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Abstract
The rise of commodity multicore processors makes parallel com-
puting available to the masses. Traditional parallel languages fo-
cus on large-scale scientific computing and are not well suited to
programming the applications one typically finds on desktop sys-
tems. Such desktop applications are better supported by heteroge-
neous parallel languages that provide a spectrum of parallel con-
structs working at different granularities. In this paper, we focus
on the problem of how to support a heterogeneous collection of
parallel-programming mechanisms in a compiler and runtime sys-
tem. We take a micro-kernel approach in our design: the compiler
and runtime support a small collection of scheduling primitives
upon which complex scheduling policies can be implemented. Our
approach is part of a larger effort to design and implement a parallel
functional programming language, but it is flexible enough to sup-
port a wide range of possible parallel-programming mechanisms.
We give examples of a number of different schedulers, provide a
formal specification of the runtime model, and describe our imple-
mentation.

1. Introduction
The laws of physics and the limitations of instruction-level paral-
lelism are forcing microprocessor architects to develop new multi-
core processor designs. As a result, parallel computing is becom-
ing widely available on commodity hardware. Ideal applications
for this hardware, such as multimedia processing, computer games,
and small-scale simulations, can exhibit parallelism at multiple lev-
els with different granularities, which means that a homogeneous
language design will not take full advantage of the hardware re-
sources. For example, a language that provides data parallelism but
not explicit concurrency will be inconvenient for the development
of the networking and GUI components of a program. On the other
hand, a language that provides concurrency but not data parallelism
will be ill-suited for the components of a program that demand fine-
grain parallelism, such as image processing and particle systems.

Our thesis is that parallel programming languages must provide
mechanisms for multiple levels of parallelism, both because appli-
cations exhibit parallelism at multiple levels and because hardware
requires parallelism at multiple levels to maximize performance.
Indeed, a number of research projects are exploring heterogeneous
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parallelism in language designs that combine support for paral-
lel computation at different levels into a common linguistic and
execution framework. The Glasgow Haskell Compiler (Glasgow
Haskell Compiler Version 6.6) has been extended with support
for three different paradigms for parallel programming: explicit
concurrency, coordinated with transactional memory (Peyton Jones
et al. 1996; Harris et al. 2005), semi-implicit concurrency, based on
annotations (Trinder et al. 1998), and data parallelism (Chakravarty
et al. 2007), inspired by NESL (Blelloch et al. 1994; Blelloch
1996). The Manticore language design (Fluet et al. 2007) incor-
porates both coarse-grain parallelism and fine-grain nested paral-
lelism. Manticore’s coarse-grain parallelism is based on Concur-
rent ML (CML) (Reppy 1991), which provides explicit concur-
rency and synchronous-message passing. Manticore’s fine-grain
nested parallelism is based on previous nested data-parallel lan-
guages, such as NESL (Blelloch et al. 1994; Blelloch 1996; Blel-
loch and Greiner 1996) and Nepal (Chakravarty and Keller 2000;
Chakravarty et al. 2001; Leshchinskiy et al. 2006)), and provides
parallel arrays and parallel-array comprehensions.

While high-level language designs for heterogeneous paral-
lelism are crucial for making parallel programming accessible to
programmers, it is nonetheless only one piece of the story. In this
paper, we focus on a complementary piece: the design and imple-
mentation of a low-level runtime framework, capable of handling
the disparate demands of the various heterogeneous parallelism
mechanisms exposed by a high-level language design and capable
of supporting a diverse mix of scheduling policies. It is our belief
that this runtime framework will provide a foundation for rapidly
experimenting with both existing parallelism mechanisms and ad-
ditional mechanisms not yet incorporated into high-level language
designs for heterogeneous parallelism.

Our runtime framework consists of a composition of runtime-
system and compiler features. It supports a small core of primi-
tive scheduling mechanisms, such as virtual processors, preemp-
tion, and computation migration. Our design favors minimal, light-
weight representations for computational tasks, borrowing from
past work on continuations. On top of this substrate, a language im-
plementor can build a wide range of parallelism mechanisms with
complex scheduling policies. For example, workcrews (Vandevo-
orde and Roberts 1988), work stealing (Blumofe and Leiserson
1999), and lazy task creation (Mohr et al. 1990) are abstractions
providing different scheduling policies for the execution of paral-
lel tasks. By following a few simple rules, these schedulers can be
implemented in a modular and nestable way.

The remainder of the paper is organized as follows. In Sec-
tion 2, we expand on the argument for nested schedulers. The pa-
per presents three main technical contributions. The first of these,
in Section 3, is the design of our scheduler framework. We demon-
strate the expressiveness of our design with a series of non-trivial
examples in Section 4. The second main contribution is a formal
model of the scheduler framework, which is given in Section 5.



This model presents a unified, precise, and clean target architecture
to the programmer untethered from any real-world processor archi-
tecture. This relieves programmers from optimizing towards exotic
and ephemeral multiprocessor designs. The third main contribution
is the implementation of our framework, which is described in Sec-
tion 6. We then review related work and conclude.

2. Nested schedulers
A runtime model should minimally support thread migration and
load balancing, but to be a uniform substrate, it should also support
policies that provide the parallelism corresponding to coarse-grain
explicit concurrency and fine-grain data-parallel computations. Fi-
nally, a runtime model should support more complex schedul-
ing policies. For example, workcrews (Vandevoorde and Roberts
1988), work stealing (Blumofe and Leiserson 1999), and lazy task
creation (Mohr et al. 1990) are abstractions providing different
scheduling policies for the execution of parallel tasks.

We note that these various scheduling policies often need to co-
operate in an application to satisfy its high-level semantics (e.g.,
real-time deadlines in multimedia applications). Furthermore, to
best utilize the underlying hardware, these various scheduling poli-
cies should be implemented in a distributed manner, whereby a con-
ceptually global scheduler is executed as multiple concrete sched-
ulers on multiple processing units. Programming and composing
such policies can be difficult or even impossible under a rigid
scheduling regime. A rich notion of scheduler, however, permits
both the nesting of schedulers and different schedulers in the same
program, thus improving modularity, and protecting the policies of
nested schedulers. Such nesting is precisely what is required to ef-
ficiently support heterogeneous parallelism.

In this paper, we propose a runtime model that can imple-
ment general scheduling (including migration and load balancing),
but with significant improvements over previous approaches. Our
framework favors a minimal collection of compiler and runtime-
system mechanisms to support nested scheduling. This scheduling
framework is not tied to any particular high-level language design
and we demonstrate that a wide variety of parallelism mechanisms
may be expressed in our model.

3. The scheduling framework
The main contribution of this paper is the design of a framework for
the modular implementation of nested schedulers that support a va-
riety of scheduling policies.1 Our approach is similar in philosophy
to the microkernel architecture for operating systems; we provide a
minimum collection of compiler and runtime-system mechanisms
to support nested scheduling and then build the scheduling code on
top of that framework. In this section, we describe the abstractions
provided by the runtime system, the compiler’s intermediate repre-
sentation, which serves as the scheduler API, and give an informal
description of the scheduler operations with some simple examples.

3.1 Process abstractions
Our runtime model has three distinct notions of process abstraction.
At the lowest level, a fiber is an unadorned thread of control. We
use continuations to represent the state of suspended fibers.

