
A Scheduling Framework for
General-purpose Parallel Languages

Matthew Fluet
Toyota Technological Institute at Chicago

fluet@tti-c.org

Mike Rainey John Reppy
University of Chicago

{mrainey,jhr}@cs.uchicago.edu

Abstract
The trend in microprocessor design toward multicore and manycore
processors means that future performance gains in software will
largely come from harnessing parallelism. To realize such gains, we
need languages and implementations that can enable parallelism at
many different levels. For example, an application might use both
explicit threads to implement course-grain parallelism for indepen-
dent tasks and implicit threads for fine-grain data-parallel compu-
tation over a large array. An important aspect of this requirement
is supporting a wide range of different scheduling mechanisms for
parallel computation.

In this paper, we describe the scheduling framework that we
have designed and implemented for Manticore, a strict paral-
lel functional language. We take a micro-kernel approach in our
design: the compiler and runtime support a small collection of
scheduling primitives upon which complex scheduling policies can
be implemented. This framework is extremely flexible and can sup-
port a wide range of different scheduling policies. It also supports
the nesting of schedulers, which is key to both supporting multiple
scheduling policies in the same application and to hierarchies of
speculative parallel computations.

In addition to describing our framework, we also illustrate its
expressiveness with several popular scheduling techniques. We
present a (mostly) modular approach to extending our schedulers to
support cancellation. This mechanism is essential for implementing
eager and speculative parallelism. We finally evaluate our frame-
work with a series of benchmarks and an analysis.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications—Concurrent, distributed, and parallel languages;
D.3.4 [Programming Languages]: Processors—Run-time environ-
ments

General Terms Languages, Performance

Keywords heterogeneous parallel languages, scheduling, compil-
ers, and run-time systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00.

1. Introduction
The laws of physics and the limitations of instruction-level paral-
lelism have forced microprocessor architects to develop new multi-
core and manycore processor designs. This trend means that future
performance gains in software will largely come from harnessing
parallelism. Thus we have an urgent need to develop effective pro-
gramming languages and runtime systems that can enable paral-
lelism for a wide range of applications. The Manticore project is an
effort to address this need using strict functional programming as
its foundation.

In approaching the problem of parallel computation, our main
thesis is that the language and runtime system must support par-
allelism at a wide range of granularities. The Manticore lan-
guage design achieves this goal by providing both fine-grain par-
allelism in the form of nested-data parallelism, medium-grain par-
allelism in the form of parallel tuples and bindings, and course-
grain parallelism in the form of CML-style concurrency primi-
tives [Rep99, Sha07].

While high-level language designs for heterogeneous paral-
lelism are crucial for making parallel programming accessible to
programmers, it is nonetheless only one piece of the story. In this
paper, we focus on a complementary piece: the design and imple-
mentation of a runtime-system framework, capable of handling the
disparate demands of the various heterogeneous parallelism mecha-
nisms exposed by a high-level language design and capable of sup-
porting a diverse mix of scheduling policies. This runtime frame-
work provides a foundation for rapidly experimenting with both ex-
isting parallelism mechanisms and additional mechanisms not yet
incorporated into high-level language designs for heterogeneous
parallelism.

Our runtime framework consists of a combination of runtime-
system and compiler features. It supports a small core of primi-
tive scheduling mechanisms, such as virtual processors, preemp-
tion, and computation migration. Our design favors minimal, light-
weight representations for computational tasks, borrowing from
past work on continuations. On top of this substrate, a language im-
plementor can build a wide range of parallelism mechanisms with
complex scheduling policies [VR88, BL99, MKH90].

The contributions of this paper are

• We present the design of our scheduling framework, which
provides support for mixing different scheduler policies.
• We describe how this scheduling framework can support a va-

riety of different scheduling strategies that have been proposed
in the parallel computing literature.
• Thread cancelation is an important mechanism for support-

ing speculative parallelism. We describe a modular cancelation
mechanism using our framework that can be combined other
scheduling strategies.

• Our scheduler framework is implemented as part of the Manti-
core compiler and runtime and we describe various interesting
aspects of the implementation.
• We have implemented several scheduling strategies in our sys-

tem and we report on their performance on a number of bench-
mark loads.

Although space precludes the presentation of a formal model of
this scheduling framework, one has been developed and evaluated
using the Redex system [Rai07b].

The remainder of the paper is organized as follows. In Section 2,
we give an overview of the Manticore system, covering the com-
piler technology and runtime-system features that are relevant to
this paper. We then introduce our scheduling framework and show
how a basic round-robin scheduler is implemented. In Section 4,
we describe a more complicated scheduler that supports data paral-
lelism via futures. We then describe a more sophisticated scheduler
that implements the Cilk-5 approach to work stealing [FLR98]. In
Section 6, we present a modular approach to supporting fiber cance-
lation in schedulers. This mechanism is crucial for supporting the
eager and speculative parallelism mechanisms in Manticore. We
then present an empirical evaluation of our framework, covering
both a small set of standard parallel benchmarks and a more de-
tailed analysis of the overheads in work stealing and cancelation.
We discuss related work in Section 8 and conclude in Section 9.

2. The Manticore system
The main focus of this paper is our framework for implementing
schedulers for parallel computation. These schedulers are written
in an external representation of our compiler’s intermediate repre-
sentation and loaded at compile time. In this section, we describe
the basic architecture of the Manticore system in order to provide a
context for the more detailed technical discussions in the remainder
of the paper.

2.1 The Manticore compiler
As is typical, our compiler is structured as a sequence of intermedi-
ate languages/representations (ILs/IRs) [FFR+07]. For this paper,
we are only interested in our normalized direct-style representa-
tion called BOM, which is the workhorse of our compiler. In this
paper, we use SML syntax to write BOM code, since it is more
compact than the actual syntax. An important feature of BOM is
what we call high-level operations (HLOps). These operations are
used to embed higher-level abstractions, such as concurrency and
scheduler operations in the BOM representation. Over the course of
BOM optimization, the high-level operations are replaced by their
definitions, which are loaded from external files (one can think of
HLOps as similar to hygienic macros).1 The BOM IR also includes
atomic operations, such as compare-and-swap (cas).

Another important feature of the BOM IR is the inclusion of
first-class continuations, which are a well-known language-level
mechanism for expressing concurrency [Wan80, HFW84, Rep89,
Ram90, Shi97]. Continuations are supported in the BOM IR by the
cont binding form for introducing continuations and the throw
expression form for applying continuations. The cont binding:

let cont k arg = exp in body end

binds k to the first-class continuation

λarg .(throw k′ (exp))

1 Our loading infrastructure supports a syntax that is close to what we are
using in this paper. After parsing, the loaded code is converted to the BOM
representation using the standard normalization algorithm [FSDF93].

where k′ is the continuation of the whole expression. The scope of
k includes both the expression body and the expression exp (i.e., k
may be recursive). Continuations have indefinite extent and may be
used multiple times.2

A couple of examples will help illustrate this mechanism. The
traditional callcc function can be defined as

fun callcc f = let cont k x = x in f k end

Here we use the cont binding to reify callcc’s return continua-
tion. The cont binding form is more convenient than callcc,
since it allows us to avoid the need to nest callcc’s in many
places. For example, we can create a fiber (unit continuation) from
a function as follows:

fun fiber (f) = let
cont k () = (f(); stop())
in k end

where stop (defined in Section 3) returns control to the scheduler.

2.2 Process abstractions
Our runtime model is based on three distinct notions of process
abstraction:

1. Fibers are unadorned threads of (sequential) control. A sus-
pended fiber is represented as a unit continuation.

2. Threads correspond to the explicit threads of the Manticore
language. A thread may consist of multiple fibers running in
parallel.

