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Abstract
The increasing availability of commodity multicore processors is
making parallel computing available to the masses. Traditional par-
allel languages are largely intended for large-scale scientific com-
puting and tend not to be well-suited to programming the applica-
tions one typically finds on a desktop system. Thus we need new
parallel-language designs that address a broader spectrum of appli-
cations. In this paper, we present Manticore, a language for building
parallel applications on commodity multicore hardware including a
diverse collection of parallel constructs for different granularities of
work. We focus on the implicitly-threaded parallel constructs in our
high-level functional language. We concentrate on those elements
that distinguish our design from related ones, namely, a novel paral-
lel binding form, a nondeterministic parallel case form, and excep-
tions in the presence of data parallelism. These features differenti-
ate the present work from related work on functional data parallel
language designs, which has focused largely on parallel problems
with regular structure and the compiler transformations — most
notably, flattening — that make such designs feasible. We describe
our implementation strategies and present some detailed examples
utilizing various mechanisms of our language.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications—Applicative (functional) languages; Concurrent,
distributed, and parallel languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Design, Languages

Keywords implicitly-threaded parallelism, data parallelism, par-
allel binding, parallel case, exceptions

1. Introduction
The laws of physics and the limitations of instruction-level paral-
lelism are forcing microprocessor architects to develop new multi-
core processor designs. As a result, parallel computing is becom-
ing widely available on commodity hardware. Ideal applications
for this hardware, such as multimedia processing, computer games,
and small-scale simulations, can exhibit parallelism at multiple lev-
els with different granularities. Our design is targeted at these small
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to medium-scale parallel applications; the rationale for this focus
has been stated at greater length in prior work [FRR+07].

A homogeneous language design is not likely to take full advan-
tage of the hardware resources available. For example, a language
that provides data parallelism but not explicit concurrency will be
inconvenient for the development of the networking and GUI com-
ponents of a program. On the other hand, a language that provides
concurrency but not data parallelism will be ill-suited to the com-
ponents of a program that demand fine-grained parallelism, such as
image processing and particle systems.

Our belief is that parallel programming languages must provide
mechanisms for multiple levels of parallelism, both because appli-
cations exhibit parallelism at multiple levels and because hardware
requires parallelism at multiple levels to maximize performance.
Indeed, a number of research projects are exploring heterogeneous
parallelism in languages that combine support for parallel com-
putation at different levels into a common linguistic and execu-
tion framework. The Glasgow Haskell Compiler [GHC] has been
extended with support for three different paradigms for parallel
programming: explicit concurrency coordinated with transactional
memory [PGF96, HMPH05], semi-implicit concurrency based on
annotations [THLP98], and data parallelism [CLP+07], inspired
by NESL [BCH+94, Ble96]. Manticore [FRR+07, FFR+07] in-
corporates both coarse-grained parallelism and fine-grained nested
parallelism. Manticore’s coarse-grained parallelism is based on
Concurrent ML (CML) [Rep91], which provides explicit concur-
rency and synchronous-message passing. Manticore’s fine-grained
nested parallelism is based on previous nested data-parallel lan-
guages, such as NESL [BCH+94, Ble96, BG96] and Nepal [CK00,
CKLP01, LCK06]), and provides data parallel arrays and parallel
comprehensions, among other mechanisms.

After an overview of the Manticore language (Section 2), we
present four main technical contributions:

• the pval binding form, for parallel evaluation and speculation
(Section 3),

• the pcase expression form, for nondeterminism and user-
defined parallel control structures (Section 4),

• the inclusion of exceptions and exception handlers in a data
parallel context (Section 5), and

• our implementation strategies for all of the above, as well as
our approach to handling exceptions in the context of parallel
arrays (Section 7).

We exercise our design on a series of examples in Section 6.
The examples are meant to highlight Manticore’s suitability for
irregular parallel applications, in contrast to the embarrassingly
parallel examples that often appear in the data parallelism literature.
We review related work and conclude in Sections 8 and 9.



2. An Overview of the Manticore Language
Parallel language mechanisms can be roughly grouped into three
categories:

• implicit parallelism, where the compiler and runtime system
are responsible for partitioning the computation into paral-
lel threads. Examples of this approach include Id [Nik91],
pH [NA01], and Sisal [GDF+97].

• implicit threading, where the programmer provides annotations,
or hints to the compiler, as to which parts of the program are
profitable for parallel evaluation, but the mapping of computa-
tion onto parallel threads is left to the compiler and runtime
system. Examples include NESL [Ble96] and its descendant
Nepal [CKLP01], later renamed Data Parallel Haskell (“DPH”
below).

• explicit threading, where the programmer explicitly creates
parallel threads. Examples include CML [Rep99] and Er-
lang [AVWW96].

These different design points represent different trade-offs between
programmer effort and programmer control. Automatic techniques
for parallelization have proven effective for dense regular parallel
computations (e.g., dense matrix algorithms), but have been less
successful for irregular problems. Manticore provides both implicit
threading and explicit threading mechanisms. The former supports
fine-grained parallel computation, while the latter supports coarse-
grained parallel tasks and explicit concurrent programming. These
parallelism mechanisms are built on top of a sequential functional
language. In the sequel, we discuss each of these in turn, starting
with the sequential base language. Space precludes giving a com-
plete account of Manticore’s language-design philosophy, goals,
and target domain; we refer the interested reader to our previous
publications [FRR+07, FFR+07].

2.1 Sequential Programming
Manticore’s sequential core is based on a subset of Standard ML
(SML). The main difference is the absence of mutable data (i.e.,
reference cells and arrays) and, in the present language imple-
mentation, a module system. Manticore includes the functional
elements of SML (datatypes, polymorphism, type inference, and
higher-order functions) as well as exceptions. The interaction of
exceptions and our implicit threading mechanisms adds some com-
plexity to our design, as we discuss below, but we believe that
an exception mechanism is necessary for systems programming.
As many researchers have observed, using a mutation-free lan-
guage greatly simplifies the implementation and use of parallel fea-
tures [Ham91, Rep91, JH93, NA01, DG04]. In essence, mutation-
free functional programming reduces interference and data depen-
dencies. We recognize that the lack of mutable data has the po-
tential to denigrate performance for certain common algorithms;
nevertheless, we fell there is evidence of the success of languages
that lack this feature (Erlang is one compelling example).

As the syntax and semantics of the sequential core language are
largely orthogonal to the parallel language mechanisms, we have
resisted tinkering with core SML. The Manticore Basis, however,
differs significantly from the SML Basis Library [GR04]. In partic-
ular, we have a fixed set of numeric types — short, int, long,
float, and double — instead of SML’s families of numeric
modules.

2.2 Explicitly-threaded parallelism
The explicit concurrent programming mechanisms presented in
Manticore serve two purposes: they support concurrent program-
ming, which is an important feature for systems programming
[HJT+93], and they support explicit parallel programming. Like

CML, Manticore supports threads that are explicitly created using
the spawn primitive. Threads do not share mutable state; rather
they use synchronous message passing over typed channels to com-
municate and synchronize. Additionally, we use CML communi-
cation mechanisms to represent the interface to imperative features
such as input/output.