Surface-language threads are represented as fibers. Depending
on the language semantics, threads may have identity and/or thread-
local state. We do not model these features in this paper, but they
are easy to accommodate by pairing a fiber with its ID/state. Since
threads may initiate implicit-parallel computations, a thread may
consist of multiple fibers.

1 Regehr coined the term “general, heterogeneous schedulers” for similar
scheduler hierarchies (Regehr 2001).

e ::= letX = Y in e
| X
| letX = P (Y1, . . . , Yn) in e
| if X then e1 else e2

| funF (X1, . . . , Xn) = e1 in e2

| letX = F (Y1, . . . , Yn) in e
| F (X1, . . . , Xn)
| letcontK(X1, . . . , Xn) = e1 in e2

| throw K(X1, . . . , Xn)
| run (K1, K2)
| forward (X)

P = P c ∪ P s ∪ P v ∪ P m

P c = {(), true, false, int(n),none, some,
stop,preempt, . . .}

P s = {add, sub,alloc, seli, · · · }
P v = {enq,deq,host,mask,unmask, . . .}
P m = {enqvp,newgid,provision, release,

ref ,deref , cas, . . .}

Figure 1. A direct-style intermediate representation

Lastly, a virtual processor (vproc) is an abstraction of a hard-
ware processor resource. A vproc runs at most one fiber at a time,
and furthermore is the only means of running fibers. The vproc that
is currently running a fiber is called the host vproc of the fiber. Each
vproc has state that consists of a stack of signal actions, a queue of
threads, and a signal mask bit. We discuss these in the sequel.

3.2 The compiler IR
Schedulers in our system are implemented in terms of the com-
piler’s IR, which is a direct-style (ANF) λ-calculus (Flanagan et al.
1993) extended with a collection of scheduler operations. The col-
lected syntax of this language is given in Figure 1. We use upper-
case letters (F , K, X , and Y ) for variables, with the convention
that F is used for variables bound to functions and K denotes vari-
ables bound to continuations. This language serves as the interme-
diate representation (IR) of our compiler and is used to express
both language-level concurrency mechanisms, e.g., thread spawn-
ing, message passing, or STM, and run-time system scheduler code.
For the purposes of this presentation, we extend the syntax of the
IR to include sequencing, datatypes, and pattern matching.

The language is largely self-explanatory (formal semantics are
given in Section 5), but it has a few constructs that are special to
our application. The run and forward constructs are control-
flow operations to support scheduling and are described below.
The expression letcontK(X1, . . . , Xn) = e1 in e2 binds K
to a continuation that is the current continuation prepended with
λ(X1, . . . , Xn).e1. The scope of K includes both e1 and e2 (i.e.,
continuations may be recursive) and it is a first-class value that
may live beyond the evaluation of e2. For example, the “call-with-
current-continuation” function can be implemented as

fun callcc(F ) = letcontK(X) = X inF (K) in · · ·
Continuations are invoked by the throw form.

We distinguish among four kinds of primitive operations: prim-
itive constants (P c), sequential primitives (P s), vproc primitives
(P v), and multiproc primitives (P m). Primitive constants corre-
spond to both enumerated and raw types (e.g., unit, booleans, in-
tegers) as well as tags in the representation of datatypes (e.g.,
preempt is the tag for a variant of the signal datatype). Sequen-
tial primitives correspond to primitives that are to be evaluated by
the sequential state transition in Section 5. Similarly, vproc primi-
tives and multiproc primitives correspond to primitives that are to
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Figure 2. The effect of preemption on a vproc
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be evaluated by the vproc and multiproc state transitions, respec-
tively. We give informal semantics to these primitives as we en-
counter them in examples.

3.3 The scheduler-action stack
The heart of our mechanism are scheduler actions. A scheduler ac-
tion is a continuation that takes a signal and performs the appro-
priate scheduling activity in response to that signal. At a minimum,
we need two signals: stop that signals the termination of the cur-
rent fiber and preempt that is used to asynchronously preempt
the current fiber. When the runtime system preempts a fiber it rei-
fies the fiber’s state as a continuation that is carried by the preempt
signal.

Each vproc has its own stack of scheduler actions. The top of a
vproc’s stack is called the current scheduler action. When a vproc
receives a signal, it handles it by popping the current action from
the stack, setting the signal mask, and throwing the signal to the
current action. The operation is illustrated in Figure 2; here we use
dark grey in the mask box to denote when signals are masked.

There are two expression forms in the IR that scheduling code
can use to affect a vproc’s scheduler stack directly. The expression
run (K1, K2) pushes K1 onto the host vproc’s action stack, clears
the vproc’s signal mask, and throws to the continuation K2 (see
Figure 3). The run operation requires that signals be masked, since
it manipulates the vproc’s action stack. The other form is the ex-
pression forward (X), which sets the signal mask and forwards
the signal X to the current action (see Figure 4). The forward op-
eration is used both in scheduling code to propagate signals up the
stack of actions and in user code to signal termination, which means
that may, or may not, be masked when it is executed. For example,

a thread exit function can be defined as

fun exit() = forward (stop) in · · ·
Another example is the implementation of a yield operation that
causes the current fiber to yield control of the processor:

fun yield() =
letcontK() = () in
forward (preempt (K))

in · · ·

3.4 Scheduling queues
In addition to the scheduler stack, each vproc has a queue of
ready fibers that is used for scheduling. The enq operation takes
a suspended fiber and adds it to the scheduler queue, while the deq
operation removes the next fiber from the queue. If the queue is
empty, then the deq operation causes the vproc to go idle until
there is work for it.

3.5 Implementing language-level threads
Given that our framework includes first-class continuations, it is
easy to implement language-level thread mechanisms (Wand 1980;
Ramsey 1990; Reppy 1999). We start with a function for turning a
function into a fiber (i.e., continuation).

funfiber(F ) =
letcontK(X) = let () = F (X) in exit() inK

in · · ·
This function can be used to implement a spawn primitive.

fun spawn(F ) = enq(fiber(F )) in · · ·
Synchronization and communication mechanisms are supported
via atomic operations, such as compare-and-swap (cas), and a
concurrent-queue abstraction (Michael and Scott 1996) supported
by the compiler and runtime.

For language-level threads we use a simple round-robin sched-
uler built on top of the per-vproc scheduling queues. This scheduler
is installed at the bottom of each action stack and is called the de-
fault scheduler.

letcont switch(sig) = case sig
of stop ⇒ run (switch, deq())
| preempt(K) ⇒

let () = enq(K) in
run (switch, deq())

end
in · · ·

On a stop signal, it runs the next fiber in the queue and on a
preempt signal, it enqueues the preempted fiber and then runs
the next fiber.

3.6 Provisioning parallel computations
The last part of our framework are the operations used to map a
parallel computation across multiple vprocs. The enqvp(VP , K)
operation enqueues the fiber represented by the continuation K on
the vproc named by VP . Using this operation we can implement
an explicit migration function that moves the calling computation
to a specific vproc.

funmigrate(VP) =
letcontK() = () in
let () = enqvp(VP , K) in
exit()

in · · ·
We also provide a mechanism for assigning vprocs to compu-

tations. The basic parallel computation is a group of fibers running



on separate vprocs; the scheduling framework provides the mech-
anism of group IDs to distinguish between different parallel com-
putations. When initiating a parallel computation, the newgid op-
eration is used to create a unique group ID for the computation.
This ID is passed to the provision operation to request additional
vprocs. This operation either returns a vproc that is not already
assigned to the computation or else the constant none to signal
that no additional processing resources are available for the group.
When a computation is finished with a vproc, it uses the release
operation to signal to the runtime that it is done with the vproc.