3. Virtual processors (vprocs) are an abstraction of a hardware
processor. Each vproc has local state, including a local heap
and scheduling queue. A vproc runs at most one fiber at a time,
and, furthermore, is the only means of running fibers. The vproc
that is currently running a fiber is called the host vproc of the
fiber, and can be obtained obtained by the host operator.

2.3 The runtime system
Our runtime system is implemented in C with a small amount of
assembly-code glue between the runtime and generated code.

Vprocs Each vproc is hosted by its own POSIX thread (pthread).
Typically, there is one vproc for each physical processor core.
We use the Linux processor affinity extension to bind pthreads to
distinct processors. For each vproc, we allocate a local memory
region of size 2k bytes aligned on a 2k-byte boundary (currently,
k = 20 and fixed at compile-time). The runtime representation of a
vproc is stored at the base of this memory region and the remaining
space is used as the vproc-local heap.

One important design principle that we follow is minimizing the
sharing of mutable state between vprocs. By doing so, we minimize
the amount of expensive synchronization needed to safely read and
write mutable state by multiple vprocs. This improves the parallel
performance of a program, because each vproc spends the majority
of time executing without needing to coordinate with other vprocs.
Secondary effects, such as avoiding cache updates and evictions on
the physical processors due to memory writes, further improve the
parallel performance and are enabled by minimizing the sharing of
mutable state.

We distinguish between three types of vproc state: fiber-local
state, which is local to each individual computation; vproc-local
state, which is only accessed by code running on the vproc; and
global state, which is accessed by other vprocs. The thread-atomic

2 The syntax of our continuation mechanism is taken from the Moby com-
piler’s BOL IR [Rep02], but our continuations are first-class, whereas
BOL’s continuations are a restricted form of one-shot continuations known
as escaping continuations.

state, such as machine registers, is protected by limiting context
switches to “safe-points” (i.e., heap-limit checks).

Fiber-local storage Our system supports dynamically-bound per-
fiber storage. This storage is used to provide access to scheduler
data structures, thread IDs, and other per-fiber information. Each
vproc has a pointer to keep track of the current fiber-local storage
(FLS). The following operations are used to allocate FLS and to get
and set the host vproc’s current FLS pointer.

type fls
val newFls : unit -> fls
val setFls : fls -> unit
val getFls : unit -> fls

To support flexibility, we provide an association-list-style mecha-
nism for accessing the attributes in FLS:

val getFromFls : (fls * ’a tag) -> ’a option ref

In keeping with our use of SML syntax, we use phantom types to
type these operations. The tag values that are used as lookup keys
are globally defined.

Garbage collection Automatic memory management is provided
by a garbage collector based on the approach of Doligez, Leroy,
and Gonthier [DL93, DG94]. The heap is organized into a fixed-
size local heap for each vproc and a shared global heap. The global
heap is simply a collection of chunks of memory, each of which
may contain many heap objects. Each vproc has a dedicated chunk
of memory in the global heap. Heap objects consist of one or more
pointer-sized words with a pointer-sized header. The heap has the
invariant that there are no pointers into local heap from either the
global heap or another vproc’s local heap. This invariant allows a
vproc to collect its local heap completely independently from the
other vprocs. As noted above, avoiding expensive synchronizations
with other vprocs improves the parallel performance of a program.
Synchronization is only required when a vproc’s dedicated chunk
of memory is exhausted, and a fresh chunk of memory needs to be
allocated and added to the global heap.

Enforcing the heap invariant requires promoting objects that
might become visible to other vprocs to the global heap. For ex-
ample, if a thread is going to send a message, then the message
must be promoted first, since the receiver may be running on a re-
mote vproc. When objects are promoted, the reachable local data
is copied to the global heap, but forward pointers are left so that
sharing is reestablished when future promotions or collections en-
counter pointers to the promoted objects.

Preemption We implement preemption by synchronizing pre-
empt signals with garbage-collection tests as is done in
SML/NJ [Rep90]. We dedicate a pthread to periodically send
SIGUSR2 signals to the vproc pthreads. Each vproc has a signal
handler that sets the heap-limit register to zero, which causes the
next heap-limit check to fail and the garbage collector to be in-
voked. At that point, the computation is in a safe state, which we
capture as a continuation value that is passed to the current sched-
uler on the vproc. Signals can be masked locally on a vproc, which
we do to avoid preemption while holding a spin lock.

Scheduling queues Each vproc maintains a scheduling queue.
This queue is actually split into a locally accessible queue that
has no synchronization overhead and a globally accessible queue
that is protected by a mutex lock. As part of handling preemption,
the vproc moves any threads in the global queue into the vproc’s
local queue. We provide the following operations for operating on
a vproc’s scheduling queue:

val enq : fiber -> unit
val deq : unit -> fiber
val enqOnVP : (vproc * fiber) -> unit

mask

runningaction stack

mask

runningaction stack

K1

K2

preempt (K2)

throw K1(K2)

Figure 1. The effect of preemption on a vproc

The first two operations work on the host vproc’s local queue and
only require that signals be masked locally. The enqOnVP oper-
ation enqueues a fiber on a remote vproc. Note that there is no
way to dequeue a thread from a remote vproc. This asymmetric de-
sign complicates the implementation of our load-balancing thread
scheduler slightly (see Section 3.3.3), but makes local queue opera-
tions (the common case) significantly faster. Also note that, because
the enqueued fiber is made visible to another vproc, enqOnVP re-
quires the fiber to have been promoted.

3. The scheduling framework
Our scheduling framework takes the philosophy of the micro-
kernel architectures for operating systems; we provide a minimum
collection of compiler and runtime-system mechanisms to support
light-weight scheduling and then build more complex abstractions
and the scheduling code on top of that framework. In this section,
we describe the abstractions provided by the runtime system and
give an informal description of the scheduler operations with some
simple examples. As our present work focuses on the design and
implementation of a flexible scheduling substrate, we explicitly
leave questions of if and how end-programmers can write their own
schedulers and how end-programmers express scheduling policies
to future work. These are interesting and important questions, but
beyond the scope of this paper.

3.1 Scheduling operations
A scheduler action is a continuation that takes a signal and performs
the appropriate scheduling activity in response to the signal. At a
minimum, we need two signals: STOP that signals the termination
of the current fiber and PREEMPT that is used to asynchronously
preempt the current fiber. When the runtime system preempts a
fiber it reifies the fiber’s state as a continuation that is carried by
the preempt signal.

Each vproc has its own stack of scheduler actions. The top of a
vproc’s stack is called the current scheduler action. When a vproc
receives a signal, it handles it by setting the signal mask, popping
the current action from the stack, and throwing the signal to the
current action. The operation is illustrated in Figure 1; here we use
dark grey in the mask box to denote when signals are masked.