Further discussion of explicitly-threaded parallelism in Manti-
core is beyond the scope of this paper; other recent publications
(notably [RX08]) provide more detail.

2.3 Implicitly-threaded Parallelism
Manticore provides implicitly-threaded parallel versions of a num-
ber of sequential forms. These constructs can be viewed as hints
to the compiler about which computations are good candidates for
parallel execution; the semantics of many of these constructs is se-
quential and the compiler and/or runtime system may choose to
execute them in a single thread.

Having a sequential semantics is useful in two ways: it gives the
programmer a deterministic programming model and it formalizes
the expected behavior of the compiler. It also requires the compiler
to verify that the individual subcomputations in a parallel compu-
tation do not send or receive messages (if the computations are ac-
tually to be executed in parallel). Similarly, if a subcomputation
raises an exception, the implementation must delay the delivery
of the exception until all sequentially prior computations have ter-
minated. Both of these restrictions can be efficiently implemented
only through appropriate program analyses.

Parallel Arrays Support for parallel computations on arrays and
matrices is common in parallel languages. In Manticore, we sup-
port such computations using the nested parallel array mechanism
inspired by NESL and developed further by Nepal and DPH. A
parallel array expression has the form

[|e1, . . ., en|]

which constructs an array of n elements. The delimiters [| |] alert
the compiler that the ei may be evaluated in parallel.

Parallel array values may also be constructed using parallel
comprehensions, which allow concise expressions of parallel loops.
A comprehension has the general form

[| e | p1 in e1, . . ., pn in en where ef |]

where e is some expression (with free variables bound in the pi)
computing the elements of the array, the pi are patterns binding the
elements of the ei, which are array-valued expressions, and ef is an
optional boolean-valued expression over the pi filtering the input.
If the input arrays have different lengths, all are truncated to the
length of the shortest input, and they are processed, in parallel, in
lock-step.1 For convenience, we also provide a parallel range form

[| el to eh by es |]

which are useful in combination with comprehensions. (The step
expression by es is optional, and defaults to by 1.)

Comprehensions can be used to specify both SIMD parallelism
that is mapped onto vector hardware (e.g., Intel’s SSE instructions)
and SPMD parallelism where parallelism is mapped onto multiple
cores. For example, to double each positive integer in a given paral-
lel array of integers nums, one may use the following expression:

[| 2 * n | n in nums where n > 0 |]

1 This behavior is known as zip semantics, since the comprehension loops
over the zip of the inputs. Both NESL and Nepal have zip semantics, but
Data Parallel Haskell [CLP+07] has Cartesian-product semantics where
the iteration is over the product of the inputs.



datatype tree
= Lf of int
| Nd of tree * tree

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) =

op* (|trProd1 tL, trProd1 tR|)

Figure 1. Tree product with parallel tuples.

This expression can evaluated efficiently in parallel using vector
instructions.

Parallel array comprehensions are first-class expressions; hence,
the expression defining the elements of a comprehension can itself
be a comprehension. For example, the main loop of a ray tracer
generating an image of width w and height h can be written

[| [| trace(x,y) | x in [| 0 to w-1 |] |]
| y in [| 0 to h-1 |] |]

This parallel comprehension within a parallel comprehension is an
example of nested data parallelism.

The sequential semantics of parallel arrays is defined by map-
ping them to lists (see [FRR+07] or [Sha07] for details). The main
subtlety in the parallel implementation is that if an exception is
raised when computing its ith element, then we must wait until all
preceding elements have been computed before propagating the ex-
ception. Section 7.2 describes our implementation strategy for this
behavior.

Parallel Tuples Like the parallel array expression forms, the par-
allel tuple expression form hints to the compiler that the elements
may be evaluated in parallel. The basic form is

(|e1, . . ., en|)

which describes a fork-join evaluation of the expressions ei in
parallel. The result is a normal tuple value.

Figure 1 demonstrates the use of parallel tuples to compute
the product of the leaves of a binary tree of integers. While this
example could have been written with parallel arrays, it is more
convenient to use parallel tuples.

An advantage of parallel tuples is that the elements need not
all have the same type. In languages with only a parallel array
construct, a programmer can evaluate expressions of different types
by, for example, injecting them into an ad hoc union datatype,
collecting them in a parallel array, and then projecting them out
of that datatype, but this incurs uninteresting complexity in the
program and adds runtime overhead.

The sequential semantics of parallel tuples is trivial: they are
evaluated simply as (sequential) tuples. The implication for the
parallel implementation is similar to that for parallel arrays: if
an exception is raised when computing its ith element, then we
must wait until all preceding elements have been computed before
propagating the exception.

Parallel Bindings Parallel arrays and tuples provide a fork-join
pattern of computation, but in some cases more flexible scheduling
is desirable. In particular, we may wish to execute some computa-
tions speculatively. Manticore provides a parallel binding form

pval p = e

that launches the evaluation of the expression e as a parallel thread.
The sequential semantics of a parallel binding are similar to lazy
evaluation: the binding is only evaluated (and only evaluated once)
when one of its bound variables is demanded. One important sub-
tlety in the semantics of parallel bindings is that any exceptions
raised by the evaluation of the binding must be postponed until one

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) = let

pval pL = trProd2 tL
pval pR = trProd2 tR
in
if (pL = 0) then 0
else (pL * pR)

end

Figure 2. Short-circuiting tree product with parallel bindings.

of the variables is touched, at which time the exception is raised at
the point of the touched variable. In the parallel implementation,
we use eager evaluation for parallel bindings, but computations are
canceled when the main thread of control reaches a point where
their result is guaranteed never to be demanded.

Parallel Case The parallel case expression form is a nondeter-
ministic counterpart to SML’s sequential case form. In a parallel
case expression, the discriminants are evaluated in parallel and the
branches may include wildcard patterns that match even if their cor-
responding discriminants have not yet been fully evaluated. Thus, a
parallel case expression nondeterministically takes any branch that
matches after sufficient discriminants have been evaluated.

Parallel case is flexible enough to express a variety of non-
deterministic parallel mechanisms, including, notably, the parallel
choice operator |?|, which nondeterministically returns either of
its two operands. A more detailed treatment of the syntax and se-
mantics of parallel case is deferred until Section 4.

Unlike the other implicitly-threaded mechanisms, parallel case
is nondeterministic. We can still give a sequential semantics, but
it requires including a source of non-determinism, such as Mc-
Carthy’s amb, in the sequential language.

3. Parallel Bindings
The distinguishing characteristic of the parallel binding, or pval
mechanism, is that its launched computation may be canceled be-
fore completion. When a (simple, syntactic) program analysis de-
termines those program points where a launched computation is
guaranteed never to be demanded, the compiler inserts a corre-
sponding cancellation. Note that these sites can only be located in
conditional expression forms.

