
Manticore: A heterogeneous parallel language
http://manticore.cs.uchicago.edu

Matthew Fluet
Toyota Technological Institute at Chicago

fluet@tti-c.org

Mike Rainey
John Reppy
Adam Shaw
Yingqi Xiao

University of Chicago
{mrainey,jhr,adamshaw,xiaoyq}@cs.uchicago.edu

Abstract
The Manticore project is an effort to design and implement a
new functional language for parallel programming. Unlike many
earlier parallel languages, Manticore is a heterogeneous language
that supports parallelism at multiple levels. Specifically, we com-
bine CML-style explicit concurrency with NESL/Nepal-style data-
parallelism. In this paper, we describe and motivate the design of
the Manticore language. We also describe a flexible runtime model
that supports multiple scheduling disciplines (e.g., for both fine-
grain and course-grain parallelism) in a uniform framework. Work
on a prototype implementation is ongoing and we give a status re-
port.

1. Introduction
We believe that existing general-purpose languages do not provide
adequate support for parallel programming, while existing paral-
lel languages, which are largely targeted at scientific applications,
do not provide adequate support for general-purpose programming.
This state of affairs must change. The laws of physics and the lim-
itations of instruction-level parallelism are forcing microproces-
sor architects to develop new multicore processor designs, which
means that parallel computing is coming to commodity hardware.
We need new languages to maximize application performance on
these new processors.

Our thesis is that parallel languages must provide mechanisms
for multiple levels of parallelism, both because applications exhibit
parallelism at multiple levels and because the hardware requires
parallelism at multiple levels to maximize performance. For ex-
ample, consider a networked flight simulator. Such an application
might use data-parallel computations for particle systems [Ree83]
to model natural phenomena such as rain, fog, and clouds. At the
same time it might use parallel threads to preload terrain and com-
pute level-of-detail refinements, and use SIMD parallelism in its
physics simulations. The same application might also use explicit
concurrency for user interface and network components. Program-

Copyright is held by the author/owner(s).
Presented at DAMP 2007 January 16, 2007; Nice France
ACM 2007.

ming such applications will be challenging without language sup-
port for parallelism at multiple levels.

This paper describes a new research project at the University of
Chicago and TTI-C addressing the topic of language design and
implementation for multicore processors. Our emphasis is on ap-
plications that might run on commodity processors, such as mul-
timedia processing, computer games, small-scale simulations, etc.
These applications can exhibit parallelism at multiple levels with
different granularities, which means that a homogeneous approach
will not take advantage of all of the hardware resources. A language
that provides data parallelism but not explicit concurrency will be
inconvienent for the development of the networking and GUI com-
ponents of a program. On the other hand, a language that provides
concurrency but not data parallelism will be ill-suited for compo-
nents of a program that demand fine-grain SIMD parallelism, such
as image processing and particle systems. Instead, we propose a
heterogeneous parallel language, called Manticore, that combines
support for parallel computation at different levels into a common
linguistic and execution framework.

The Manticore language is rooted in the family of statically-
typed strict functional languages such as OCAML and SML. We
make this choice because functional languages emphasize a value-
oriented and mutation-free programming model, which avoids en-
tanglements between separate concurrent computations [Ham91,
Rep91, JH93, NA01]. We choose a strict language, rather than a
lazy or lenient one, because we believe that strict languages are
easier to implement efficiently and accessible to a larger commu-
nity of potential users. On top of the sequential base language,
Manticore provides the programmer with mechanisms for explicit
concurrency and coarse-grain parallelism and mechanisms for fine-
grain parallelism.

Manticore’s concurrency mechanisms are based on Concurrent
ML (CML) [Rep99], which provides support for threads and syn-
chronous message passing. Although CML was not designed with
parallelism in mind (in fact, its original implementation is inher-
ently not parallel), we believe that it will provide good support for
coarse-grain parallelism. In this respect, Manticore is similar to Er-
lang, which has a mutation-free sequential core with message pass-
ing [AVWW96]. Erlang has parallel implementations [Hed98], but
no support for fine-grain parallel computation. Manticore’s support
for fine-grain parallelism is influenced by previous work on nested
data-parallel languages, such as NESL [BCH+94, Ble96, BG96]
and Nepal [CK00, CKLP01, LCK06]. From these languages, Man-
ticore adopts parallel arrays and parallel-array comprehensions.

In addition to language design, we are exploring a unified run-
time substrate for Manticore that can handle the disparate demands

of explicit concurrency and various fine-grain parallel program-
ming mechanisms. This substrate will provide a foundation for
rapidly experimenting with alternative parallelism mechanisms. We
have also been developing techniques for implementing CML’s
message-passing operations in a multiprocessor setting. This work
includes new protocols for the operations and a program anal-
ysis and optimization techniques to improve the performance of
message-passing programs [RX07].