3.7 Load balancing
Load balancing is important for maximizing the performance of
parallel applications. In our framework, there are three ways that
load balancing is achieved:

1. The runtime system tracks the distribution of parallel computa-
tions across vprocs. When provisioning vprocs for a new com-
putation, we attempt to keep the load even.

2. The implementation of language-level parallel constructs is re-
sponsible for balancing the load of a given parallel computation
across the vprocs that it is assigned.

3. The runtime system can periodically migrate threads from one
vproc to another.

4. Schedulers for parallel computation
The main goal of our work is to support a wide range of paral-
lel programming models and language mechanisms in a unified
framework. In this section, we describe schedulers for a number
of parallel programming models from the literature. These sched-
ulers demonstrate the flexibility of our approach. Furthermore, they
are modular and could easily coexist in the same application.

In the previous section, we described a simple, round-robin,
scheduler for language-level threads. Schedulers for parallel com-
putations are more complicated, since they must coordinate the ac-
tivities of parallel fibers running on multiple vprocs, and they often
require auxiliary data structures. For this reason, we switch nota-
tion in this section to use SML extended with continuations and the
run and forward primitives. For signals, we used the following
datatype

datatype signal = STOP | PREEMPT of fiber

and we use SML functions to define scheduler actions. Translation
of this notation into the IR of Figure 1 is largely a matter of apply-
ing the ANF normalization algorithm of Flanagan et al. (1993).

One important characteristic of these schedulers is that they are
distributed — their implementation consists of scheduler actions
installed on multiple vprocs. At any given time, only a fraction of
the the vprocs may be executing code specific to any given sched-
uler. Thus, the interaction between scheduler actions is inherently
asynchronous.

4.1 Scheduler utility functions
There are a number of operations that are common to many sched-
ulers. These include

val provisionN : int -> vproc list

which requests a list of vprocs from the runtime system (note that
the result does not include the host vproc). We also use a function
for passing preemptions up the action stack:

fun atomicYield () = (yield(); mask())

Notice that this function will remask signals when it resumes. The
schedFiber function creates a fiber that will run the function f
with a given signal action.

fun workcrew {nJobs, nWorkers, job} =
callcc (fn doneK => let
val gid = newgid()
val nStarted = ref 1
val nDone = ref 0
val vprocs = provisionN (gid, nWorkers-1)
val n = length vprocs
fun switch STOP = let

val nextJob = fetchAndAdd(nStarted,1)
in
if (nextJob < nJobs)
then run (switch,
fiber (fn () => job nextJob))

else if (fetchAndAdd(nDone,1) = n)
then (release (gid, host());
throw doneK())

else finish gid
end

| switch (PREEMPT k) = (
atomicYield();
run(switch, k))

in
List.app

(fn vp => dispatchOn (vp, switch))
vprocs;

run (switch,
fiber (fn () => job 0))

end)

Figure 5. Workcrews for data-parallel computations

fun schedFiber (switch, f) =
fiber (fn () => run (switch, fiber f))

It is used to run a scheduler action on a remote vproc in the
dispatchOn function, which takes a vproc and scheduler action,
and dispatches the action on the vproc.
fun dispatchOn (vproc, switch) =

enqVP (vproc, schedFiber (switch, exit))

By using the exit function as the function to run, we cause the
STOP signal to be sent to the switch action on the remote vproc.
The finish function is used to release a vproc and terminate the
computation.

fun finish gid = (release(gid, host()); exit())

We also need concurrent queues to schedule work between vprocs.
These queues have the following interface:

type ’a queue
val emptyQ : unit -> ’a queue
val addQ : (’a queue * ’a) -> unit
val remQ : ’a queue -> ’a option

4.2 Scheduling data-parallel fibers
Data-parallel computations require multiple fibers running on
multiple vprocs. There are a number of different ways to orga-
nize this computation, but this example uses the workcrew ap-
proach (Vandevoorde and Roberts 1988) (also called gang schedul-
ing (Chakravarty et al. 2007)). A workcrew consists of some num-
ber of workers, each running on a separate processor, and a global
pool of work. Workers iterate getting a job from the work pool and
executing it. The function in Figure 5 creates a workcrew of up to
nWorkers to compute a job that has been partitioned into nJobs
pieces. The job parameter is a function that takes an integer argu-
ment i and computes the ith job.

The implementation begins by provisioning a group of proces-
sors. It then installs the its scheduler (switch) on each of the
vprocs. Once initialized on a vproc, switch begins running jobs
from the work pool. The STOP signal indicates the completion of a



fun wsSwitch i = let
fun newWork () = (

case remQ (Vec.sub(qs, i))
of NONE =>

run (wsSwitch i, pickVictim qs)
| SOME k => run (wsSwitch i, k))

in
fn STOP => newWork ()
| PREEMPT k => (

addQ(Vec.sub(qs, i), k); atomicYield();
newWork())

end

Figure 6. The work-stealing scheduler-action function

job. If another job is available, the scheduler creates a fiber for the
job, and runs it. Otherwise, it releases the host vproc. The last vproc
to finish will return control to doneK. Otherwise, there are still
other running jobs, so the scheduler calls finish, which releases
its host vproc and exits. When the scheduler receives a PREEMPT
signal, it yields control to the current scheduler, which effectively
lets us inherit the preemption policy of the parent scheduler. This
practice of immediately yielding the vproc allows the parent sched-
uler to decide whether to resume this scheduler or to perform other
computations before resuming this scheduler.

4.3 Work stealing
Language-level threads created by the spawn function are not ini-
tially run in parallel. In some cases, this choice has advantages such
as reduced communication overhead and improved cache locality.
But for optimal performance on multiprocessors, the runtime sys-
tem must balance the load continually amongst all physical proces-
sors. A common technique for load balancing is work stealing (Bur-
ton and Sleep 1981; Halstead Jr. 1984; Mohr et al. 1990; Carlisle
et al. 1995; Blumofe and Leiserson 1999), in which an idle proces-
sor (the thief) steals work from another processor (the victim). To
illustrate how our framework can support work stealing, we define
the implementation of a function wsSpawn that spawns a thread,
which may be stolen.

As with workcrews, we start by provisioning a number of vprocs
and installing the work-stealing scheduler actions on them. We
also create a global vector of thread queues with one entry per
vproc. The heart of the implementation is the scheduler-action
function wsSwitch, which is given in Figure 6. This function
takes the index of its host vproc and returns the actual scheduler
action. The scheduler action handles the STOP signal by looking
for new work. More interestingly, when the scheduler handles the
PREEMPT signal, it places the preempted computation back on its
queue and then yields control to its parent scheduler. If the parent
schedules other computations before resuming the work-stealing
scheduler, other schedulers in the work-stealing group that need
work can steal the preempted computation. When the work-stealing
scheduler action is resumed from the atomicYield, it looks for
new work.