As in Figure 1, the function in Figure 2 computes the product
of the leaves of a tree. This version short-circuits, however, when
the product of the left subtree of a Nd variant evaluates to zero.
Note that if the result of the left product is zero, we do not need the
result of the right product. Therefore its subcomputation and any
descendants may be canceled. The short-circuiting behavior is not
explicit in the function. Rather, it is implicit in the semantics of a
parallel binding that when control reaches a point where the result
of an evaluation is known to be unneeded, the resources devoted to
that evaluation are freed and the computation is abandoned.

The analysis to determine when a pval’s computation is sub-
ject to cancellation is not as straightforward as it might seem. The
following example includes two parallel bindings linked by a com-
mon computation:

let
pval x = f 0
pval y = (| g 1, x |)
in
if b then x else h y

end

In the conditional expression here, while the computation of y can
be canceled in the then branch, the computation of x cannot be
canceled in either branch. Our analysis must respect this depen-



dency and similar subtle dependencies. We consider an example
similar to this one in Section 7 in some detail.

There are many more examples of the use of parallel bindings in
Section 6. We discuss the specific mechanisms (most importantly,
futures) by which we realize their semantics in Section 7.

4. Parallel Case Expressions
The parallel case expression form has the following syntax:

pcase e & . . . & e
of π & . . . & π => e
| . . .
| otherwise => e

The metavariable π denotes a parallel pattern, which is either

• a nondeterministic wildcard ?,
• a handle pattern handle p, or
• a pattern p,

where p in the latter two cases signifies a conventional SML
pattern. Furthermore, pcase expressions include an optional
otherwise branch, always last if present, which has a special
meaning as discussed below.

A nondeterministic wildcard pattern can match against a com-
putation that is either finished or not. It is therefore different than
the usual SML wildcard, which matches against a finished compu-
tation, albeit one whose result remains unnamed. Nondeterministic
wildcards can be used to implement short-circuiting behavior. Con-
sider the pcase branch

| false & ? => false

Once the constant pattern false has been matched with the result
of the first discriminant’s computation, the running program need
not wait for the second discriminant’s computation to finish; it can
return false straightaway. This branch is part of the expression
of a short-circuiting parallel boolean conjunction, discussed below
in more detail.

A handle pattern catches an exception if one is raised in the
computation of the corresponding discriminant. It may furthermore
bind the raised exception to a pattern for use in subsequent compu-
tation.

We can transcribe the meaning of otherwise concisely, ad-
mitting SML/NJ-style or patterns in our presentation for brevity.
An otherwise branch can be thought of as a branch of the form:

| (_ | handle _) & ... & (_ | handle _) => e

The fact that every position in this pattern is either a deterministic
wildcard or a handle means it can only match when all computa-
tions are finished. It also has the special property that it takes lowest
precedence when other branches also match the evaluated discrim-
inants. In the absence of an explicit otherwise branch, a parallel
case is evaluated as though the following branch were appended to
it:

| otherwise => raise Match

To illustrate the use of parallel case expressions, we consider
parallel choice. (In fact, the parallel case expression was designed
as a generalization of parallel choice.) A parallel choice expression
e1 |?| e2 nondeterministically returns either the result of e1
or e2. This is similar to MultiLisp’s parallel or (which is not the
same as a parallel boolean disjunction). This is useful in a parallel
context, because it gives the program the opportunity to return
whichever of e1 or e2 evaluates first.

Employing the tree datatype from Figure 1, we might want to
write a function to obtain the value of a leaf—any leaf—from a
given tree.

fun trLeaf (Lf i) = i
| trLeaf (Nd (tL, tR)) =

trLeaf(tL) |?| trLeaf(tR)

This function evaluates trLeaf(tL) and trLeaf(tR) in par-
allel. Whichever evaluates first, loosely speaking, determines the
value of the choice expression as a whole. Hence, the function is
likely, but not required, to return the value of the shallowest leaf
in the tree. Furthermore, the evaluation of the discarded compo-
nent of the choice expression—that is, the one whose result is not
returned—is canceled, as its result is known not to be demanded. If
the computation is running, this cancellation will free up computa-
tional resources for use elsewhere. If the computation is completed,
this cancellation will be a harmless idempotent operation.

The parallel choice operator is a derived form in Manticore, as
it can be expressed as a pcase in a straightforward manner. The
expression e1 |?| e2 is desugared to:

pcase e1 & e2
of x & ? => x
| ? & x => x

Parallel case gives us yet another to write the trProd function:
fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) =

(pcase trProd(tL) & trProd(tR)
of 0 & ? => 0
| ? & 0 => 0
| pL & pR => pL * pR)

This function will short-circuit when either the first or second
branch is matched, implicitly canceling the computation of the
other subtree. Because it is nondeterministic as to which of the
matching branches is taken, a programmer should ensure that
all branches that match the same discriminants yield accept-
able results. For example, if trProd(tL) evaluates to 0 and
trProd(tR) evaluates to 1, then either the first branch or the
third branch may be taken, but both will yield the result 0.

Is this the most efficient trProd function? Not necessarily.
The implementation of the parallel case mechanism, as discussed
in Section 7.6, induces more overhead than other mechanisms, and
on small trees this function might run more slowly than lower-
overhead counterparts.

As a third example, consider a function to find a leaf value in
a tree that satisfies a given predicate p. The function should return
an int option to account for the possibility that no leaf values
in the tree match the predicate. We might mistakenly write the
following code:

fun trFindB (p, Lf i) = (* B for broken *)
if p(i) then SOME(i)
else NONE

| trFindB (p, Nd (tL, tR)) =
trFindB(p,tL) |?| trFindB(p,tR)

In the case where the predicate p is not satisfied by any leaf values
in the tree, this implementation will always return NONE, as it
should. However, if the predicate is satisfied at some leaf, the
function will nondeterministically return either SOME(n), for a
satisfying n, or NONE. In other words, this implementation will
never return a false positive, but it will, nondeterministically, return
a false negative. The reason for this is that as soon as one of the
operands of the parallel choice operator evaluates to NONE, the
evaluation of the other operand might be canceled, even if it were
eventually to yield SOME(n).

A correct version of trFind may be written as follows:



val r = pcase e1 & e2
of false & ? => false
| ? & false => false
| true & true => true
| otherwise => raise Match

Figure 3. Encoding a parallel boolean conjunction with pcase.

fun trFind (p, Lf i) =
if p(i) then SOME(i)
else NONE

| trFind (p, Nd (tL, tR)) =
pcase trFind(p,tL) & trFind(p,tR)
of SOME(n) & ? => SOME(n)
| ? & SOME(n) => SOME(n)
| NONE & x => x
| x & NONE => x

This version of trFind has the desired behavior. When either
trFind(p,tL) or trFind(p,tR) evaluates to SOME(n), the
function returns that value and implicitly cancels the other evalu-
ation. The essential computational pattern here is a parallel abort
mechanism, a common device in parallel programming.

