protocols for non-deterministic commu-
nication over synchronous channels. In IPPS/SPDP’98,
March 1998, pp. 24–30. Available from http://theory.
csail.mit.edu/˜edemaine/papers/IPPS98/.

[DF06] Donnelly, K. and M. Fluet. Transactional events. In ICFP
’06, Portland, Oregon, USA, 2006. ACM, pp. 124–135.

[FF04] Flatt, M. and R. B. Findler. Kill-safe synchronization
abstractions. In PLDI ’04, June 2004, pp. 47–58.

[FFR+07] Fluet, M., N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Status report: The Manticore project. In ML ’07. ACM,
October 2007, pp. 15–24.

[FRR08] Fluet, M., M. Rainey, and J. Reppy. A scheduling framework
for general-purpose parallel languages. In ICFP ’08, Victoria,
BC, Candada, September 2008. ACM, pp. 241–252.

[GR93] Gansner, E. R. and J. H. Reppy. A Multi-threaded Higher-
order User Interface Toolkit, vol. 1 of Software Trends, pp.
61–80. John Wiley & Sons, 1993.

[HS08] Herlihy, M. and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers, New York,
NY, 2008.

[Kna92] Knabe, F. A distributed protocol for channel-based communi-
cation with choice. Technical Report ECRC-92-16, European
Computer-industry Research Center, October 1992.

[Ler00] Leroy, X. The Objective Caml System (release 3.00), April
2000. Available from http://caml.inria.fr.

[MLt] MLton. Concurrent ML. Available at http://mlton.
org/ConcurrentML.

[MQ07] Musuvathi, M. and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI ’07,
San Diego, CA, June 2007. ACM, pp. 446–455.

[MTHM97] Milner, R., M. Tofte, R. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). The MIT Press,
Cambridge, MA, 1997.

[Rep88] Reppy, J. H. Synchronous operations as first-class values. In
PLDI ’88, June 1988, pp. 250–259.

[Rep91] Reppy, J. H. CML: A higher-order concurrent language. In
PLDI ’91. ACM, June 1991, pp. 293–305.

[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge
University Press, Cambridge, England, 1999.

[Rit08] Ritson, C. Multicore scheduling for lightweight communi-
cating processes. Talk at the Workshop on Language and
Runtime Support for Concurrent Systems, October 2008.
Slides available from http://www.mm-net.org.uk/
workshop171008/mmw07-slides.

[Rus01] Russell, G. Events in Haskell, and how to implement them.
In ICFP ’01, September 2001, pp. 157–168.

[RX07] Reppy, J. and Y. Xiao. Specialization of CML message-
passing primitives. In POPL ’07. ACM, January 2007, pp.
315–326.

[RX08] Reppy, J. and Y. Xiao. Toward a parallel implementation of
Concurrent ML. In DAMP ’08. ACM, January 2008.

[TG2] TG2, E. T. C# language specification. See http://
www.ecma-international.org/publications/
standards/Ecma-334.htm.

[Vel98] Vella, K. Seamless parallel computing on heterogeneous
networks of multiprocessor workstations. Ph.D. dissertation,
University of Kent at Canterbury, December 1998.

[YYS+01] Young, C., L. YN, T. Szymanski, J. Reppy, R. Pike,
G. Narlikar, S. Mullender, and E. Grosse. Protium, an
infrastructure for partitioned applications. In HotOS-X,
January 2001, pp. 41–46.