The scheduler looks for new work by first trying to obtain a
fiber from its own ready queue. If its queue is empty, it then picks
a victim from which to steal a computation. The process of picking
a victim and picking an appropriate fiber to steal requires careful
design (Blumofe and Leiserson 1999) and is beyond the scope
of this paper. Spawning a unit of work on this scheduler simply
equeues a fiber representing the desired computation on one of the
queues (for simplicity, we use the first queue).

fun wsSpawn f = addQ(Vec.sub(qs, 0), fiber f)

fun treeSum LEAF = 0
| treeSum (NODE(trl, i, trr)) =

callcc (fn retK => let
val done = ref false
val result = iVar ()
fun fCtx () = if TAS(done)

then exit()
else let
val s2 = treeSum trr + i
val s1 = get result
in
throw retK(s1+s2)

end
in

wsSpawn fCtx;
put (result, treeSum trl);
fCtx ()

end)

Figure 7. Lazy task creation for the treeSum function

4.4 Futures with Lazy Task Creation
Lazy task creation (Mohr et al. 1990) is a technique for implement-
ing parallel futures that attempts to manage process granularity ef-
ficiently. Rather than launching a thread for each future, it provi-
sionally inlines the bodies of futures, but allows idle processors
to steal their return continuations. For example, consider the clas-
sic treeSum example, where the recursive sum of the left tree is
marked as a future:

fun treeSum LEAF = 0
| treeSum (NODE (trl, i, trr)) =
future (treeSum trl) + (treeSum trr + i)

Under lazy task creation, the left-recursive call will be evaluated
immediately and the return continuation

λ x.(x + (treeSum trr + i))

is enqueued on a work queue and may be stolen by another proces-
sor. Such a mechanism requires compiler support to translate fu-
tures into the appropriate lower-level operations, but our scheduling
framework is an adequate target for such a translation. We demon-
strate this fact by describing an implementation of treeSum. For
synchronizing on futures, we use IVars, a write-once, synchronous
memory cell (Arvind et al. 1989). The iVar operation creates a
new IVar; the get operation returns the value of the cell, blocking
if the cell is empty; and the put operation stores a value into an
empty cell, which resumes any fibers blocked on the IVar.

Figure 7 gives our version of treeSum. To make the context
amenable to either parallel execution or inlining, we reify it as the
fCtx function. Since this function will be called by both a work-
stealing fiber and the original fiber, we use a boolean flag done
to ensure that it is only executed once (TAS is the atomic test-
and-set operation). To complete the computation, we perform three
steps: we launch a thread for the outer context on the work-stealing
scheduler; we evaluate the body of the future, writing it into the
IVar; and finally we try to run the outer context.

4.5 Speculative parallelism
To make the most out of parallel hardware, one must keep it busy.
One technique for doing so is to speculatively execute computa-
tions whose results may not be necessary for the final result. For
example, search algorithms often sequentially try various different
paths though the search space; speculatively trying paths in parallel
can often speed up the search. Our framework can support specula-
tive parallelism with only a minor extension.

Supporting speculative computation requires a mechanism to
asynchronously signal fibers when they become unnecessary and a



fun pOr (f1, f2) = callcc (fn retK => let
val gid = newgid ()
val vp1 = host()
in

case provision gid
of NONE => (* sequential evaluation *)
| SOME vp2 =>

pOr’(gid, host(), f1, vp2, f2, retK)
end)

Figure 8. Parallel or.

mechanism to handle such signals when they are delivered. Sched-
uler actions fulfill the latter requirement, as they handle asyn-
chronous preemption signals. But to fulfill the former requirement,
we need a mechanism that can deliver an asynchronous signal to
another vproc. We introduce the signal operator to trigger a pre-
emption on a vproc.

val signal : vproc -> unit

There are a number of different ways to support speculative par-
allelism at the language level. One such mechanism is the parallel
or combinator defined by Osborne (1990). This combinator has the
following type:

val pOr : ((unit -> ’a option) *
(unit -> ’a option)) -> ’a option

Osbourne gives five requirements for evaluating the expression
pOr(f1, f2):

1. create a thread to evaluate each fi in parallel;

2. return the first SOME(v) value;

3. return NONE if both fi evaluate to NONE;

4. abort useless computations after the first SOME(v) value is
returned;

5. schedule the allocation of the resources to the computations
and their descendants to minimize the expected time to return a
result.

The implementation in Figures 8 and 9 meets these requirements,
although in the interest of space, we don’t strictly enforce the last
requirement. To meet the fourth requirement, the implementation
uses the asynchronous signaling mechanisms introduced earlier.

The pOr function creates a new group and attempts to acquire
a second vproc. If it succeeds, it calls the pOr’ function that man-
ages the speculative computation; otherwise, the computation is ex-
ecuted sequentially (not shown). The first part of the pOr’ function
(up to and including the switch function) manages signal han-
dling. When a preemption comes in, the termFlg is checked both
before and after the call to atomicYield. Checking for termina-
tion before yielding allows the scheduler to immediately terminate
the computation, while checking for termination after yielding al-
lows the scheduler to compose nicely with other scheduler actions.
The remainder of the pOr’ code deals with merging the results of
the subcomputations. First it allocates a parallel-or cell that tracks
the state of the computation. It has two operations: markEmpty,
which records that a NONE has been computed and finishes the call-
ing thread, and markFull, which records that a value has been
computed and terminates the second fiber to call it. These functions
are implemented using atomic compare-and-swap operations on a
reference cell that records the current state of the computation. If a
fiber computes a SOME(v) value, it kills its sibling using kill.
Finally, if the speculative fiber proceeds past the marking phase, it
resumes the outer continuation retK.

fun pOr’ (gid, vp1, f1, vp2, f2, retK) = let
val termFlg = ref false
fun kill vp = (termFlg := true; signal vp)
fun switch STOP = exit()
| switch (PREEMPT k) = (

if termFlg then finish gid else ();
atomicYield ();
if termFlg then finish gid else ())

val {markFull, markEmpty} = pOrCell gid
fun wrapper (vp, f) =

schedFiber (switch, fn () => (
case f()
of SOME v => (

markFull(); kill vp;
throw retK(SOME v))

| NONE => (
markEmpty();
throw retK(NONE))))

in
enqVP (vp1, wrapper (vp2, f1));
enqVP (vp2, wrapper (vp1, f2));
exit()

end

Figure 9. Parallel-or internals

4.6 Scheduler invariants
Our scheduler framework does not provide any explicit mecha-
nisms for guaranteeing liveness or fairness. It is quite easy to write
selfish schedulers that monopolize a vproc, but since schedulers
are part of the surface-language implementation, such schedulers
are considered a bug in the implementation. We do, however, have
guidelines for implementing schedulers that allow nested sched-
ulers to share vprocs in a way that is acceptable to all active sched-
ulers.

In order that schedulers be nestable, they must coordinate both
upwards with their parent scheduler and downwards with their
children. (Note that a scheduler need not coordinate across with its
sibling schedulers, as any interaction between sibling schedulers is
mediated by the current scheduler.)

A scheduler coordinates upwards by forwarding preemption
signals to its parent scheduler in a timely fashion. Schedulers co-
ordinate downwards by eventually running every preempted fiber.
These two means of coordination work in concert to ensure that
every scheduler (and every scheduled user computation) makes
progress. In practice, when coordinating upwards, a scheduler does
not forward the same preemption signal to the current scheduler;
rather, it forwards a new preemption signal with a new fiber that
appropriately resumes the scheduler. Similarly, when coordinating
downwards, a scheduler does not immediately run the last pre-
empted fiber; rather, it uses some protocol to select among pre-
empted fibers, eventually running every preempted fiber. When one
scheduler fails to coordinate with another (either the current sched-
uler or one of its children), we say that it starves that scheduler.
Schedulers that properly coordinate upwards and downwards are
composable.