There are two operations that scheduling code can use to affect
a vproc’s scheduler stack directly. The operation run(k1,k2)
pushes the action k1 onto the host vproc’s action stack, clears
the vproc’s signal mask, and throws to the continuation k2 (see
Figure 2). The run operation requires that signals be masked,
since it manipulates the vproc’s action stack. The other operation
is forward(sgn), which sets the signal mask and forwards the
signal sgn to the current action (see Figure 3). The forward
operation is used both in scheduling code to propagate signals up
the stack of actions and in user code to signal termination, which
means that signals may, or may not, be masked when it is executed.
For example, a fiber exit function can be defined as

fun stop () = forward(STOP)

mask

runningaction stack

mask

runningaction stack

run (K1, K2)

throw K2()

K1

run (K1, K2)

Figure 2. The effect of run(k1,k2) on a vproc

mask

runningaction stack

mask

runningaction stack

forward (X)

throw K(X)

K

forward (X)

Figure 3. The effect of forward(sgn) on a vproc

Another example is the implementation of a yield operation that
causes the current fiber to yield control of the processor, by for-
warding its own continuation:

fun preempt (k) = forward(PREEMPT(k))
fun yield () = let

cont k (x) = x
in preempt(k) end

The last part of our framework is the operations used to map
a parallel computation across multiple vprocs. We have already
introduced the enqOnVP operation to enqueue a fiber on a specific
vproc. Using this operation we can implement an explicit migration
function that moves the calling computation to a specific vproc:

fun migrateTo vp = let
val fls = getFls()
cont k (x) = (setFls(fls); x)
in

enqOnVP(vp, k);
stop()

end

Note that the migrated computation takes its fiber-local storage.
We also provide a mechanism for assigning vprocs to computa-

tions. A parallel computation is a group of fibers running on sepa-
rate vprocs; the scheduling framework uses FLS to distinguish be-
tween different parallel computations. Computations request addi-
tional vprocs by using the provision operation; this operation
either returns SOME vp, where vp is a vproc that is not already
assigned to the computation, or returns NONE, indicating that no ad-
ditional vprocs are available for the computation. To balance work-
load evenly between threads, the runtime system never assigns a
vproc to a given group twice and attempts to balance the number
of groups assigned to each vproc. When a computation is finished
with a vproc, it uses the release operation to alert the runtime
that it is done with the vproc.

3.2 Scheduler utility functions
On top of the basic scheduling framework described above, we
implement a few operations that are common to many schedulers.
For example, we have a function for passing preemptions up the
action stack:

fun atomicYield () = (yield (); mask())

Note that this function will remask signals when it resumes.
Some of our scheduling code makes use of concurrent

queues [MS96], which have the interface below.

type ’a queue
val emptyQ : unit -> ’a queue
val addQ : (’a queue * ’a) -> unit
val remQ : ’a queue -> ’a option

3.3 Language-level threads
Threads in Manticore play the dual role of supporting systems pro-
gramming and coarse-grained parallelism [FFR+07]. Our thread-
ing mechanism is based on a parallel implementation of CML
threads with message passing [Rep99, RX07, RX08]. In this sec-
tion, we briefly describe our scheduling support for threads, includ-
ing thread creation, uniprocessor scheduling and load-balancing.
Our intention is to introduce our basic process mechanisms and
thus set the stage for our more sophisticated parallel schedulers in
Sections 4–6.

3.3.1 Creating threads
The spawn operation is easy to implement using our fiber-creation
facility. We create a fiber for the thread’s body, and place the fiber
on the local queue of the host vproc.

fun spawn (f) =
enq(fiber(fn () => (setFls(newFls());

f())))

Note that we provide each fiber with its own FLS, which is installed
on the host vproc when the fiber is run.

3.3.2 Uniprocessor scheduling
With our primitives in hand, we can implement a simple round-
robin scheduling policy for threads. The scheduler action below
embodies this policy. At runtime, each vproc executes its own
instance of this scheduler.

cont roundRobin (STOP) = dispatch()
| roundRobin (PREEMPT k) = let
val fls = getFls()
cont k’ () = (

setFls(fls);
throw k ())

in
enq k’;
dispatch()

end
cont dispatch () = run(roundRobin, deq())

We have also tested proportional-share policies using en-
gines [HF84] and nested engines [DH89]. Nested engines, although
somewhat complicated to implement with first-class continuations
alone, have a compact implementation using operators in our run-
time framework [Rai07a, Rai07b]. Empirical studies on scheduling
behavior of CML-like threads also exist [HJT+93, Rep99].

3.3.3 Load balancing
We conclude this section by briefly describing how we extend
our round-robin scheduler with load balancing. The design of this
load-balancing scheduler is based on the following observation
of typical CML programs. Often, these programs consist of a
large number of threads (possibly thousands), but the bulk of these
threads are reactive (i.e., they spend most of their life waiting
for messages). In such a system, only a handful of threads carry
enough computational load to benefit from migration. Thus, we
have optimized for fast context switching between local threads and
have made thread migration bear the synchronization costs. Our
implementation of vproc queues reflects this design, as we have no
operations for dequeing from remote vprocs.

Our load-balancing scheduler performs thread migration by us-
ing the following protocol. When vprocs go idle, they periodically
spawn thief threads on other vprocs. Thieves (executing on the re-
mote vproc) can safely inspect the remote vproc queues, and if they

observe sufficient load, then they can migrate threads back to the
idle vproc. One complication of this protocol, of course, is that if
we are not careful, thieves could end up migrating other thieves!
We avoid this situation, and similar situations that arise with our
schedulers for implicit parallelism, by pinning a thread to a proces-
sor. We use fiber-local storage to mark a thread as pinned.

Although we have not performed an empirical evaluation of this
scheduler, we have benefited by testing it on synthetic workloads.
Since it makes extensive use of our scheduling operations, the
scheduler has proved to be a good stress test for the compiler and
runtime code. In the future, we plan to incorporate ideas from the
growing body of research on OS-level scheduling for multicore
processors into our thread-scheduling approach [Fed07].

4. Gang scheduling
In this section, we describe a simple scheduler for data parallelism
that is based on futures [Hal84] with gang scheduling. Owing to
space limitations, we do not cover our data-parallel array structure
— including how arrays are translated into runtime primitives —
but instead point the reader to Shaw’s Master’s paper [Sha07] and
a companion paper appearing in these proceedings [FRRS08]. One
important aspect, worth mentioning here, however, is that our data-
parallel arrays have a specialized tree representation that limits
the available parallelism, which in turn, sufficiently coarsens the
granularity of the computation so that sophisticated balancing is not
necessary. Therefore, we have opted for a simple gang scheduler
until we gauge which techniques would be more effective.

For the purposes of our data-parallel arrays, we can use a re-
stricted form of future [Hal84] that we call one-touch futures. By
fixing the number of fibers touching a future to one, we can utilize
a lighter-weight synchronization protocol than in the general case.
As is common, our future cell, represented by the future1 type,
contains the current state and the thunk for evaluating the future.
We provide operations for creating a future and for obtaining the
value of a future.

type ’a future1
val future1 : (unit -> ’a) -> ’a future1
val touch1 : ’a future1 -> ’a

There are only two opportunities for evaluating a future. If there
is insufficient parallelism, then the fiber that originally created the
future touches (and evaluates) it using the touch1 function. Oth-
erwise, an instance of the gang scheduler steals the future using the
future1StealAndEval function, which evaluates it in paral-
lel.

val future1StealAndEval : ’a future1 -> unit

The primary difference between touching and stealing a future
is that the former blocks if the future is being evaluated (after
having been stolen), while the latter is a nop if the future is being
evaluated (after having been touched). We elide further discussion
of the synchronization protocol, as it is mostly straightforward and
irrelevant to our scheduling code.

The entry point for our gang scheduler is the future1 opera-
tion. As can be seen below, it initializes the future cell and adds it
to the scheduler’s ready queue.

fun future1 (thunk) = let
val fut = newFuture1Cell(thunk)
in

addQ (getReadyQueue(),
fiber (fn () => future1StealAndEval(fut)));

fut
end

Notice that what we have put on the ready queue is actually a sus-
pended fiber for evaluating the future. As we build more advanced

fun futuresScheduler () = let
val gq = initGangQueue()
val fls = getFls()
cont gsAction (sgn) = let

cont dispatch () = (case remQ(gq)
of NONE => (

atomicYield();
throw dispatch ())

| SOME k => (
setFls(fls);
run(gsAction, k))

(* end case *))
in
case sgn
of STOP => throw dispatch ()
| PREEMPT k => (
addQ(gq, k);
atomicYield();
throw dispatch ())

(* end case *)
end

in
schedulerStartup(gsAction);
gq

end

Figure 4. The gang scheduler.

scheduling features, the advantage of using this uniform represen-
tation will become clear. The operation for getting the ready queue
is shown the code below; it returns the queue by querying FLS.
fun getReadyQueue () = (

case !(getFromFls(getFls(), tag(futRdyQ)))
of NONE => futuresScheduler()
| SOME gq => gq

(* end case *))

If the queue is not available, then the scheduler needs to be initial-
ized.