A parallel case can also be used to encode a short-circuiting
parallel boolean conjunction expression. Here we consider some
possible encodings. We can attempt to express parallel conjunction
in terms of parallel choice using the following strategy. We mark
each expression with its originating position in the conjunction;
after making a parallel choice between the two marked expressions,
we can determine which result to return. Thus, we can write an
expression that always assumes the correct value, although it may
generate redundant computation:

datatype side = L | R

val r = case (e1, L) |?| (e2, R)
of (false, L) => false
| (false, R) => false
| (true, L) => e2
| (true, R) => e1

This expression exhibits the desired short-circuiting behavior in
the first two cases, but in the latter cases it must restart the other
computation, having canceled it during the evaluation of the par-
allel choice expression. So, while this expression always returns
the right answer, in non-short-circuiting cases its performance is
no better than sequential, and probably worse.

We encounter related problems when we attempt to write a
parallel conjunction in terms of pval, where asymmetries are
inescapable.

val r = let
pval b1 = e1
pval b2 = e2
in
if (not b1) then false
else b2

end

This short-circuits when e1 is false, but not when e2 is false. We
cannot write a parallel conjunction in terms of pval such that
either subcomputation causes a short-circuit when false.

The pcase mechanism offers the best encoding of parallel
conjunction (Figure 3). Only when both evaluations complete and
are true does the expression as a whole evaluate to true. If
one constituent of a parallel conjunction evaluates to false, the
other can be safely canceled. As soon as one expression evaluates
to false, the other is canceled, and false is returned. As a
convenience, Manticore provides |andalso| as a derived form
for this expression pattern.

In addition to |andalso|, we provide a variety of other sim-
ilar derived parallel forms whose usage we expect to be common.
Examples include |orelse|, |*| (parallel multiplication, short-
circuiting with 0), and parallel maximum and minimum operators
for numeric types. Because Manticore has a strict evaluation se-
mantics for the sequential core language, such operations cannot
be expressed as simple functions: to obtain the desired parallelism,
the subcomputations must be unevaluated expressions. Thus, it may
be desirable to provide a macro facility that enables a programmer
to create her own novel syntactic forms in the manner of these op-
erations.

5. Exceptions and Exception Handlers
The interaction of exceptions and parallel constructs must be con-
sidered in the implementation of the parallel constructs. Raises and
exception handlers are first-class expressions, and, hence, they may
appear at arbitrary points in a program, including in a parallel con-
struct. The following is a legal parallel array expression:

[| 2+3, 5-7, raise A |]

Evaluating this parallel array expression should raise the excep-
tion A.

Note the following important detail. Since the compiler and run-
time system are free to execute the subcomputations of a parallel
array expression in any order, there is no guarantee that the first
raise expression observed during the parallel execution corre-
sponds to the first raise expression observed during a sequen-
tial execution. Thus, some compensation is required to ensure that
the sequentially first exception in a given parallel array (or other
implicitly-threaded parallel construct) is raised whenever multiple
exceptions could be raised. Consider the following minimal exam-
ple:

[| raise A, raise B |]

Although B might be raised before A during a parallel execution,
A must be the exception observed to be raised by the context of
the parallel array expression in order to adhere to the sequential
semantics. Realizing this behavior in this and other parallel con-
structs requires our implementation to include compensation code,
with some runtime overhead. In the present work, we give details of
our implementation of this behavior, compensation code included,
in Section 7.

In choosing to adopt a strict sequential core language, Manti-
core is committed to realizing a precise exceptions semantics in the
implicitly-threaded parallel features of the language. This is in con-
trast to an imprecise exception semantics [PRH+99] that arise from
a lazy sequential language. While a precise semantics requires a
slightly more restrictive implementation of the implicitly-threaded
parallel features than would be required with an imprecise seman-
tics, we believe that support for exceptions and the precise seman-
tics is crucial for systems programming. Furthermore, as Section 7
will show, implementing the precise exception semantics is not par-
ticularly onerous.

It is possible to eliminate some or all of the compensation code
with the help of program analyses. There already exist various well-
known analyses for identifying exceptions that might be raised by a
given computation [Yi98, LP00]. If, in a parallel array expression,
it is determined that no subcomputation may raise an exception,
then we are able to omit the compensation code and its overhead.
As another example, consider a parallel array expression where all
subcomputations can raise only one and the same exception.

[| if x<0 then raise A else 0,
if y>0 then raise A else 0 |]



The full complement of compensation code is unnecessary here,
since any exception raised by any subcomputation must be A.

Although exception handlers are first-class expressions, their
behavior is orthogonal to that of the parallel constructs and mostly
merit no special treatment in the implementation. At the present
time, Manticore does not implement any form of flattening trans-
formation on data parallel array computations. Once we incorporate
flattening into our work, however, we will need to take particular
account of exception handlers, since flattening and exception han-
dlers cannot freely coexist [Sha07].

Note that when an exception is raised in a parallel context,
the implementation should free any resources devoted to parallel
computations whose results will never be demanded by virtue of
the control-flow of raise. For example, in the parallel tuple

(| raise A, fact(100), fib(200) |)

the latter two computations should be abandoned as soon as possi-
ble. Section 7 details our approaches when this and similar issues
arise.

6. Examples
We consider a few examples to illustrate the use and interaction
of our language features in familiar contexts. We choose examples
that stress the parallel binding and parallel case mechanisms of our
design, since examples exhibiting the use of parallel arrays and
comprehensions are covered well in the existing literature.

6.1 A Parallel Typechecking Interpreter
First we consider an extended example of writing a parallel type-
checker and evaluator for a simple model programming language.
The language in question, which we outline below, is a pure ex-
pression language with some basic features including boolean and
arithmetic operators, conditionals, let bindings, and function defi-
nition and application. A program in this language can, as usual, be
represented as an expression tree. Both typechecking and evalua-
tion can be implemented as walks over expression trees, in parallel
when possible. Furthermore, the typechecking and evaluation can
be performed in parallel with one another. In our example, failure
to type a program successfully implicitly cancels its simultaneous
evaluation.

While this is not necessarily intended as a realistic example,
one might wonder why parallel typechecking and evaluation is de-
sirable in the first place. First, typechecking constitutes a single
pass over the given program. If the program involves, say, recursive
computation, then typechecking might finish well before evalua-
tion. If it does, and if there is a type error, the presumably doomed
evaluation will be spared the rest of its run. Furthermore, type-
checking touches all parts of a program; evaluation might not.