Our definition of upwards coordination gives a guideline for im-
plementing modular and composable schedulers, but there is a more
general problem of composing scheduler policies. In his doctoral
work, Regehr developed the HLS framework for implementing
nested schedulers (Regehr 2001). This framework provides a sys-
tem of uniprocessor guarantees that specify the needs of a schedul-
ing policy. These guarantees cover a wide range of scheduling re-
quirements, including time-sharing variants, real time, and fixed
priority assignments. To allow different schedulers with different
guarantee requirements to share processors, HLS provides a run-



time mechanism for negotiating guarantees. When a scheduler en-
ters a hierarchy, it requests a guarantee from the current scheduler.
This guarantee, which might be stronger than the one requested,
then gets parceled out to subsequent child schedulers. Support-
ing the HLS guarantee infrastructure in our runtime model entails
encoding its syntax and conversion functions and requires mech-
anisms for negotiating guarantees at run time. We have sketched
an implementation of the guarantee mechanism in our runtime
model in which the only additional infrastructure is a new signal
for requests (Rainey 2007). To request a guarantee from the cur-
rent scheduler, we simply forward the vproc a request signal that
contains our reply continuation.

There are also other guidelines that well-behaved schedulers
should follow. For example, schedulers should acquire and release
provisioned vprocs in a timely fashion. This ensures that the set of
provisioned vprocs approximates the computational load of the ap-
plication, a useful heuristic for provisioning strategies. Similarly,
schedulers should prefer local or decentralized state and avoid ex-
pensive synchronization with global shared state. These guideline
help promote an application’s overall performance, while upwards
and downwards coordination promote an application’s progress.

5. A formal semantics of the runtime model
In this section, we specify the behavior of our runtime model in
terms of an abstract machine and an operational semantics. This
formalism serves two primary purposes. First, it plays the rôle of an
API for the development of new schedulers. Second, it describes the
requisite behavior that must be implemented when porting the run-
time model to actual hardware. Furthermore, it demonstrates that an
implementation must provide native support for a very small num-
ber of scheduling operations; as demonstrated in Section 4, a wide
variety of schedulers may be programmed using these scheduling
operations.

We formalize the abstract machine and operational semantics of
the runtime model in terms of a continuation-passing style language
(given below). Although the language we present is small, it is
meant to be representative of an expressive sequential language that
corresponds to the computational power of a single thread.2 The
evaluation of a sequential program is given by a simple sequential
machine and a corresponding state transition:

〈e, E〉 ↪→ 〈e′, E′〉
To support the scheduling infrastructure described in Section 3, we
lift the sequential machine to a vproc machine. The vproc machine
includes the state necessary for the management of a single virtual
processor (i.e., a stack of scheduler actions, a set of ready fibers,
etc.) and evaluates according to a simple state transition:

VP 7−→ VP′

Finally, a collection of vproc machines are lifted to a multiproc
machine. The multiproc machine adds global state that is shared by
all vproc machines (e.g., mutable store) and evaluates according to
a simple state transition:

M =⇒ M′

As noted above, we formalize the operational semantics of the
runtime model in terms of a continuation-passing style language,

2 Indeed, such a “sequential” language might even include SIMD paral-
lelism for a single thread to operate on aggregate data.

with the following syntax:

e ::= letX = Y in e
| letX = P (Y1, . . . , Yn) in e
| if X then e1 else e2

| funF (X1, . . . , Xn) = e1 in e2

| F (X1, . . . , Xn)
| run (X, F )
| forward (X)

The CPS transformation from the direct-style language of Sec-
tion 3 is given in Figure 10.

Definitions for the sequential machine, vproc machine, and mul-
tiproc machine are given in Figure 11. The sequential machine is
similar to the CcpsE machine of Flanagan et al. (1993). A sequen-
tial machine state has two components: an active CPS language ex-
pression e and an environment E that includes bindings for all the
free variables in e. The environment maps CPS language variables
to machine values, which include primitive constants, (recursive)
closures, tuples (of machine values). Additional machine values
(vproc identifiers, group identifiers, and store locations) are treated
opaquely by the sequential machine and are manipulated by the
vproc and multiproc machines.

A vproc machine state VP includes a vproc identifier p and a
sequential machine state e and E (for the evaluation of both user
computations and scheduler actions), and adds a queue of ready
fibers Q, a stack of scheduler actions S, and a signal mask m. The
queue of ready fibers maintains a set of continuation closures that
are ready to be executed on the vproc. While the queue of ready
fibers of one vproc is accessible to other vprocs in the multiproc
machine, we expect that a vproc may enqueue and dequeue from its
own queue with a minimum of synchronization. The stack of sched-
uler actions supports the nesting of schedulers. Finally, the signal
mask records whether signals are masked (M), in which case pre-
emption and asynchronous signals are disabled, or unmasked (U),
in which case preemption and asynchronous signals are enabled.

A multiproc machine state M includes a set of vprocs VPS, a
global provisioning map Φ, and a global store Σ. We require that
each vproc in a multiproc machine state has a unique vproc iden-
tifier. The provisioning map is used to allocate vprocs to computa-
tions. A unique group identifier g is generated for each provision-
ing task; the provisioning map records which vprocs have not been
allocated to the group. We discuss the provisioning map in more
detail below. Finally, the store models shared mutable state in the
multiproc machine.

Figure 11 also shows the initial multiproc machine state for a
program e. If the target multiproc machine has n vprocs, then one
vproc begins executing the program e, while the remaining vprocs
begin executing an initialization expression einit. Note that each
vproc is started with an empty queue of ready fibers, an empty stack
of scheduler actions, and signals masked. The initialization expres-
sion is used to install a default scheduler on each vproc and unmask
signals; such a scheduler will wait for work to be installed on the
vproc’s queue. We expect that a similar initialization expression is
also incorporated into the program e. The initial provision map and
store are empty.

In the sequel, we make use of the following notational conven-
tions. E[X 7→ v] denotes the update of the environment E with
a binding for X; if X is already bound in E, then the update re-
places the previous binding. Similarly, Φ[g 7→ {q1, . . . , qn}] and
Σ[l 7→ v] denote the update of a provision map and store, respec-
tively. Finally, we write VPS ] VP for VPS ] {VP}.