2. The Manticore language
As noted above, the Manticore language provides the programmer
with both explicit mechanisms for concurrency and coarse-grain
parallelism and implicit mechanisms for fine-grain parallelism.1

For concurrency and coarse-grain parallelism, explicit mechanisms
can be an effective technique, but for fine-grain parallelism they
are burdensome to the programmer and may impose excessive
overhead. In this section, we sketch the major features of our
language design, demonstrate how different levels of parallelism
may be used in a simple example, and discuss possible future
directions for the design.

Briefly, the design of the Manticore language combines three
distinct components: a sequential base language using functional
programming features, drawn from a (large) subset of SML; ex-
plicit concurrent programming mechanisms using threads and syn-
chronous message passing, drawn from CML [Rep91, Rep99];
and implicit parallel programming mechanisms using nested data-
parallel constructs, drawn from NESL [Ble96] and Nepal [CKLP01].

In the sequential base language (and, by extension, the Man-
ticore language as a whole), we include important features from
SML, such as datatypes, polymorphism, type inference, and higher-
order functions, but simplify the design by supporting only a sim-
ple module system and by removing a number of non-essential el-
ements. Most importantly, we remove mutable reference and ar-
ray types, so the concurrency mechanisms drawn from CML are
the only stateful operations in Manticore.2 As many researchers
have observed, using a mutation-free computation language greatly
simplifies the implementation and use of parallel features [Ham91,
Rep91, JH93, NA01, DG04]. In essence, successful parallel lan-
guages rely on notions of separation; mutation-free functional pro-
gramming gives data separation for free.

The explicit concurrent programming mechanisms presented
in Manticore serve two purposes: they support concurrent pro-
gramming, which is an important feature for systems program-
ming [HJT+93], and they support explicit parallel programming.
Like CML, Manticore supports threads that are explicitly created
using the spawn primitive. Threads do not share mutable state;
rather they use synchronous message passing over typed channels
to communicate and synchronize. Additionally, we use CML com-
munication mechanisms to represent the interface to imperative
features such as input/output.

The main intellectual contribution of CML’s design is an ab-
straction mechanism, called first-class synchronous operations, for
building synchronization and communication abstractions. This
mechanism allows programmers to encapsulate complicated com-
munication and synchronization protocols as first-class abstrac-
tions, called event values, which encourages a modular style of
programming where the actual underlying channels used to com-
municate with a given thread are hidden behind data and type ab-

1 We classify parallelism/concurrency mechanisms as either explicit, where
the programmer manages thread creation, or implicit, where the compiler
and runtime system manage thread creation.
2 Note that we do not describe the sequential language as side-effect free,
since it still supports exceptions.

straction. Events can range from simple message-passing opera-
tions to client-server protocols to protocols in a distributed system.

CML has been used successfully in a number of systems, in-
cluding a multithreaded GUI toolkit [GR93], a distributed tuple-
space implementation [Rep99], a system for implementing parti-
tioned applications in a distributed setting [YYS+01], and a higher-
level library for software checkpointing [ZSJ06]. CML-style prim-
itives have also been added to a number of other languages, in-
cluding HASKELL [Rus01], JAVA [Dem97], OCAML [Ler00], and
SCHEME [FF04]. We believe that this history demonstrates the ef-
fectiveness of CML’s approach to concurrency.

At the heart of the implicit parallel programming mechanisms
presented in Manticore are parallel arrays, which are immutable
sequences that can be computed in parallel. An important feature of
parallel arrays is that they may be nested (i.e., one can have parallel
arrays of parallel arrays). Furthermore, Manticore (like Nepal, but
unlike NESL) supports parallel arrays of arbitrary types including
arrays of floats, functions, trees, etc. Based on the parallel array
element type, the compiler will map parallel array operations onto
the appropriate parallel hardware (e.g., operations on parallel arrays
of floats may be mapped onto SIMD instructions).

Parallel array values are constructed using a parallel compre-
hension syntax, which provides a concise description of a parallel
computation. 3 A comprehension has the general form

[: e | x1 in e1, . . ., xn in en where p :]

where e is the expression that computes the elements of the array,
the ei are array-valued expressions used as inputs to e, and p is an
optional boolean-valued expression that filters the input. If the input
arrays have different lengths, they are truncated to the length of the
shortest input. For example, to double each positive integer in a
given parallel array of integers nums, one would use the following
parallel comprehension:

[: 2 * n | n in nums where n > 0 :]

Another example is the definition of a parallel map combinator that
maps a function across an array in parallel.

fun mapP f xs = [: f x | x in xs :]

The computation of elements in a comprehension can themselves
be defined by comprehensions. We give an example of this pattern
below in Figure 1 and other examples can be found in Blelloch’s
work [Ble96].