Figure 4 shows our initialization and scheduling code, which
follows the gang policy. Workers obtain work from the single,
shared queue gq. The scheduler action gsAction embodies a par-
allel instance of our gang scheduler. This action loops indefinitely,
stealing futures from the ready queue. When none are available, the
scheduler yields to its parent scheduler, thus giving other sched-
ulers a chance to run. Similarly, when the evaluation of a stolen
future is preempted, the gang scheduler returns the in-progress fu-
ture evaluation to the ready queue (to be stolen by another instance
of the scheduler) and yields to its parent scheduler.

Related work on supporting data-parallel arrays in the Data Par-
allel Haskell, however, has noted deficiencies of the gang policy.
Specifically, on NUMA machines, poor data locality can become
an issue, degrading performance for memory-intensive computa-
tions [CLP+07].

The only remaining piece of this implementation is the code
responsible for initializing the scheduler on some collection of
vprocs. This operation is important for heterogeneous programs,
as deciding how many vprocs should be available to a scheduler
affects other running schedulers. Many alternatives are available,
including a wide variety of job scheduling techniques [Fei94]. We
have prototyped a job scheduler for our framework, but have yet
to evaluate its performance. We expect that finding efficient and
reliable job scheduling policies will be a significant focus of our
future work. In our current implementation, however, this function
just spawns the given scheduler on all vprocs in the system.

5. Work stealing
Work stealing is a scheduling policy that has proven effective for a
wide range of computations and has been a key component of sev-
eral parallel systems [BS81, Hal84, MKH90, CHRR95, FLR98].
In addition to performing well empirically, work stealing enjoys a
solid theoretical basis [BL99]. Recent languages that support work
stealing, such as Cilk and JCilk, have benefited from using this the-
ory to guide their major design choices [FLR98, DLL06]. In this
section, we describe a work-stealing scheduler using our frame-
work, which, like Cilk and JCilk, is informed by the theory.

We begin by describing how work stealing computations are
expressed in the Manticore language. The classic tree-add example
below marks the left recursive call as a parallel computation.

fun treeAdd LF = 0
| treeAdd (ND (x, t1, t2)) = let
pval l = treeAdd t1
val r = treeAdd t2
in

l + r + x
end

The left call is evaluated locally, but it’s continuation (the right
recursive call and body) are placed on the work-stealing queue.
The pval keyword can be read as specifying a parallel binding.3

Because of the high degree of potential parallelism in tree add,
finding an efficient schedule hinges on finding a coarse distribution
of the computation among the processors. Unsurprisingly, the same
rule applies for other more realistic algorithms.

The work-stealing algorithm finds such efficient schedules dy-
namically. The algorithm operates as follows. Each processor owns
a doubly-ended queue, or deque, of fibers. Each of these deques
has head and tail pointers. A processor pushes and pops fibers from
the tail of its deque in the same way that a C program pushes and
pops frames from its stack. When a processor runs out of work, it
picks another processor’s deque uniformly at random and attempts
to steal from the head of that deque. These workers are called the
thief and the victim respectively.

The theory behind work stealing is based on abstract measures
of work, which is the time necessary to evaluate a computation
sequentially, and depth, which is the time to evaluate a computation
on an infinite number of processors. Implications of this theory
have led Frigo et al. to propose the work-first principle, which states
that one should seek to minimize scheduling overheads placed
on the work of a computation [FLR98]. Furthermore, scheduling
overheads placed on the depth of a computation, which become
manifest as overheads of steals, are less important. Inspired by this
principle is a compiler transformation that splits a computation into
a sequential fast path and a parallel slow path. The computation
spends most of its time in the fast path, and switches to the slow
path only when a steal occurs. Also inspired by this principle is a
light-weight synchronization protocol for deques, which transfers
most of the synchronization cost to remote accesses.

We now describe our implementation of work stealing, which
incorporates the aforementioned ideas from Cilk-5. We first de-
scribe our scheduling primitives and then show our compiler trans-
formation that elaborates pvals into these primitives. Below are
operations for pushing and popping from the local deque. As with
future1, our wsPush operation is responsible for initializing the
scheduler. For our purposes, the pop operation only needs to return
a boolean to indicate whether the deque is empty.

3 Note that the implementation of pval that we describe in this paper dif-
fers from the version that it is used in the standard Manticore implemen-
tation [FFR+07, FRRS08]. We are “hijacking” the syntax to make it easy
to experiment with different scheduler frameworks, but the standard imple-
mentation uses the gang scheduler described in the previous section.

val wsPush : fiber -> unit
val wsPop : unit -> bool

Our synchronization primitives are ivars [ANP89] specialized for
our scheduler. In particular, the put operation unblocks waiting
processes by putting them on the local deque.

type ’a ws_ivar
val wsIVar : unit -> ’a ws_ivar
val wsIGet : ’a ws_ivar -> ’a
val wsIPut : (’a ws_ivar * ’a) -> unit

Our underlying deque implementation consists of the operations
below.

type ’a deque
val makeDeque : unit -> ’a deque
val pushTl : (’a deque * ’a) -> unit
val popTl : ’a deque -> ’a option
val popHd : ’a deque -> ’a option

Our implementation follows the light-weight synchronization pro-
tocol outlined in the Cilk-5 implementation [FLR98].

The interesting part of our scheduling code is the steal op-
eration, which attempts to steal from another worker. By tem-
porarily yielding before the steal attempt, our scheduler can evenly
distribute load among other schedulers. This technique has been
shown to perform well in multiprogrammed workloads both the-
oretically and empirically [ABP98, BP98]. The remainder of the
steal operation is as described earlier; the thief worker picks a vic-
tim at random, and attempts to steal a fiber off the victim’s deque.

cont steal () = (
atomicYield();
case popHd(Array.sub(workerDeques,

randInt(rand)))
of NONE => throw steal ()
| SOME k => throw dispatch k

(* end case*))

As with the gang scheduler, we use a scheduler action to em-
body parallel instances of the workers. The scheduler handles fiber
termination by trying to pop from the local deque. If nothing is
available, the scheduler attempts to steal. The scheduler handles
preemptions by putting the currently evaluating fiber back on the
local queue and yielding temporarily. This process allows other
workers to steal the fiber during the preemption and is similar to
the mugging protocol described by Blumofe et. al. [BLS98].

Figure 5 shows the translation from pvals into our runtime
primitives. This translation is straightforward; we describe it here,
however, to set the stage for our treatment of exceptions and cance-
lation in Section 6. The majority of our translation deals with split-
ting the let expression into its fast and slow paths. To construct
these paths, we move the body of the let into the fresh function
bodyFn. The parameter of this function is a place holder for x.

The translated computation pushes the fiber for the slow path
onto the local deque, evaluates e1, and then determines if it can
take the fast path. Due to the nature of the work-stealing algorithm,
we know that the body has been stolen if and only if the deque is
empty. Therefore, a successful pop operation enables the fast path.
If the computation takes the fast path, the original fiber can evaluate
the body sequentially. Otherwise, the original fiber must seed the
ivar and terminate so that the stolen slow path can take over.