Figure 12 gives the state-transition function 〈e, E〉 ↪→ 〈e′, E′〉
for the sequential machine, which is entirely standard. Note that
all primitive constants and sequential primitives are evaluated
by the sequential machine state transition. The evaluation of a



C[[letX = Y in e]]k = letX = Y in C[[e]]k

C[[X]]k = k(X)

C[[letX = P (Y1, . . . , Yn) in e]]k = letX = P (Y1, . . . , Yn) in C[[e]]k

C[[if X then e1 else e2]]k = if X then C[[e1]]k else C[[e2]]k

C[[funF (X1, . . . , Xn) = e1 in e2]]k = funF (K, X1, . . . , Xn) = C[[e1]]K in C[[e2]]k where K is fresh
C[[letX = F (Y1, . . . , Yn) in e]]k = funK(X) = C[[e]]k inF (K, Y1, . . . , Yn) where K is fresh

C[[F (X1, . . . , Xn)]]k = F (k, X1, . . . , Xn)

C[[letcontK(X1, . . . , Xn) = e1 in e2]]k = funK(X1, . . . , Xn) = C[[e1]]k in C[[e2]]k

C[[throw K(X1, . . . , Xn)]]k = K(X1, . . . , Xn)

C[[run (X, K)]]k = run (X, K)

C[[forward (X)]]k = forward (X)

Figure 10. The CPS translation

〈e, E〉 ∈ SeqMach = CPS × Env (sequential machine state)
e ∈ CPS ::= . . . (CPS language expression)

X, F, K ∈ Var (CPS language variable)
E ∈ Env = Var fin→ Value (environment)
v ∈ Value ::= Pc | clos | tupl | pid | gid | loc (machine value)

clos, f, k ∈ Closure ::= [clos F (X1, . . . , Xn) = e, E] (allocated closure)
tupl , t ∈ Tuple ::= [v1, . . . , vn] (allocated tuple)

VP ∈ VirtualProc = VProcId × CPS × Env × ReadyFibers × SchedStack × SigMask (vproc machine state)
pid , p, q ∈ VProcId (vproc identifier)

Q ∈ ReadyFibers = P(Closure) (set of ready fibers)
S ∈ SchedActs ::= [] | f :: S (stack of scheduler actions)

m ∈ SigMask ::= M | U (signal mask)

M ∈ MultiProc = VProcSet × ProvisionMap × Store (multiproc machine state)
VPS ∈ VProcSet = P(VirtualProc) (set of virtual processors)

Φ ∈ ProvisionMap = GroupId fin→ P(VProcId) (global provisioning map)
gid , g ∈ GroupId (group identifier)

Σ ∈ Store = Loc fin→ Value (global store)
loc, l ∈ Loc (store location)

Initial multiproc machine state for a program e with n vprocs and initialization expression einit:

〈 〈p1, e, ∅, [], ∅, M〉, 〈p2, einit, ∅, ∅, [], M〉, . . . , 〈pn, einit, ∅, ∅, [], M〉 ; ∅ ; ∅ 〉

Figure 11. The abstract machine definitions

function declaration binds the function variable F to a closure,
which captures the current environment. Functions are recur-
sive, as can be seen by the behavior of the auxiliary function
apply(clos, v1, . . . , vn):

apply([clos F (X1, . . . , Xn) = e, E], v1, . . . , vn) =fi
e, E

»
X1 7→ v1, · · · , Xn 7→ vn,
F 7→ [clos F (X1, . . . , Xn) = e, E]

–fl
Note that the formal arguments are bound to actual arguments and
the function variable F is bound to its own closure.

More interesting is the state-transition function VP 7−→ VP′

for the vproc machine, which is given in Figure 13. A vproc’s pri-
mary purpose is to host a sequential machine; the first transition
rule evaluates a sequential machine state transition. Note that a se-
quential machine state transition may be taken under an arbitrary
signal mask; this corresponds to the fact that the sequential ma-
chine evaluates both user computations (when m equals U) and
scheduler actions (when m equals M).

The next five transitions evaluate the five vproc primitives in
the expected manner. The enq adds a continuation closure to
the queue of ready fibers. The deq primitive returns an arbitrary
element of the queue of ready fibers; hence, the formal semantics
places no restrictions on the order of queue elements. Note that the
deq primitive may only transition when the set of ready fibers is
non-empty. In our implementation, attempting to dequeue from an
empty set of ready fibers places the vproc in an idle state, which
may affect its priority to be selected for provisioning; however,
this level of detail is immaterial for the formal semantics. The
host primitive simply returns the vproc identifier of the vproc to
the underlying sequential computation. The mask and unmask
primitives explicitly set the signal mask.

The vproc machine is responsible for evaluating the run and
forward scheduling operations. The run (F, K) operation in-
stalls a new scheduling action on the scheduler stack and begins
evaluating a computation. Note that the run operation requires
masked signals and transitions to a state with unmasked signals.



〈letX = Y in e, E〉 ↪→ 〈e, E[X 7→ E(Y )]〉
〈letX = Pc() in e, E〉 ↪→ 〈e, E[X 7→ Pc]〉

〈letX = Ps(Y1, . . . , Yn) in e, E〉 ↪→ 〈e, E[X 7→ δs(Ps, E(Y1), . . . , E(Yn))]〉

where δs(eq, P c
1 , P c

2 ) =


true if P c

1 = P c
2

false otherwise
δs(add, int(n), int(m)) = int(n + m)
δs(sub, int(n), int(m)) = int(n + m)

δs(alloc, v1, . . . , vn) = [v1, . . . , vn]
δs(seli, [v1, . . . , vn]) = vi

· · ·

〈if X then e1 else e2, E〉 ↪→


〈e1, E〉 if E(X) = true
〈e2, E〉 otherwise

〈funF (X1, . . . , Xn) = e1 in e2, E〉 ↪→ 〈e2, E[F 7→ [clos F (X1, . . . , Xn) = e1, E]]〉
〈F (X1, . . . , Xn), E〉 ↪→ 〈e′, E′〉 where apply(E(F ), E(X1), . . . , E(Xn)) = 〈e′, E′〉

Figure 12. Sequential state transitions

This corresponds to the fact that run is used both to install nested
scheduling actions and to initiate the evaluation of user computa-
tions.

The forward operation is the complement of the run opera-
tion. The forward (X) operation forwards the signal X to the
current scheduler action f . Note that the forward operation may
only transition when the stack of scheduler actions is non-empty;
in practice, the initialization expression einit is responsible for in-
stalling a default scheduler that always re-installs itself on the stack
of scheduler actions. The forward operation transitions to a state
with masked signals; this ensures that the scheduler action is eval-
uated without being preempted.

The final transition rule simulates the preemption of the vproc
machine. Like the forward operation, a preemption invokes the
current scheduler action f and transitions to a state with masked
signals. The current state of the sequential machine is reified as
a closure [clos K( ) = e, E] and tagged with the primitive
constant preempt; this tuple represents the signal delivered to
the scheduler action.

The state-transition function M =⇒ M′ for the multiproc ma-
chine is given in Figure 14. A multiproc’s primary purpose is to
host a set of vproc machines; the first transition rule evaluates a
single vproc machine state transition.

As noted above, the queue of ready fibers of one vproc is
accessible to other vprocs in the multiproc machine. The enqvp
primitive allows a vproc to enqueue a closure on another vproc’s
queue. (This primitive also allows a vproc to enqueue on its own
queue, although enq is expected to be a more efficient means of
accomplishing the same task.)

The next three transition rules manipulate the global provision
map Φ, which maps group identifiers to the set of vproc identi-
fiers that have not been allocated to the group. The newgid primi-
tive generates a unique group identifier for a provisioning task; the
fresh group identifier (g /∈ dom(Φ)) is returned to the underlying
sequential computation and the provision map is updated to map
the group identifier g to the complete set of vproc identifiers in the
multiproc machine ({p1, . . . , pn}). The provision primitive de-
termines whether there is a vproc that has not yet been allocated to
the group. If one exists, then it is returned to the underlying sequen-
tial computation in the form of a tuple, tagged with the primitive
constant some. If none exists, then the primitive constant none is
returned to the underlying sequential computation. In either case,
the provision map is updated in the appropriate manner. Note that
the semantics places no restriction on which vproc identifier is re-
turned. In an implementation, the runtime would likely prefer idle
vprocs and would attempt to balance the allocation of vprocs.