Comprehensions can be used to specify both SIMD parallelism
that is mapped onto vector hardware (i.e., Intel’s SSE instructions)
and SPMD parallelism where parallelism is mapped onto multiple
cores.

An important feature of parallel arrays is that they have a se-
quential semantics, defined by mapping arrays to lists. The general
comprehension form from above can be translated into the follow-
ing sequential list code:

let fun f (x1::r1, . . ., xn::rn, l) =
f(r1, . . ., rn, if bp then be::l else 1)

| f (_, . . ., _, l) = rev l
in f(be1, . . ., cen, []) end

where bp, be, etc., are the translated subexpressions.
Having a sequential semantics is useful in two ways: it pro-

vides the programmer with a deterministic programming model and
it formalizes the expected behavior of the compiler. Specifically,

3 Some implicitly parallel languages, such as SISAL [GDF+97],
Id [Nik91], and pH [NA01], allow independent computations to be executed
in parallel with no programmer annotations, but most require programmer
annotations to mark which computations are good candidates for parallel
execution. For Manticore, we have chosen the latter approach because we
believe that it will more easily coexist with the explicit parallel mechanisms.

structure GrayServer : sig
type pixel = int * int * int (* RGB encoding *)
type img = [: [: pixel :] :]
val convert : img -> img event

end = struct
type pixel = int * int * int
type img = [: [: pixel :] :]
fun rgbToG ((r,g,b) : pixel) : pixel = let

val m = (r + g + b) div 3
in

(m, m, m)
end

fun imgToGray img =
[: [: rgbToG pix | pix in row :]

| row in img :]
fun convert img = let

val replCh = channel()
in

spawn (send (replCh, imgToGray img));
recvEvt replCh

end
end

Figure 1. An gray-scale converter

the compiler must verify that the individual sub-computations in
a data-parallel computation do not send or receive messages be-
fore executing the computation in parallel. Furthermore, if a sub-
computation raises an exception, the runtime code must delay de-
livery of that exception until it has verified that all sequentially prior
computations have terminated. Both of these restrictions require
program analysis to implement efficiently.

To demonstrate how the different concurrent- and parallel-
programming mechanisms can be used in combination, we present
a simple, but illustrative, example. Consider the implementation of
a service for converting color images into gray-scale images. This
computation is inherently data parallel, but an application may also
want to process multiple images in parallel (e.g., if the service were
web-based). The code in Figure 1 is a Manticore module that im-
plements such a service. An image is represented as a parallel array
of parallel arrays of pixels (the “[: :]” brackets double as a type
constructor). The imgToGray function converts an image by us-
ing a nested comprehension. This conversion process is presented
to clients as an asynchronous operation (the convert function).
When the convert function is called on an image, a new thread
is spawned to do the conversion and an event value is returned that
the client can later synchronize on to acquire the image.

This section describes a first-cut design meant to give us a base
for exploring multi-level parallel programming. Based on experi-
ence with this design, we plan to explore a number of different
evolutionary paths for the language. First, we plan to explore other
parallelism mechanisms, such as the use of futures with work steal-
ing [MKH90, CHRR95, BL99]. Such medium-grain parallelism
would nicely complement the fine-grain parallelism (via parallel
arrays) and the coarse-grain parallelism (via concurrent threads)
present in Manticore. Second, there has been significant research
on advanced type systems for tracking effects, which we may use
to introduce imperative features into Manticore. As an alternative to
traditional imperative variables, we will also examine synchronous
memory (i.e., I-variables and M-variables à la Id [Nik91]) and soft-
ware transactional memory (STM) [ST95].

3. A runtime model for Manticore
Supporting parallelism at multiple levels poses interesting technical
challenges for the implementation. We need a framework that can
support both explicit parallel threads that run on a single processor

and groups of implicit parallel threads that are distributed across
multiple processors with specialized scheduling disciplines. Fur-
thermore, we want the flexibility to experiment with new parallel
language mechanisms that may require new scheduling disciplines.

In this section, we describe an efficient and general runtime
model for implementing scheduling disciplines (a more detailed
description can be found in Rainey’s Master’s paper [Rai07]). This
model, which uses first-class continuations [Wan80, Rey93] to rep-
resent suspended computations, provides a simple, but flexible,
interface between the runtime system and the language imple-
mentation. The runtime-system infrastructure supports both per-
processor and nested schedulers.4 As we demonstrate below, it is
capable of supporting both explicit and implicit threading models
in a unified framework. We present the model using SML for no-
tational convenience, but it is actually implemented as part of the
compiler’s internal representation. Specifically, user programs do
not have direct access to the scheduling operations or to the under-
lying continuation operations.

3.1 Continuations
Continuations are a well-known language-level mechanism for ex-
pressing concurrency [Wan80, HFW84, Rep89, Shi97]. Continua-
tions come in a number of different strengths or flavors.