6. Exceptions and process cancellation
In Manticore, exceptions follow a sequential semantics, which
means that for a given expression, exceptions are handled in the
order of sequential evaluation. Consider the example below, where
the two subexpressions raise different exceptions.

[[let pval x = e1 in e2 end]]
=⇒

let
val iv = wsIVar()
fun bodyFn (selFn) = [[e2[x 7→ selFn()]]]
cont slowPathK () = bodyFn(fn () => wsIGet(iv))
val _ = wsPush(slowPathK);
val x = [[e1]]
in

if (wsPop())
then bodyFn(fn () => x) (* fast path *)
else (wsIPut(iv, x); stop())

end

Figure 5. The translation [[e]] from pvals to our runtime primi-
tives. We give the interesting case here; the other cases apply struc-
turally in the obvious manner.

let pval x = raise Foo
in

raise Bar
end handle Foo => ... (* handled Foo *)

| Bar => ... (* impossible *)

Since the subexpressions can be evaluated in parallel, either of the
exceptions could be raised first. Our sequential semantics, however,
requires that Foo is always handled instead of Bar. Data-parallel
arrays also follow a sequential semantics, although supporting this
behavior is trickier than for pvals and is studied in detail in Shaw’s
Master’s paper [Sha07] and a companion paper appearing in these
proceedings [FRRS08].

Despite this rigid ordering for handling exceptions, a significant
optimization is still possible. Once an exception has reached its
handler, we can often free up the resources of unnecessary parallel
computations. For example, once Foo is handled, the computation
of f() can safely be discarded.

let pval x = raise Foo
in

f()
end handle Foo => ... (* handled Foo *)

Likewise, any subcomputations that f() spawns can be discarded.
In our scheduling framework, we call this optimization process
cancellation. The next two sections focus on building process can-
cellation into our framework.

Supporting multiple scheduling disciplines, as we do in our
framework, makes process cancellation trickier to implement. Con-
sider the example below, where two schedulers are running at once,
the work-stealing scheduler for the pval and the gang scheduler
for the parallel tuple.

let pval x = raise Foo
in

(| f x, g x |)
end handle Foo => ... (* handled Foo *)

After handling Foo, we can safely cancel the body of the pval,
including the subcomputation for g, which might be evaluating in
parallel with the body.

In order to fully support this cancellation semantics, we re-
quire that computations perform two jobs. They track parent-child
relationships for spawned processes, including those processes
spawned on other schedulers, so that cancellations can be passed
to all subcomputations. They also poll for cancellation signals. Du-
plicating this code for each scheduler is not modular, and can result
in unnecessary use of shared state for passing cancellation signals.

In the next section, we describe a mechanism for adding cancel-
lation to our framework. Our goals for this mechanism are three-
fold.

1. It should be flexible enough to work with a variety of scheduling
disciplines, yet should be modular.

2. Adding or removing cancellation support into a scheduler
should be trivial. This goal is important, since sometimes com-
piler analysis can determine when cancellation is unnecessary.
As shown in Section 7, avoiding cancellation overheads can be
beneficial.

3. If, however, a parallel expression needs cancellation, we still
want the overhead to be reasonably small. Our evaluation in
Section 7 shows that our mechanism meets this goal.

6.1 Cancelable fibers
Since fibers are our most basic form of process, we start by building
a mechanism for making them cancelable. A cancelable is a
communication channel for canceling fibers. Our representation
includes a flag for whether the fiber has been canceled, a flag for
whether the fiber is running, pointers to the child cancelable, and a
pointer to the parent cancelable. These parent-child pointers play a
similar role to try trees in JCilk [DLL06].

datatype cancelable = CANCELABLE of {
canceled : bool ref,
inactive : bool ref,
children : cancelable list ref,
parent : cancelable option

}

Below are operations for creating cancelables, for canceling them
and for making fibers cancelable.

val makeCancelable : unit -> cancelable
val cancel : cancelable -> unit
val cancelWrapper :

(cancelable * fiber) -> fiber

The cancel operation is synchronous; it waits for its canceled
processes and their children to terminate if they are running. Using
these functions, we can put fiber cancellation to work. The example
program below initiates a long-lived parallel computation and then
abruptly cancels the computation, along with any fibers that it
spawned in the meantime.

let
val k = fiber(fn () => largeComputation())
val c = makeCancelable()
val cancelableK = cancelWrapper(c, k)
in
enqOnVP(vproc, cancelableK);
cancel(c)

end

Notice that this example is independent of any other scheduling
code.

The interesting part of our implementation, specifically how we
handle polling, is shown in Figure 6. We use the scheduler action,
wrapper, to wrap around the fiber and to poll for cancellation.
This scheduler is present on the action stack whenever the fiber is
evaluating. When either running or stopping the wrapped fiber, the
scheduler updates the state properly. The setInactive function
sets the currently running cancelable to the parent cancelable and
marks the fiber as inactive. The setActive function sets the
current cancelable to the given cancelable and marks the fiber as
active.

To track parent-child relationships for fibers, we maintain a
pointer to the running cancelable in FLS. When calling make-
Cancelable, we obtain this pointer and update its children list
appropriately.

Our cancel operator waits for all of its in-flight, canceled
fibers to terminate. Our experience is that this synchronous seman-
tics cuts down on the total time to unload the system. Our protocol
is as follows. First, we set the cancelable to true and then wait for

fun cancelWrapper (c, k) = let
val CANCELABLE{canceled, ...} = c
fun terminate () = (setInactive(c); stop())
fun dispatch (wrapper, k) = if (!canceled)

then terminate()
else (setActive(c);

run (wrapper, k))
cont wrapper (sgn) = (case sgn

of STOP => terminate()
| PREEMPT k => (
setInactive(c);
atomicYield();
dispatch(wrapper, k))

(* end case *))
in

fiber(fn () => (mask();
dispatch(wrapper, k)))

end

Figure 6. Cancel wrapper.

the cancelable to become inactive. Once inactive and canceled, we
know that the cancelable’s children list can no longer change. We
then mark the pointer to the children with an empty list and repeat
the protocol for all the children.

6.2 Scheduler support
We can add cancellation support to a scheduler by modifying ex-
isting code in the three places listed below. The first two of these
modifications justify why we structure all of our schedulers to oper-
ate on fibers. This design enables the first goal for our cancellation
mechanism (namely, that cancellation is modular in the sense that
scheduler implementations are able to share common features and
code).

1. When spawning, the scheduler wraps the new fiber in a cance-
lable.

2. When blocking, the scheduler must always re-wrap the resump-
tion fiber.

3. Slightly more subtle, any wrapped fiber must terminate its com-
putation by calling stop(). Failing to do so could lead to an
unlimited growth of cancel wrappers on the action stack.

In the remainder of this section, we show how to apply these
rules to extend our work-stealing scheduler with exceptions. As the
process is slightly more involved, we do not describe exceptions for
data-parallel arrays, but just assume that they use our cancellation
mechanism.

Figure 7 shows our translation of pvals, now extended to sup-
port our sequential semantics for exceptions. We make modifica-
tion (1) by wrapping the body before putting it on the work-stealing
queue. We make modification (2) by changing the ivar-get opera-
tion. This operation differs from in the original only in that it re-
wraps the return continuation before blocking on the ivar.

val wsIGet : (’a ws_ivar * cancelable) -> ’a

We make modification (3) by changing the bodyK fiber. Instead of
returning directly to the outer context, this fiber puts the rest of the
computation on the queue and then stops, thus cleaning the cancel
wrapper off the action stack.