The release primitive returns a vproc identifier to the provision
map for a specified group identifier. It is expected that invoking the
release primitive indicates that the task for which the vproc was
provisioned has completed. This ensures that the provision map ap-
proximates the computational demand placed on the vprocs; while
the formal semantics does not depend on this, an implementation
will most likely execute more efficiently if this assumption is met.

The last three transition rules manipulate the global store Σ. The
ref primitive allocates and initializes a new store location. The
deref primitive simply reads the machine value at the specified
store location. Finally, the cas primitive performs a compare-and-
swap operation. The first argument to the cas primitive is the
store location, the second argument is the expected old value at the
location, and the third argument is the new value to be stored at the
location. The store is updated with the new value if and only if the
location’s current value is equal to the expected old value. Other
atomic operations, such as test-and-set and fetch-and-add can be
build using cas.

6. Implementation
We have implemented two versions of our runtime framework; both
versions have been tested on an 8-way multiprocessor.3 The first is
a prototype that supports writing schedulers and applications in C.
We used assembly routines to implement one-shot continuations
(essentially like setjmp/longjmp). The purpose of this first
implementation was primarily as a “proof of concept.” It allowed
us to test our model as a platform for writing schedulers. Most
of the schedulers described in Section 4 have been prototyped in
this implementation. It also demonstrates that our design carries
over to implementations based on traditional stacks, although our
experience has been that using heap-allocated continuations greatly
simplifies the implementation.

Our second implementation is a direct implementation of the
design described in Section 3. It has three major components: a
compiler for a functional heterogeneous parallel-programming lan-
guage, a runtime system that implements our scheduler infrastruc-
ture, and schedulers that provide the implementation of language-
level parallel constructs on top of the compiler/runtime system.
Since the schedulers have been discussed in detail in Sections Sec-
tion 3 and Section 4, we focus our discussion on the other aspects
of the system.

3 Our test machine has four dual-core AMD Opteron 870 processors run-
ning at 2GHz; each with its own 1Mb L2 cache.



〈p, e, E, S, Q, m〉 7−→ 〈p, e′, E′, S, Q, m〉 where 〈e, E〉 ↪→ 〈e′, E′〉
〈p, letX = deq() in e, E, S, Q ] f, m〉 7−→ 〈p, e, E[X 7→ f ], S, Q, m〉
〈p, letX = enq(K) in e, E, S, Q, m〉 7−→ 〈p, e, E[X 7→ ()], S ] E(K), Q, m〉
〈p, letX = host() in e, E, S, Q, m〉 7−→ 〈p, e, E[X 7→ p], S, Q, m〉
〈p, letX = mask() in e, E, S, Q, m〉 7−→ 〈p, e, E[X 7→ ()], S, Q, M〉

〈p, letX = unmask() in e, E, S, Q, m〉 7−→ 〈p, e, E[X 7→ ()], S, Q, U〉
〈p, run (F, K), E, S, Q, M〉 7−→ 〈p, e′, E′, E(F ) :: S, Q, U〉 where apply(E(K), ()) = 〈e′, E′〉

〈p, forward (X), E, f :: S, Q, m〉 7−→ 〈p, e′, E′, S, Q, M〉 where apply(f, E(X)) = 〈e′, E′〉
〈p, e, E, f :: S, Q, U〉 7−→ 〈p, e′, E′, S, Q, M〉 where K is fresh

and apply(f, [preempt, [clos K( ) = e, E]]) = 〈e′, E′〉

Figure 13. VProc state transitions

〈 VPS ] VP ; Σ ; Φ 〉 =⇒ 〈 VPS ] VP’ ; Σ ; Φ 〉 where VP 7−→ VP’

〈 VPS ] 〈p, letX = enqvp(Yp, K) in e, E, S, Q, m〉 ] 〈p2, e2, E2, S2, Q2, m2〉 ; Σ ; Φ 〉 =⇒
〈 VPS ] 〈p, e, E[X 7→ ()], S, Q, m〉 ] 〈p2, e2, E2, S2, Q2 ] E(K), m2〉 ; Σ ; Φ 〉 where E(Yp) = p2 and p 6= p2

〈 VPS ] 〈p, letX = newgid() in e, E, S, Q, m〉 ; Σ ; Φ 〉 =⇒
〈 VPS ] 〈p, e, E[X 7→ g], S, Q, m〉 ; Σ ; Φ[g 7→ {p1, . . . , pn}] 〉 where g /∈ dom(Φ)

〈 VPS ] 〈p, letX = provision(Yg) in e, E, S, Q, m〉 ; Σ ; Φ 〉 =⇒ 〈 VPS ] 〈p, e, E[X 7→ vr], S, Q, m〉 ; Σ ; Φ′ 〉

where E(Y ) = g and (vr, Φ
′) =


([some, q1], Φ[g 7→ {q2, . . . , qm}]) if Φ(g) = {q1, q2, . . . , qm}
(none, Φ) if Φ(g) = ∅

〈 VPS ] 〈p, letX = release(Yg, Yp) in e, E, S, Q, m〉 ; Σ ; Φ 〉 =⇒
〈 VPS ] 〈p, e, E[X 7→ ()], S, Q, m〉 ; Σ ; Φ[g 7→ Φ(g) ∪ {p}] 〉 where E(Yg) = g and E(Yp) = p

〈 VPS ] 〈p, letX = ref(Y ) in e, E, S, Q, m〉 ; Σ ; Φ 〉 =⇒
〈 VPS ] 〈p, e, E[X 7→ l], S, Q, m〉 ; Σ[l 7→ E(Y )] ; Φ 〉 where l 6∈ dom(Σ)

〈 VPS ] 〈p, letX = deref(Y ) in e, E, S, Q, m〉 ; Σ ; Φ 〉 =⇒ 〈 VPS ] 〈p, e, E[X 7→ Σ(E(Y ))], S, Q, m〉 ; Σ ; Φ 〉

〈 VPS ] 〈p, letX = cas(Yl, Yo, Yn) in e, E, S, Q, m〉 ; Σ ; Φ 〉 =⇒ 〈 VPS ] 〈p, e, E[X 7→ vr], S, Q, m〉 ; Σ′ ; Φ 〉

where l = E(Yl) and (vr, Σ
′) =


(false, Σ) if E(Yo) 6= Σ(l)
(true, Σ[l 7→ E(Yn)]) if E(Yo) = Σ(l)

Figure 14. Multiproc state transitions

6.1 The compiler
As is common, our compiler is structured as a sequence of interme-
diate languages (IRs). The last three IRs prior to code generation
are most relevant to this paper. We have a direct-style IR simi-
lar to the one presented in Figure 1, which is CPS converted to
a higher-order CPS representation. The CPS representation is, in
turn, closure converted to a first-order control-flow graph represen-
tation from which we generate x86-64 assembly code.