Our language includes the following definition of types.

datatype ty = Bool | Nat | Arrow of ty * ty

For the purposes of yielding more useful type errors, we assume
each expression consists of a location (some representation of its
position in the source program) and a term (its computational part).
These are encoded as follows:

datatype term
= N of int | B of bool | V of var
| Add of exp * exp
| If of exp * exp * exp
| Let of var * exp * exp
| Lam of var * ty * exp
| Apply of exp * exp
...

withtype exp = loc * term

For typechecking, we need a function that checks the equality
of types. When we compare two arrow types, we can compare the
domains of both types in parallel with comparison of the ranges.
Furthermore, if either the domains or the ranges turn out to be
not equal, we can cancel the other comparison. Here we encode
this, in the Arrow case, as an explicit short-circuiting parallel
computation:

fun tyEq (Bool, Bool) = true
| tyEq (Nat, Nat) = true
| tyEq (Arrow(t,t’), Arrow(u,u’)) =

(pcase tyEq(t,u) & tyEq(t’,u’)
of false & ? => false
| ? & false => false
| true & true => true)

| tyEq _ = false

In practice, we could use the parallel and operator |andalso| for
the Arrow case

tyEq(t,u) |andalso| tyEq(t’,u’)

which would desugar into the expression explicitly written above.
We present a parallel typechecker as a function typeOf that

consumes an environment (a map from variables to types) and an
expression. It returns either a type, in the case that the expression is
well-typed, or an error, in the case that the expression is ill-typed.
We introduce a simple union type to capture the notion of a value
or an error.

datatype ’a or_error
= A of ’a
| Err of loc

The signature of typeOf is

val typeOf : env * exp -> ty or_error

We consider a few representative cases of the typeOf function.
To typecheck an Add node, we can simultaneously check both
subexpressions. If the first subexpression is not of type Nat, we
can record the error and implicitly cancel the checking of the
second subexpression. The function behaves similarly if the first
subexpression returns an error. Note the use of a sequential case
inside a pval block to describe the desired behavior.

fun typeOf (G, (p, Add (e1,e2))) = let
pval t2 = typeOf(G, e2)
in case typeOf(G, e1)

of A Nat => (case t2
of A Nat => A Nat
| A _ => Err(locOf(e2))
| Err q => Err q)

| A _ => Err(locOf(e1))
| Err q => Err q

end

In the Apply case, we require an arrow type for the first subex-
pression and the appropriate domain type for the second.

| typeOf (G, (p, Apply (e1, e2))) = let
pval t2 = typeOf(G, e2)
in case typeOf(G, e1)
of A(Arrow(d,r)) => (case t2

of A t => if tyEq(d,t) then A r
else Err p

| Err q => Err q)
| A _ => Err(locOf(e1))
| Err q => Err q

end

Where there are no independent subexpressions, no parallelism
is available:

| typeOf (G, (p, IsZero(e))) =
(case typeOf(G,e)

of A Nat => A Bool
| _ => Err p)



Throughout these examples, the programmer rather than the
compiler is identifying opportunities for parallelism.

For evaluation, we need a function to substitute a term for a vari-
able in an expression. Substitution of closed terms for variables in
a pure language is especially well-suited to a parallel implementa-
tion. Parallel instances of substitution are completely independent,
so no subtle synchronization or cancellation behavior is ever re-
quired. Parallel substitution can be accomplished by means of our
simplest parallel construct, the parallel tuple. We show a few cases
here.
fun subst (t, x, e as (p, t’)) = (case t’

of V(y) => if varEq(x,y) then (p,t) else e
| Let(y,e1,e2) => if varEq(x,y)

then (p, Let(y, subst(t,x,e1), e2))
else (p, Let(|y, subst(t,x,e1),

subst(t,x,e2)|))
...

Like the parallel typechecking function, the parallel evaluation
function simultaneously evaluates subexpressions. Since we are not
interested in identifying the first runtime error (when one exists),
we use a parallel case:

| eval (p, Add(e1,e2)) =
(pcase eval(e1) & eval(e2)

of (N n1, N n2) => N(n1+n2)
| otherwise => raise RuntimeError)

The if case is notable in its use of speculative evaluation of both
branches. As soon as the test completes, the abandoned branch is
implicitly canceled.

| eval (p, If(e1, e2, e3)) =
(pcase eval(e1) & eval(e2) & eval(e3)

of B true & v & ? => v
| B false & ? & v => v
| otherwise => raise RuntimeError)

We conclude the example by wrapping typechecking and eval-
uation together into a function that runs them in parallel. If
the typechecker discovers an error, the program implicitly can-
cels the evaluation. Note that if the evaluation function raises a
RuntimeError exception before the typechecking function re-
turns an error, it will be harmlessly canceled. If the typechecking
function returns any type at all, we simply discard it and return the
value returned by the evaluator.

fun typedEval e =
(pcase typeOf(emptyEnv,e) & eval(e)
of (Err p, ?) => Err p
| (A _, v) => A v)

6.2 Parallel Contract Checking
In this section, we extend the simple typed language of the previ-
ous section with parallel contract checking for a minimal contract
system. To illustrate our point, we consider only the simplest kind
of contracts, flat contracts on function arguments [Par72, Luc90].

To define the language, we extend the term datatype. A con-
tract, in this model language, is a function that consumes a value
and returns a boolean. Therefore, there is no distinguished contract
variant in the datatype.

datatype term
= ...
| LamG of exp * var * ty * exp
| Blame of loc
...

LamG is a special form for the representation of guarded functions.
The first component is a contract for the function argument; the
second, third, and fourth components are the function argument,
the function argument’s type, and the function body, respectively.
Note that the variable is in scope only in the body, not the contract.

If the argument to a LamG function fails to meet its contract, the
location of the application supplying the argument will be blamed.
This blame is reified in the form of a Blame expression naming
the location of the contract violation.

As before, we define a function

eval : exp -> exp

to evaluate expressions in this language. We omit most of its pre-
dictable definition. The evaluation of expressions in this language is
mostly standard, although care must be taken at each step to check
if any Blames have been generated, as we wish to report the ear-
liest contract violation. In the Add case, for example, we evaluate
both subexpressions in parallel by launching the evaluation of the
second with pval.

| eval (p, Add (e1, e2)) => let
pval v2 = eval(e2)
in case eval(e1)
of Blame c => Blame c
| N n1 => (case v2

of Blame c => Blame c
| N n2 => Add(n1+n2)
| _ => raise RuntimeError)

| _ => raise RuntimeError
end

It is unnecessary to launch the evaluations of both operands with
pvals; launching just one suffices for running both simultane-
ously. If neither evaluation blames anything, we proceed to eval-
uate the addition as usual. Here, a sequential case expression is
employed to express the left bias of the contract-checking system.
Note how the mixed presence of parallel and sequential constructs
can be used to express a particular program.