Our translation supports exceptions as follows. If an exception
is raised in e2, the computation forces e1 to evaluate. Doing so
either blocks on the ivar forever or eventually returns. The former
case indicates that e1 has raised an exception on the original pro-
cessor. Note that in this case, the garbage collector can reclaim the
space for the stolen evaluation of e2 when it reclaims the ivar. In
the latter case, we know that e1 has finished evaluating, so it is safe

[[let pval x = e1 in e2 end]]
=⇒

let
val iv = iVar()
val bodyC = makeCancelable()
fun bodyFn (selFn) =

([[e2[x 7→ selFn()]]])
handle exn => (selFn(); raise exn)

cont slowPathK () = let
cont retK () =

bodyFn(fn () => wsIGet(iv, bodyC))
in

wsPush(retK);
stop()

end
val _ = wsPush(cancelWrapper(bodyC, slowPathK));
val x = [[e1]]

handle exn => (cancel(bodyC);
raise exn)

in
if (wsPop())
then bodyFn(fn () => x) (* fast path *)
else (wsIPut(iv, x); stop())

end

Figure 7. The translation [[e]] from pvals to our runtime primi-
tives. We only give the interesting case here; he other cases apply
structurally in the obvious manner.

to re-raise the exception. If an exception is raised in e1, we cancel
the body computation and re-raise the exception.

6.3 Returning to the example
Using our cancelation mechanism, it is easy to describe how we
can handle our motivating example in which an cancelation passes
through multiple schedulers.

let pval x = raise Foo
in
(| f x, g x |)

end handle Foo => ... (* handled Foo *)

After Foo is raised, our translation for the pval binding guaran-
tees that we cancel the body computation:

(| f x, g x |)

By canceling the body, we also implicitly cancel the computation
for g x (supposing that it is evaluating in parallel), and have thus
achieved our goal.

6.4 Parallel-or
Our final parallel mechanism is the parallel or combinator defined
by Osborne [Osb90]. This combinator has the following type:

val por : ((unit -> ’a option) *
(unit -> ’a option)) -> ’a option

Osbourne gives five requirements for evaluating the expression
pOr(f1, f2):

1. create a thread to evaluate each fi in parallel;

2. return the first SOME(v) value;

3. return NONE if both fi evaluate to NONE;

4. cancel useless computations after the first SOME(v) value is
returned;

5. schedule the allocation of the resources to the computations
and their descendants to minimize the expected time to return a
result.

fun porBody (f1, f2, retK) = let
val {markFull, markEmpty} = porCell()
fun return (vOpt) = (

wsPush(fiber(fn () => throw retK vOpt));
stop())

fun handlerK (sibling, f) = fiber(fn () =>
case f()
of SOME v => (markFull();

cancel(sibling);
return(SOME v))

| NONE => (markEmpty();
return(NONE))

(* end case *))
val c1 = makeCancelable()
val c2 = makeCancelable()
in

wsPush(cancelWrapper(c2, handlerK(c1, f2)));
throw (cancelWrapper(c1, handlerK(c2, f1))) ()

end

Figure 8. Parallel-or internals

In this section, we describe our implementation, which meets
Osbourne’s five requirements. By utilizing our work-stealing
scheduler and our cancelation mechanism, our job here is easy.
Parallel or initiates by capturing the return continuation and then
evaluating body of the computation.

fun por (f1, f2) = let
cont retK (x) = x
in

porBody(f1, f2, retK)
end

The function shown in Figure 8 contains the remainder of the im-
plementation. First this function allocates a parallel-or cell that
tracks the state of the computation. The cell contains two opera-
tions: markEmpty, which records that a NONE has been computed
and finishes the calling thread, and markFull, which records that
a value has been computed and terminates the second fiber to call
it. These functions use atomic compare-and-swap operations on a
reference cell that records the current state of the computation. If a
computation returns a SOME(v) value, it cancels its sibling fiber,
and then resumes the outer continuation retK.

7. Evaluation
The system described in this paper is implemented and we have
conducted some preliminary experiments to test its performance.
Our test machine has four dual-core AMD Opteron 870 processors
running at 2GHz. Each core has a 1Mb L2 cache. The system has
8Gb of RAM and is running Debian Linux (kernel version 2.6.18-
6-amd64).

Figure 9 shows the speedup curves for four standard parallel
benchmarks and Table 1 shows our performance measurements for
these benchmarks plus one synthetic benchmark that we use to
measure overheads. We ran each benchmark five times and report
the average time; in all cases the standard deviation was less than
1%. The raytracer benchmark uses nested-data-parallelism to com-
pute its image in parallel and was run with the gang scheduler. The
other four benchmarks use our pval binding mechanism to ex-
press the parallelism and were run using the work-stealing sched-
uler without cancellation. The first three of these are standard par-
allel benchmarks, while the fib program is a synthetic benchmark
used to measure the overheads of the work-stealing implementa-
tion. For each benchmark, we report the following numbers:

Number of processors
0 1 2 3 4 5 6 7 8

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

"Raytracer"
"Barnes!Hut"
"Merge sort"
"Bitonic sort"

Figure 9. Speedups over the sequential version of several bench-
marks.

• Tseq , which is the time to run a sequential version of the bench-
mark compiled with the Manticore compiler, but without any
overhead to support parallel execution.4

• T1, which is the time to run the parallel version on a single
processor.
• T8, which is the time to run the parallel version on 8-processors.
• c1 = T1/Tseq , which is a measure of the constant parallelism

overhead.
• T1/T8, which is the speedup on 8-processors relative to T1.
• Tseq/T8, which is the speedup on 8-processors relative to Tseq .

These numbers show good scalability on several non-synthetic
loads. While such a result is not surprising, it demonstrates that our
system can effectively deliver parallel speedups on parallel hard-
ware. We discuss the specific benchmarks in more detail below and
then present some measurements of the cancellation mechanism in
Section 7.4.

7.1 Gang scheduling
The raytracer benchmark is a program translated from
Id90 [Nik91], which renders a scene of 10 spheres as an
1024 × 1024-pixel image. Each pixel is computed in a separate
entry of a data parallel array. This program is a brute-force
implementation and does not use any spatial data structures. The
results show that our example scales well out to 8 processors.
Furthermore, the scheduling overhead is close to 1, which suggests
that our scheduler implementation is reasonably efficient.

7.2 Work stealing
The Barnes-Hut benchmark is a classic N-body problem solver,
which works by first constructing a quadtree (or octree) and then
using that data-structure to compute the gravitational force on the
bodies in the system. Our particular version is a translation of
a Haskell program. Its speedup on 8 processors is less than one
might hope for, but we believe that this poor showing is because

4 It should be noted that our current implementation does little in the way
of sequential optimization (e.g., it does not flatten arguments to known
functions) and thus our sequential performance tends to be significantly
slower than optimizing SML compilers, such as SML/NJ and MLton.

Table 1. Sample benchmarks on one and eight processors.

Times (seconds)
Benchmark Scheduler Tseq T1 T8 c1 T1/T8 Tseq/T8

Raytracer (1024x1024) Gang scheduling 9.579 10.211 1.337 1.066 7.639 7.167
Barnes Hut (30K) Work stealing 2.864 2.737 0.605 0.955 4.526 4.737
Merge sort (218) Work stealing 1.296 1.290 0.174 0.995 7.397 7.431
Bitonic sort (218) Work stealing 4.751 4.694 0.685 0.988 6.857 6.940
Fib (29) Work stealing 0.038 0.639 2.556 16.911 0.033 0.015

the tree-building phase is sequential in our implementation. Our
measurements show that the force calculation, which is the part
that we parallelize, achieves a better speedup of close to 7.