The direct-style representation is the workhorse of our com-
piler. It is the IR that is used to express optimizations such as
fusion (Chakravarty et al. 2007) and analysis and specialization
of concurrency primitives (Carlsson et al. 2006; Reppy and Xiao
2007). As a final stage, we expand the scheduling operations (e.g.,
enq, deq, run, etc. into lower-level operations that directly ma-
nipulate the runtime system data structures.4 For example, the ex-
pression run (K1, K2) is expanded to the following term that first
pushes the signal-action continuation K1 on the action stack, clears
the atomic flag (recall that run assumes that signals are masked,

4 Our implementation differs from the formal description of Section 5,
where the scheduling primitives are preserved into the CPS representation.

and lastly transfers control to K2:

letVP = host in
letX = load(VP ,StkOffset) in
letY = alloc(K1, X) in
let () = store(VP ,StkOffset , Y ) in
let () = store(VP ,AtomicOffset , false) in

throwK2()

By expanding these operations into lower-level primitives, we sim-
plify the CPS IR and simplify the implementation of the primi-
tives. Some operations are partially supported by the compiler and
partially by the runtime. For example, the fast path in deq (i.e.,
when the primary queue is non-empty) is implemented by expan-
sion, while the slow path is implemented by a call to a runtime-
system function.

The translation from direct style to CPS eliminates the special
handling of continuations and makes control flow explicit. We use
the Danvy-Filinski CPS transformation (Danvy and Filinski 1992),
but our implementation is simplified by the fact that we start from
a normalized direct-style representation.

Lastly, the transformation from CPS to CFG handles the heap
allocation of first-class continuations. We analyze the control flow



of the CFG and specialize calling conventions, and we add heap-
allocation checks to the IR. From this CFG we generate assembly
code.

6.2 The runtime system
Our runtime system is implemented in C with a small amount of
assembly-code glue between the runtime and generated code.

Vprocs Each vproc is hosted by its own POSIX thread (pthread).
We use the Linux processor affinity extension to bind pthreads to
distinct processors. For each vproc, we allocate a local memory
region of size 2k bytes aligned on a 2k-byte boundary (currently,
k = 20). The runtime representation of a vproc is stored in the
base of this memory region and the remaining space is used as the
vproc-local heap. The host primitive is implemented by clearing
the low k bits of the allocation pointer.

One important design principle that we follow is minimizing
sharing of mutable state between vprocs. We distinguish between
three types of vproc state: thread-local state, which is local to each
individual computation; vproc-local state, which is only accessed
by code running on the vproc; and global state, which is accessed
by other vprocs. The thread-atomic state, such as machine registers,
is protected by limiting context switches to “safe-points” (i.e.,
heap-limit checks).

Scheduling queues Each vproc has two scheduling queues: a pri-
mary queue that is vproc local and a secondary queue that is glob-
ally accessible. In our framework we distinguish between enqueue-
ing a fiber on the host vproc’s scheduling queue (enq) and en-
queueing it on a remote vproc’s queue (enqvp). This distinction
allows us to keep operations on the primary queue local, which
means we can avoid expensive synchronization. The secondary
queue is protected with traditional locking and is accessed periodi-
cally to move fiber down to the primary queue (or when the primary
queue is empty).

Preemption We implement preemption by synchronizing pre-
empt signals with garbage-collection tests as is done by Reppy
(1990). We dedicate a pthread to periodically send SIGUSR2 sig-
nals to the vproc pthreads. Each vproc has a signal handler that sets
the heap-limit register to zero, which causes the next heap-limit
check to fail and the garbage collector to be invoked. At that point,
the computation is in a safe state, which we capture as a continua-
tion value that is wrapped in the preempt signal and passed to the
topmost signal-action handler. The one downside to this approach
is that the compiler must add heap-limit checks to non-allocating
loops. An alternative that avoids this extra overhead is to use the
atomic-heap transactions of Shivers et al. (1999), but that technique
requires substantial compiler support.

Startup and shutdown One challenging part of the implementa-
tion is initialization and clean termination. When a program ini-
tially starts running, it is single threaded and running on a single
vproc. Before executing the user code, it enqueues a thread on every
vproc that installs the default scheduler. After initialization, each
of the vprocs, except the initial one, will be idle and waiting for a
fiber to be added to their secondary queues. If at any point, all of
the vprocs go idle, then the system shuts down.

6.3 Implementation status
Our implementation is still a work in progress. So far, our main
focus has been on the basic runtime mechanisms and compiler sup-
port for schedulers. The runtime system is largely complete, al-
though we have not yet done any performance tuning. Because of
this focus, we began the implementation of the compiler from the
backend and have been working our way forward. As of this writ-
ing (April 2007), we have the basics of the direct-style, CPS, and

CFG IRs implemented and have compiled and run parallel work-
loads written in the IR. We have not implemented any significant
optimizations yet, so we are not in a position to benchmark perfor-
mance.

7. Related work
Our runtime model and scheduling infrastructure is inspired by
Shivers’ proposal for exposing hardware concurrency using con-
tinuations (Shivers 1997). We have extended Shivers’ proposal to
support nested schedulers and multiple processors.

STING (Jagannathan and Philbin 1992) is a parallel dialect of
SCHEME that, like our runtime model, aims to support multiple
parallel-language constructs in a unified framework. The language
contains three notions of process abstraction: lightweight threads,
thread groups, and abstract processors. Application programmers
can implement separate scheduling policies that define migration
and thread election for thread groups and policies that share an ab-
stract processor amongst different thread groups. The programmer
implements these policies by supplying a collection of functions
for handling scheduling events. STING’s three layers of process
abstraction and comparatively heavyweight mechanism for imple-
menting scheduling policies contrasts with our approach, which fa-
vors minimal process abstractions and a unified infrastructure for
implementing schedulers.

Engines are an elegant mechanism for supporting timed pre-
emption (Haynes and Friedman 1984), and can be used to imple-
ment proportional-share thread schedulers and to simulate paral-
lelism for multiple threads. Engines also have nested variants that
support more complicated scheduling patterns used by the nested
parallel-or operator and the self-virtualizing operating sys-
tem (Dybvig and Hieb 1989). Nested engines, although somewhat
complicated to implement with first-class continuations alone, have
a straightforward implementation using operators in our runtime
model (Rainey 2007).

The basic design of our scheduling framework was sketched
in an earlier workshop paper (Fluet et al. 2007), but this paper
greatly expands and improves on that earlier work. First, this pa-
per presents a formal specification of the scheduler model. Sec-
ond, the earlier paper only presented one example scheduler (the
data-parallel scheduler of Section 4.2), whereas this paper presents
several others, such as work stealing and lazy-task creation. We
have also extended our model to handle speculative parallelism.
The other major difference is that the description in the previous
paper is a design proposal, whereas we now have both a compiler
and runtime implementation of the framework, which is described
in Section 6. There are also a number of minor tweaks to the design
based on our experiences writing schedulers.

8. Conclusion
This paper describes the design and implementation of a run-
time framework for heterogeneous parallel languages. We have
shown through several examples that this framework is power-
ful enough to support a wide variety of scheduling policies and
parallel-programming mechanisms in a modular and nestable way.
We have presented a formal model for this framework that is archi-
tecture independent and that specifies precise guidelines for imple-
mentation. We have implemented the framework in a combination
of a compiler and runtime system. We plan to use this implemen-
tation to support a rich surface language for heterogeneous parallel
programming.

In addition to continuing our implementation efforts, there are
several avenues for future work. The scheduling infrastructure, as
it is currently implemented, is only accessible to compiler writers.
Increasing demands for application-specific scheduling policies,



however, motivates exposing parts of our infrastructure to the sur-
face language. One clean way to support user-customizable sched-
ulers is to provide programmers with a domain-specific language
for schedulers. BOSSA is one such language for developing nested,
uniprocessor schedulers in LINUX (Muller et al. 2005). An inter-
esting direction for future work is to target a BOSSA-like language
to our runtime framework.
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