When a contract must be checked, its evaluation is done in par-
allel with the evaluation of the expression as a whole. If the contract
is not adhered to, the main evaluation is implicitly canceled; other-
wise, it is returned.

| eval (p, App (e1, e2)) = let
pval v2 = eval(e2)
in case eval(e1)
of Blame c => c
| Lam(x,_,b) => (case v2

of Blame c => Blame c
| _ => eval (subst(v2,x,b)))

| LamG(c,x,_,b) => (case v2
of Blame c => Blame c
| _ => let

pval res = eval(subst(v2,x,b))
val chk = eval((p,App(c,v2)))
in case chk
of B false => Blame p
| B true => res
| _ => raise RuntimeError

end)
end

6.3 Parallel Game Search
We now consider the problem of searching a game tree in parallel.
This has been shown to be a successful technique by the Cilk group
for games such as Pousse [BAP+98] and chess [DL02].

For simplicity, we consider the game of tic-tac-toe. Every tic-
tac-toe board is associated with a score: 1 if X holds a winning
position, -1 if O holds a winning position, and 0 otherwise. We use
the following polymorphic rose tree to store a tic-tac-toe game tree.

datatype ’a rose_tree
= Rose of ’a * ’a rose_tree parray

Each node contains a board and the associated score, and every path
from the root of the tree to a leaf encodes a complete game.



fun maxT (board, alpha, beta) =
if gameOver(board) then
Rose ((board, boardScore board), [||])

else let
val ss = successors (board, X)
val t0 = minT (ss!0, alpha, beta)
val alpha’ = max (alpha, treeScore t0)
fun loop i =
if (i = (plen ss)) then [||]
else let

pval ts = loop (i+1)
val ti = minT (ss!i, alpha’, beta)
in

if (treeScore ti) >= beta then
[|ti|] (* prune *)

else
[|ti|] |@| ts

end
val ch = [|t0|] |@| loop(1)
val maxScore = maxP [| treeScore t | t in ch |]
in

Rose ((board, maxScore), ch)
end

Figure 4. The maxT half of parallel alpha-beta pruning. ! is the
subscript operator for parallel arrays. The parallel computation of
ts can be canceled in the line marked (* prune *).

A player is either of the nullary constructors X or O; a board
is a parallel array of nine player options, where NONE repre-
sents an empty square. Extracting the available moves from a given
board is written as a parallel comprehension as follows:
fun allMoves b =
[|i | s in b, i in [|0 to 8|] where isNone(s)|]

Generating the next group of boards given a current board and a
player to move is also a parallel comprehension:

fun successors (b, p) =
[| moveTo (b, p, i) | i in (allMoves b) |]

With these auxiliaries in hand we can write a function to build
the full game tree using the standard minimax algorithm, where
each player assumes the opponent will play the best available move
at the given point in the game.
fun minimax (b : board, p : player) =
if gameOver(b) then

Rose ((b, boardScore b), [||])
else let

val ss = successors (b, p)
val ch = [| minimax (b, other p) | b in ss |]
val chScores = [| treeScore t | t in ch |]
in

case p
of X => Rose ((b, maxP chScores), ch)
| O => Rose ((b, minP chScores), ch)

end

Note that at every node in the tree, all subtrees can be computed
independently of one another, as they have no interrelationships.
Admittedly, one would not write a real tic-tac-toe player this way,
as it omits numerous obvious and well-known improvements. Nev-
ertheless, as written, it exhibits a high degree of parallelism and
performs well relative both to a sequential version of itself in Man-
ticore and to similar programs in other languages.

Using alpha-beta pruning yields a somewhat more realistic ex-
ample. We implement it here as a pair of mutually recursive func-
tions, maxT and minT. The code for maxT is shown in Figure 4,
omitting some obvious helper functions; minT, not shown, is sim-
ilar to maxT, with appropriate symmetrical modifications. Alpha-
beta pruning is an inherently sequential algorithm, so we must ad-

datatype ’a trap
= Val of ’a
| Exn of exn

datatype ’a rope
= Leaf of ’a vector
| Cat of ’a rope * ’a rope

type ’a future
val future : (unit -> ’a) -> ’a future
val poll : ’a future -> ’a trap option
val touch : ’a future -> ’a
val cancel : ’a future -> unit

Figure 5. Traps, ropes, and futures.

just it slightly. This program prunes subtrees at a particular level of
the search tree if they are at least as disadvantageous to the current
player as an already-computed subtree. (The sequential algorithm,
by contrast, considers every subtree computed thus far.) We com-
pute one subtree sequentially as a starting point, then use its value
as the pruning cutoff for the rest of the sibling subtrees. Those sib-
lings are computed in parallel by repeatedly spawning computa-
tions in an inner loop by means of pval. Pruning occurs when the
implicit cancellation of the pval mechanism cancels the evalua-
tion of the right siblings of a particular subtree.

7. Implementation
To sketch the important points of our implementation, we ex-
press the transformations of the implicitly-threaded parallel con-
structs into more concrete mechanisms: specifically, as AST-to-
AST rewrites. For clarity, we present the transformed program frag-
ments in SML syntax in this paper.

To implement the implicitly-threaded parallel features of Man-
ticore, we define two polymorphic SML datatypes, the trap and
the rope, and we introduce MultiLisp-style futures [Hal84]. These
datatypes, an abstract future type, and the signatures of the core fu-
ture operations are given in Figure 5. These types and operations
are sufficient to encode the language features presented above, as
we demonstrate in this section.

7.1 Futures
A future value is a handle to a (lightweight) computation being exe-
cuted in parallel to the main thread of control. There are three elim-
ination operations on futures. The poll operation returns NONE
if the computation is still being evaluated and SOME value or
exception—in the form of a trap—if the computation has eval-
uated to a result value or a raised exception. The touch operation
demands the result of the future computation, blocking until the
computation has completed. The behavior of touch is equivalent
to the following (inefficient) implementation:

fun touch f = (case poll f
of NONE => touch f
| SOME (Val v) => v
| SOME (Exn e) => raise e)

Finally, the cancel operation terminates a future computation, re-
leasing any computational resources being consumed if the com-
putation is still being evaluated and discarding any result value or
raised exception if the computation has been fully evaluated. It is
an error to poll or touch a future value after it has been can-
celed. It is not an error to cancel a future value multiple times or
to cancel a future that has been touched. Many of the translations
below depend on this property of the cancel operation.

Futures and future operations are implemented by means of a
flexible scheduling framework [Rai07, FRR08] provided by the



Manticore compiler and runtime system. This framework is capable
of handling the disparate demands of the various heterogeneous
parallelism mechanisms and capable of supporting a diverse mix
of scheduling policies. Futures are just one of the mechanisms
implemented with this framework.

Recall that the implicitly-threaded parallel constructs may be
nested arbitrarily. Thus, a single future created to evaluate (one sub-
computation of) an implicitly-threaded parallel construct may, in
turn, create multiple futures to evaluate nested constructs. Futures,
then, may be organized into a tree, encoding parent-child relation-
ships. If a future is canceled, then all of its child futures must also
be canceled.

The implementation of futures makes use of standard synchro-
nization primitives provided by the scheduling framework; e.g., I-
variables [ANP89] are used to represent future results. Cancella-
tion is handled by special “cancellable” data structures that record
parent-child relationships and the cancellation status of each future;
a nestable scheduler action is used to poll for cancellation when a
future computation is preempted.