The two sorting benchmarks, however, achieve much better
speedups. We believe that some of this speedup arises from the fact
that garbage collection is parallel in our system. These programs
have high allocation rates, since we use heap-allocated activation
records and since our optimizer is not yet highly tuned. A high al-
location rate means more frequent local garbage collections, which
is work that is effectively parallelized by our implementation.

7.3 Work stealing overhead
The constant-work overheads for our non-synthetic benchmarks are
nearly negligible, since in all cases there is sufficient computation
to offset the cost of the spawns. The fractional constant overhead
for Barnes Hut is a minor anomaly in our data. We believe that
this result occurs for two reasons: the overhead for scheduling
is negligible to begin with and the pval translation is having a
synergistic effect with our optimizer. Such small work overheads
would suggest that our implementation is faithful to the work-first
principle but unfortunately our synthetic benchmark, fib, tells a
different story. This synthetic load is the naı̈ve, exponential version
of the Fibonacci computation. Indeed, our work overhead of 17 for
the fib benchmark is much larger than the value of 3.8 overhead
measured for Cilk-5 [FLR98].

To understand this high overhead, we used the methodology of
of Frigo et al. [FLR98] to isolate the main sources of overhead. We
used the fib(29) benchmark as it contains little computation rel-
ative to the scheduling overhead. We ran a series of tests on a single
processor with different parts of the work-stealing implementation
included. The difference in execution time between these tests and
the sequential time for fib(29) was used to quantify the individ-
ual overheads. We were able to isolate five components that account
for 78% of the overhead (see Figure 10). These components are

• The object promotion that is necessary when pushing a fiber
onto the local deque. This promotion is required to maintain
our heap invariant, since fibers in the deque are visible to other
vprocs, but it accounts for the majority of the overhead.
• The non-synchronization overhead associated with using ivars

to hold values.
• The overhead of fiber-local-storage lookups.
• The overhead of maintaining stealable work.
• The overhead of using fibers to represent stealable work.

In addition, 22% of the overhead is unaccounted for.
The main implication of these numbers is that our overriding

concern should be reducing the cost and number of promotions.
One potential solution is to modify our garbage collection imple-
mentation to make a special case for our deques; this approach,
however, seems ad hoc and tricky. Another is to use static analy-
sis to detect when new objects are going to be promoted and al-
locate them directly in the global heap. Another more radical so-

Number of processors
0 1 2 3 4 5 6 7 8

O
c/

O
w

s

0

0.5

1

1.5

2

2.5

3

3.5

Figure 11. Ratio of cancellation overhead (Oc) to work-stealing
overhead (Ows).

lution would be switching to software polling [Fee93] to synchro-
nize deque operations. This approach would make it possible to
relegate promotions to successful steals, but would require sophis-
ticated compiler analysis. The unanswered question is whether the
overhead of software polling would undermine the benefits of elim-
inating the promotions. We expect, however, that as we implement
to more realistic programs, reducing the amount of promotions will
pay off, since doing so will keep data in the local heap and will re-
duce the frequency of global collections.

7.4 Cancellation and parallel or
The overhead of cancellation has particular significance for our
evaluation. Recall that our cancellation mechanism makes heavy
use of our action stack, so we expect that the cancellation overhead
is partially indicative of the performance we can expect from the
primitives of our scheduling operations run and forward. We
used two benchmarks to measure the costs of cancellation.

The first test measures the relative cost of the bookkeeping
needed to support cancellation, without any actual cancellation. For
this test we used the fib(29) program, but included the cancella-
tion support as described in Figure 7. The results are plotted in Fig-
ure 11, which shows the ratio of overhead for work-stealing with
cancellation to the overhead of work-stealing without cancellation.
These results show that cancellation incurs a factor of about 2.5
more overhead than simple work stealing, but that the overhead is
independent of the number of processors.

The second test is the classic n-Queens benchmark (n = 20 in
our case) using parallel or to return the first successful search. Note
that a breadth-first work decomposition will not give any speedup
for this program on 8 processors, since every initial board position
leads to a solution, but this program is useful for measuring the
cost of canceling computations. Figure 12 shows the average time
that it took to cancel the outstanding computations (i.e., all of the
fibers that were either running or in the deque waiting to be stolen).
For this program the cancellation time is largely independent of the
number of processors. We measured 20 runs each for 1, 2, 4, 6, and

Object promotions (47%)

iVar overhead (14%)

FLS lookup (10%)

Deque operations (9%)

Fiber overhead (3%)

Other (18%)

Figure 10. Breakdown of work-stealing overheads. We used fib(29) to obtain these numbers.

Number of processors
0 1 2 3 4 5 6 7 8

Ti
m

e
(s

ec
.)

0

0.1

0.2

0.3

0.4

0.5

Figure 12. Cancellation time for n-Queens benchmark.

Number of processors
0 1 2 3 4 5 6 7 8

Ti
m

e
(m

se
c.

)

0
2
4
6
8

10
12
14
16

Figure 13. Time per canceled fiber.

8 processors. This plot also shows the standard deviation, which
was small except for the case of six processors where two outliers
skewed the results. We believe that these points are most likely
a result of some OS-level scheduling decision. Similar anomalies
have been reported for JCilk [DLL06], although on a different
architecture and OS.

We also plotted the average time in milliseconds to cancel a
computation in Figure 13. The graph shows that the cancellation
phase is benefiting from parallelism.

These two experiments show that the overheads from supporting
cancellation are not dependent on the number of processors, which
suggests that cancellation will scale well when applied to more
realistic workloads.

8. Related work
Our scheduler actions are inspired by Shivers’ proposal for expos-
ing hardware concurrency using continuations [Shi97]. We have

extended Shivers’ proposal to support nested scheduler actions and
multiple processors.

The basic design of our scheduling framework was sketched
in an earlier workshop paper [FRR+07], but this paper greatly
expands and improves on that earlier work. The earlier paper only
presented one example scheduler (a simple scheduler for data-
parallel computation), whereas this paper presents several more
substantial schedulers and an evaluation of the implementation. We
have also extended our model to cancelation.

STING [JP92] is a parallel dialect of SCHEME that, like our run-
time model, aims to support multiple parallel-language constructs
in a unified framework. STING’s three layers of process abstraction
and more abstract mechanism for implementing scheduling policies
contrasts with our approach, which favors minimal process abstrac-
tions and a unified infrastructure for implementing schedulers.

Recent work on the Glasgow Haskell Compiler (GHC) runtime
is similar to our work [LMPT07]. It supports building modular li-
braries for concurrency and supports developing nested schedulers,
although examples of such schedulers are not yet available in the
literature. The GHC work also is intended for a lazy language and
makes heavy use of transactional memory, whereas our work is in-
tended for a strict language and uses lower-level concurrency prim-
itives such as compare-and-swap.

The JCilk language [DLL06] extends Java with a combination
of Cilk-based multithreading and linguistic exceptions. Similar to
our approach, their exception semantics tries to mimic the sequen-
tial behavior of the host language. Unlike our system, they use
the exception mechanism as the primary tool for speculative par-
allelism. Another difference is that we have endeavored to sup-
port cancelation in multiple schedulers, whereas JCilk specializes
in work stealing.

9. Conclusion
We believe that in order to take advantage of manycore processors,
general-purpose languages will need a mix of schedulers. Further-
more, we believe that in order to be sufficiently general, compilers
and runtime systems for these languages will need the flexibility
to experiment with scheduling code. We believe that this paper has
taken an initial but significant step towards our these goals. This
paper outlines the design and implementation of our scheduling
framework in Sections 2 and 3. We provide evidence for the ef-
fectiveness of our framework in several steps. In Sections 4 and
5, we describe implementations of two schedulers. In Section 6,
we present a general cancelation mechanism, which we use to ex-
tend our schedulers with speculative parallelism. Through our im-
plementations, we have laid out a modular style for programming
our scheduling and synchronization libraries; we believe this style
will temper the complexity of our growing implementation, and
ultimately hasten the maturity of our compiler. Finally, we have

provided evidence in Section 7 that our design is reasonably effi-
cient, and posit that with some extra tuning our implementation can
achieve excellent performance.

References
[ABP98] Arora, N. S., R. D. Blumofe, and C. G. Plaxton. Thread

scheduling for multiprogrammed multiprocessors, 1998.

[ANP89] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data
structures for parallel computing. ACM TOPLAS, 11(4),
October 1989, pp. 598–632.

[BL99] Blumofe, R. D. and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5), 1999, pp. 720–
748.

[BLS98] Blumofe, R. D., C. C. Leiserson, and B. Song. Automatic
processor allocation for work-stealing jobs, 1998.

[BP98] Blumofe, R. D. and D. Papadopoulos. The performance of
work stealing in multiprogrammed environments (extended
abstract). In Measurement and Modeling of Computer Systems,
1998, pp. 266–267.

[BS81] Burton, F. W. and M. R. Sleep. Executing functional programs
on a virtual tree of processors. In FPCA ’81, New York, NY,
October 1981. ACM, pp. 187–194.

[CHRR95] Carlisle, M., L. J. Hendren, A. Rogers, and J. Reppy.
Supporting SPMD execution for dynamic data structures. ACM
TOPLAS, 17(2), March 1995, pp. 233–263.

[CLP+07] Chakravarty, M. M. T., R. Leschchinski, S. Peyton Jones,
G. Keller, and S. Marlow. Data Parallel Haskell: A status
report. In DAMP ’07, New York, NY, January 2007. ACM, pp.
10–18.

[DG94] Doligez, D. and G. Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In POPL ’94, New
York, NY, January 1994. ACM, pp. 70–83.

[DH89] Dybvig, R. K. and R. Hieb. Engines from continuations. Comp.
Lang., 14(2), 1989, pp. 109–123.

[DL93] Doligez, D. and X. Leroy. A concurrent, generational garbage
collector for a multithreaded implementation of ml. In POPL
’93, New York, NY, January 1993. ACM, pp. 113–123.

[DLL06] Danaher, J. S., I.-T. A. Lee, and C. E. Leiserson. Programming
with exceptions in JCilk. Science of Computer Programming,
63(2), 2006, pp. 147–171.

[Fed07] Fedorova, A. Operating System Scheduling for Chip Multi-
threaded Processors. Ph.D. dissertation, Department of Com-
puter Science, Harvard University, Boston, MA, 2007.

[Fee93] Feeley, M. Polling efficiently on stock hardware. In FPCA ’93,
New York, NY, June 1993. ACM, pp. 179–187.

[Fei94] Feitelson, D. G. Job scheduling in multiprogrammed parallel
systems. Research Report RC 19790 (87657), IBM, October
1994. Second revision, August 1997.

[FFR+07] Fluet, M., N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Status report: The Manticore project. In ML ’07, New York,
NY, October 2007. ACM, pp. 15–24.

[FLR98] Frigo, M., C. E. Leiserson, and K. H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In PLDI ’98, New
York, NY, June 1998. pp. 212–223.

[FRR+07] Fluet, M., M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Manticore: A heterogeneous parallel language. In DAMP
’07, New York, NY, January 2007. ACM, pp. 37–44.

[FRRS08] Fluet, M., M. Rainey, J. Reppy, and A. Shaw. Implicitly-
threaded parallelism in Manticore. In ICFP ’08, New York,
NY, September 2008. ACM.

[FSDF93] Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In PLDI ’93, New
York, NY, June 1993. ACM, pp. 237–247.

[Hal84] Halstead Jr., R. H. Implementation of multilisp: Lisp on a
multiprocessor. In LFP ’84, New York, NY, August 1984.
ACM, pp. 9–17.

[HF84] Haynes, C. T. and D. P. Friedman. Engines build process
abstractions. In LFP ’84, New York, NY, August 1984. ACM,
pp. 18–24.

[HFW84] Haynes, C. T., D. P. Friedman, and M. Wand. Continuations
and coroutines. In LFP ’84, New York, NY, August 1984.
ACM, pp. 293–298.

[HJT+93] Hauser, C., C. Jacobi, M. Theimer, B. Welch, and M. Weiser.
Using threads in interactive systems: A case study. In SOSP
’93, December 1993, pp. 94–105.

[JP92] Jagannathan, S. and J. Philbin. A customizable substrate for
concurrent languages. In PLDI ’92, New York, NY, June 1992.
ACM, pp. 55–81.

[LMPT07] Li, P., S. Marlow, S. Peyton Jones, and A. Tolmach. Lightweight
concurrency primitives for GHC. In HASKELL ’07, New York,
NY, September 2007. ACM, pp. 107–118.

[MKH90] Mohr, E., D. A. Kranz, and R. H. Halstead Jr. Lazy task
creation: a technique for increasing the granularity of parallel
programs. In LFP ’90, New York, NY, June 1990. ACM, pp.
185–197.

[MS96] Michael, M. M. and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
PODC ’96, New York, NY, May 1996. ACM, pp. 267–275.

[Nik91] Nikhil, R. S. ID Language Reference Manual. Laboratory for
Computer Science, MIT, Cambridge, MA, July 1991.

[Osb90] Osborne, R. B. Speculative computation in multilisp. In LFP
’90, New York, NY, June 1990. ACM, pp. 198–208.

[Rai07a] Rainey, M. The Manticore runtime model. Master’s
dissertation, University of Chicago, January 2007. Available
from http://manticore.cs.uchicago.edu.

[Rai07b] Rainey, M. Prototyping nested schedulers. In Redex Workshop,
September 2007.

[Ram90] Ramsey, N. Concurrent programming in ML. Technical Report
CS-TR-262-90, Dept. of C.S., Princeton University, April 1990.

[Rep89] Reppy, J. H. First-class synchronous operations in Standard
ML. Technical Report TR 89-1068, Dept. of CS, Cornell
University, December 1989.

[Rep90] Reppy, J. H. Asynchronous signals in Standard ML. Technical
Report TR 90-1144, Dept. of CS, Cornell University, Ithaca,
NY, August 1990.

[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge
University Press, Cambridge, England, 1999.

[Rep02] Reppy, J. Optimizing nested loops using local CPS conversion.
HOSC, 15, 2002, pp. 161–180.

[RX07] Reppy, J. and Y. Xiao. Specialization of CML message-passing
primitives. In POPL ’07, New York, NY, January 2007. ACM,
pp. 315–326.

[RX08] Reppy, J. and Y. Xiao. Toward a parallel implementation of
Concurrent ML. In DAMP ’08, New York, NY, January 2008.
ACM.

[Sha07] Shaw, A. Data parallelism in Manticore. Master’s dissertation,
University of Chicago, July 2007. Available from http:
//manticore.cs.uchicago.edu.

[Shi97] Shivers, O. Continuations and threads: Expressing machine
concurrency directly in advanced languages. In CW ’97, New
York, NY, January 1997. ACM.

[VR88] Vandevoorde, M. T. and E. S. Roberts. Workcrews: an
abstraction for controlling parallelism. IJPP, 17(4), August
1988, pp. 347–366.

[Wan80] Wand, M. Continuation-based multiprocessing. In LFP ’80,
New York, NY, August 1980. ACM, pp. 19–28.