Finally, note that a number of the program transformations
below use futures in a stylized manner. For example, some futures
are guaranteed to be touched at most once, a fact the compiler
can exploit. Similarly, some futures will all be explicitly canceled
together. The scheduling framework makes it easy to support these
special cases with decreased overhead.

7.2 Ropes
Parallel arrays are implemented via ropes [BAP95]. Ropes, origi-
nally proposed as an alternative to strings, are immutable balanced
binary trees with vectors of data at their leaves. Read from left to
right, the data elements at the leaves of a rope constitute the data
of the parallel array it represents. Ropes admit fast concatenation
and, unlike contiguous arrays, may be efficiently allocated in mem-
ory even when very large. One disadvantage of ropes is that ran-
dom access to individual data elements requires logarithmic time.
Nonetheless, we do not expect this to present a problem for many
programs, as random access to elements of a parallel array will
in many cases not be needed. However, a Manticore programmer
should be aware of this representation.

As they are physically dispersed in memory, ropes are well-
suited to being built in parallel, with different processing elements
simultaneously working on different parts of the whole. Further-
more, ropes embody a natural tree-shaped parallel decomposition
of common parallel array operations like maps and reductions.
Note the rope datatype shown in Figure 5 is an oversimplification
of our implementation for the purposes of presentation. In our pro-
totype system, rope nodes also store their depth and data length.
These values assist in balancing ropes and make length and depth
queries constant-time operations.

7.3 Parallel Tuples
For our first transformation, we revisit an earlier example:

datatype tree
= Lf of int
| Nd of tree * tree

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) =

op* (|trProd1 tL, trProd1 tR|)

A future is created for each element of the parallel tuple, except
the first. Since the first element of the tuple will be the first element
demanded, and the main thread will block until the first element
is available, there is no need to incur the overhead of a future for
the computation of the first element. To manage computational re-
sources properly, when an exception is raised during the evaluation

fun rmap (f, r) = (case r
of Leaf v => Leaf (vmap (f, v))
| Cat (r1, r2) => let

val f2 = future (fn _ => rmap (f, r2))
val m1 = rmap (f, r1)

handle e => (cancel f2; raise e)
val m2 = touch f2
in

Cat (m1, m2)
end)

Figure 6. Mapping a function over a rope in parallel.

of a parallel tuple, it is necessary to install an exception handler that
will cancel any running futures before propagating the exception.

Taking all this into account, the tree product code above is
rewritten with futures as follows:

fun trProdT (Lf i) = i
| trProdT (Nd (tL, tR)) = let

val tup = let
val fR = future (fn _ => trProdT tR)
in

(trProdT tl, touch fR)
handle e => (cancel fR; raise e)

end
in
op* tup

end

In general, a parallel tuple (|e1, . . ., en|) is rewritten as
follows:

let val f2 = future (fn _ => e2)
· · ·
val fn = future (fn _ => en)

in
(e1, touch f2, . . ., touch fn)
handle e => (cancel f2; · · ·; cancel fn;

raise e)
end

Note that if the expression ei raises an exception (and touch fi

raises an exception), then the cancellation of f2, . . ., fi will have
no effect. Since we expect exceptions to be rare, we choose this
transformation rather than one that installs custom exception han-
dlers for e1 and each touch fi.

7.4 Parallel Comprehensions
One of the most common operations on parallel arrays is to apply
a function in parallel to all of its elements, as in

[| f x | x in a |]

for any function f. We transform this computation to the internal
function rmap, whose definition is given in Figure 6. Note that if
rmap(f,r1) raises an exception, then the future evaluating the
map of the right half of the rope is canceled, and the exception
from the map of the left half is propagated. If rmap(f,r2) raises
an exception, then it will be propagated by the touch f2. By this
mechanism, we raise the sequentially first exception as discussed
above.

The maximum length of the vector at each leaf is controlled
by a compile-time option; its default value is 256. Altering the
maximum leaf length, currently a compile-time option, can affect
the execution time of a given program. If the leaves store very little
data, then ropes become very deep. Per the parallel decomposition
shown in Figure 6, small leaves correspond to the execution of
many futures. This leads to good load balancing when applying the
mapped function to an individual element is relatively expensive.
By contrast, large leaves correspond to the execution of few futures;



fun rreduce (f, z, r) = (case r
of Leaf v => vreduce (f, z, v)
| Cat (r1, r2) => let

val f2 = future (fn _ => rreduce (f, z, r2))
val v1 = rreduce (f, z, r1)

handle e => (cancel f2; raise e)
val v2 = touch f2
in

f (b1, b2)
end)

Figure 7. Reducing a function over a rope in parallel.

this is advantageous when applying the mapped function to an
individual element is relatively cheap. Allowing the user to vary
the maximum leaf size on a per-compilation basis gives some
rough control over these tradeoffs. A more flexible system would
allow the user to specify a maximum leaf size on a per-array
basis, although many decisions remain about how to provide such
a facility.

Another common operation on ropes is reduction by some asso-
ciative operator ⊕. Compensation code to ensure that the sequen-
tially first exception is raised is similar to that of rmap. A reduction
of a parallel array is transformed to the internal function rreduce,
whose definition is given in Figure 7.

7.5 Parallel Bindings
The implementation of parallel bindings introduces a future for
each pval to be executed in parallel to the main thread of con-
trol and introduces cancellations when variables bound in the cor-
responding pval become unused on a control-flow path. Note that
such control-flow paths may be implicit via a raised exception. As
with parallel tuples, we do not introduce a future for a pval whose
result is demanded by the main thread of control without any (sig-
nificant) intervening computation.

To illustrate the implementation of parallel bindings, we present
the translation of the function trProd from Figure 2.

fun trProdT (Lf i) = i
| trProdT (Nd (tL, tR)) = let

val fR = future (fn _ => trProdT tR)
in (let
val pL = trProdT tL
in

if (pL = 0) then (cancel fR; 0)
else (pL * (touch fR))

end)
handle e => (cancel fR; raise e)

end

Note that the translation introduces a future for only one of the
pval computations, since pL is demanded immediately. The trans-
lation also inserts a cancellation of the future if an exception is
raised that would exit the function body. As noted above, we ex-
pect exceptions to be rare, so we adopt a translation that may intro-
duce redundant (but idempotent) cancellations (i.e., canceling all
introduced futures in a universal exception handler), rather than in-
stalling custom exception handlers to minimize the number of fu-
tures canceled.

Although the introduction of future cancellations is relatively
straightforward, care must be taken to properly account for pval
bound variables that are used in other pval computations. Con-
sider the following example:

val r = let
pval x = f 1
pval y = g 2 + x
in
if h 3 then x else y

end
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Figure 8. State machine for parallel conjunction. Completion tran-
sitions are dashed; match transitions are solid.

and its translation:
val rT = (let

val fx = future (fn _ => f 1)
val fy = future (fn _ => g 2 + touch fx)
in
if h 1
then (cancel fy; touch fx)
else ((*cancel fx;*) touch fy)

end)
handle e => (cancel fy; cancel fx; raise e)

Note that touching fx twice, which might happen in certain execu-
tions of this code, is not problematic, since touches after the initial
touch simply return the demanded value immediately.

We cannot include the commented cancel fx, as the result
of fx might be demanded to satisfy the demand for the result of
fy. In the then branch of the computation, fx is simply canceled
as it should be. In the exception handler, fy is of necessity canceled
before fx. Canceling in this order avoids the following problem: if
fx were canceled, then touched in the computation of fy before
fy were canceled, there would be an error.

7.6 Parallel Case
To implement each pcase, we construct a nondeterministic fi-
nite state machine. Recall the parallel conjunction from Section 4.
The machine for the expression is shown in Figure 8. Each nonter-
minal state is labeled by a “completion bitstring” that represents
which discriminant computations have been fully evaluated and
which have not. Each terminal state corresponds to the body of a
branch in the pcase expression. Naturally, the initial state is the
non-terminal labeled 00. There are two kinds of state transitions.
For the first kind, there is a transition for each potential change
to the completion bitstring; i.e., the completed evaluation of addi-
tional discriminants. These “completion transitions” are shown in
Figure 8 as dashed arrows. For the second kind, there is a transi-
tion for each branch in the pcase that can be tested given the dis-
criminants that have been fully evaluated in the source state. These
“match transitions” are shown in Figure 8 as solid arrows, labeled
with the corresponding parallel patterns. When we follow a com-
pletion transition, we first test whether any of the match transitions
can be taken. If so, one is taken (nondeterministically) and the ap-
propriate branch body is evaluated to complete the evaluation of
the pcase. If not, one of the completion transitions must be taken.
Note that in the state labeled 11, it is possible to match either of
the branches false & ? or ? & false; thus, there are match
transitions for these branches. One detail not captured by Figure 8
is that the otherwise branch is only taken from state 11 if no



val f1 = future (fn () => ...)
val f2 = future (fn () => ...)

fun go() = (case (poll(f1), poll(f2))
of (NONE, NONE) => state00()
| (NONE, SOME t) => state01(t)
| (SOME t, NONE) => state10(t)
| (SOME t1, SOME t2) => state11(t1,t2))

and state00() = go()

and state01(t) = (case t
of Val false => (cancel f2; false)
| _ => go())

and state10(t) = (case t
of Val false => (cancel f1; false)
| _ => go())

and state11(t1,t2) = (case (t1,t2)
of (Val false, _) => false
| (_, Val false) => false
| (Val true, Val true) => true
| _ => raise Match)

Figure 9. An implementation of the state machine in Figure 8.

other match transitions are available (i.e., the discriminants do not
match any of the other branches).

The code in Figure 9 implements the state machine shown in
Figure 8. Note the use of poll here induces some repeated tests
and busy-waiting. In a mature implementation, there are various
strategies one could employ to avoid this. For example, the future
interface could be extended with a function

notify : ’a future * (’a trap -> unit) -> unit

that registers a function to be run upon completion of a future
computation. Uses of notify and synchronizations would replace
uses of poll in the expected ways.

8. Related work
Manticore’s support for fine-grained parallelism is influenced
by previous work on nested data-parallel languages, such as
NESL [BCH+94, Ble96, BG96] and Nepal/DPH [CK00, CKLP01,
LCK06]. Like Manticore, these languages have functional sequen-
tial cores and parallel arrays and comprehensions. To this mix,
Manticore adds explicit parallelism, which neither NESL or DPH
supports; neither does NESL or DPH have any analogs to our other
mechanisms—parallel tuples, bindings, and cases. The NESL and
DPH research has been directed largely at the topic of flattening,
an internal compiler transformation which can yield great benefits
in the processing of parallel arrays. Manticore is yet to implement
flattening, although we expect to devote great attention to the topic
as our work moves forward.

The Cilk programming language [BJK+95] is an extension of
C with additional constructs for expressing parallelism. Cilk is an
imperative language, and, as such, its semantics is different from
Manticore’s in some obvious ways. Some procedures in Cilk are
modified with the cilk keyword; those are Cilk procedures. Cilk
procedures call other Cilk procedures with the use of spawn. A
spawned procedure starts running in parallel, and its parent proce-
dure continues execution. In this way, spawned Cilk procedures are
similar to Manticore expressions bound with pval. Cilk also in-
cludes a sophisticated abort mechanism for cancellation of spawned
siblings; we have suggested some encodings of similar parallel pat-
terns in Section 6 above.

Accelerator [TPO06] is an imperative data-parallel language
that allows programmers to utilize GPUs for general-purpose com-
putation. The operations available in Accelerator are similar to
those provided by DPH’s or Manticore’s parallel arrays and com-
prehensions, except destructive update is a central mechanism. In
keeping with the hardware for which it is targeted, Accelerator is
directed towards regular, massively parallel operations on homoge-
neous collections of data, in marked contrast to the example pre-
sented in Section 6 above.

The languages Id [Nik91], pH [NA01], and Sisal [GDF+97]
represent another approach to implicit parallelism in a functional
setting that does not require user annotations. The explicit con-
currency mechanisms in Manticore are taken from CML [Rep99].
While CML was not designed with parallelism in mind (in fact,
its original implementation is inherently not parallel), we believe
that it will provide good support for coarse-grained parallelism. Er-
lang is a similar language that has a mutation-free sequential core
with message passing [AVWW96] that has parallel implementa-
tions [Hed98], but no support for fine-grained parallel computation.

Programming parallel hardware effectively is difficult, but
there have been a some important recent achievements. Google’s
MapReduce programming model [DG04] has been a success in
processing large datasets in parallel. Sawzall, another Google
project, is a system for analysis of large datasets distributed over
disks or machines [PDGQ05]. (It is built on top of the aforemen-
tioned MapReduce system.) Brook for GPUs [BFH+04] is a C-like
language which allows the programmer to use a GPU as a stream
co-processor.

9. Conclusion
We have presented a design for a heterogeneous parallel functional
language. In addition to explicitly-threaded CML-style language
features not discussed in the present paper, we include proven
implicitly-threaded features, such as parallel comprehensions, and
novel ones, namely, parallel bindings and nondeterministic paral-
lel cases. Since val bindings and case discrimination are es-
sential idioms in a functional programmer’s repertoire, providing
implicitly-threaded forms allows parallelism to be expressed in a
familiar style. We have furthermore demonstrated viable imple-
mentation strategies for the implicitly-threaded elements of our lan-
guage.

We have been working on a prototype implementation of the
Manticore language for the past eighteen months. Most parts of
the implementation are working and we have been able to run
examples of moderate size (e.g., a parallel ray tracer translated
from Id). The features described in this paper, however, do not have
optimized implementations yet, which is why we omit performance
measurements.
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