1. First-class continuations, such as those provided by SCHEME
and SML/NJ, have unconstrained lifetimes and may be used
more than once. They are easily implemented in a continuation-
passing style compiler using heap-allocated continuations [App92],
but map poorly onto stack-based implementations.

2. One-shot continuations [BWD96] have unconstrained life-
times, but may only be used once. The one-shot restriction
makes these more amenable for stack-based implementations,
but their implementation is still complicated. In practice, most
concurrency operations (but not thread creation) can be imple-
mented using one-shot continuations.

3. Escaping continuations5 have a scope-limited lifetime and can
only be used once, but they also can be used to implement
many concurrency operations [RP00, FR02]. These continua-
tions have a very lightweight implementation in a stack-based
framework; they are essentially equivalent to the C library’s
setjmp/longjmp operations.

In Manticore, we are using continuations in our compiler’s IR to
express concurrency operations. For our prototype implementation,
we are using heap-allocated continuations à la SML/NJ [App92].
Although heap-allocated continuations impose some extra over-
head (mostly increased GC load) for sequential execution, they pro-
vide a number of advantages for concurrency:

• Creating a continuation just requires allocating a heap object,
so it is fast and imposes little space overhead (< 100 bytes).

• Since continuations are values, many nasty race conditions in
the scheduler can be avoided.

• Heap-allocated first-class continuations do not have the lifetime
limitations of escaping and one-shot continuations, so we avoid
prematurely restricting the expressiveness of our IR.

• By inlining concurrency operations, the compiler can optimize
them based on their context of use [FR02].

4 Regehr coined the term “general, heterogeneous schedulers” for similar
scheduler hierarchies [Reg01].
5 The term “escaping continuation” is derived from the fact that they can be
used to escape.

3.2 Fibers, threads, and virtual processors
Our runtime model has three distinct notions of process abstraction.
At the lowest level, a fiber is an unadorned thread of control, which
is represented as a unit continuation.

type fiber = unit cont

The fiber operator takes a function value, and creates a fiber that,
when run, calls the function before stopping.

val fiber : (unit -> unit) -> fiber

Note that this operator can be directly implemented with first-class
continuations (but not with one-shot continuations).

A surface-language thread (i.e., one created by spawn) is ini-
tially mapped to a fiber paired with a unique thread ID (tid).

type thread = tid * fiber

In addition to having an ID, threads are differentiated from fibers
by the fact that they may create additional fibers to run data-parallel
computations. Thus at run time, a thread consists of a tid and one
or more fibers.

Lastly, a virtual processor (vproc) is an abstraction of a hard-
ware processor resource. The runtime model represents a vproc
with the vproc type. A vproc runs at most one fiber at a time,
and furthermore is the only means of running fibers. The vproc for
the currently running fiber is called the host vproc, and is obtained
by the hostVP operator.

val hostVP : unit -> vproc

The runtime model provides a mechanism for assigning vprocs
to threads. When applied to the desired number of processors,
provision returns a list of vprocs that are available for a thread
(which may be fewer than the number requested). The complemen-
tary release operator informs the runtime system that a thread is
finished with some vprocs.

val provision : int -> vproc list
val release : vproc list -> unit

To balance workload evenly between threads, the runtime system
never assigns a vproc to a given thread twice. Additionally, the
runtime system considers load and possibly even processor affinity
when assigning vprocs.

3.3 Scheduling infrastructure
Our scheduling infrastructure is a low-level substrate for writing
schedulers. It directly encodes all scheduling that occurs at run
time, and does not rely on external or fixed schedulers. Our ap-
proach to scheduling is inspired by Shivers’ proposal for exposing
hardware concurrency using continuations [Shi97], but we have ex-
tended it to support nested schedulers and multiple processors. To
support a variety of scheduling disciplines, the infrastructure pro-
vides mechanisms that divide a vproc’s time among multiple fibers
and mechanisms that divide and synchronize parallel computations
among multiple vprocs. The former mechanisms are described in
detail here.

A scheduler action is a function that implements context switch-
ing for a vproc. By defining different functions, we can implement
different scheduling policies. Scheduler actions have the type

datatype signal = STOP | PREEMPT of fiber
type action = signal -> void

where the signal type represents the events that are handled by
schedulers. Here we have two — fiber termination and preemption
— but this type could be extended to model other forms of asyn-
chronous events, such as asynchronous exceptions [MJMR01]. A
scheduler action should never return, so its result type (void) is
one that has no values.

Our model supports nesting of schedulers (e.g., a data-parallel
scheduler runs on top of a thread-level scheduler) by giving each
vproc a stack of scheduler actions. The top of a vproc’s stack is the
scheduler action for the current scheduler on that vproc. When a
vproc receives a signal, it handles it by popping the current sched-
uler action from the stack and applying it to the signal. Figure 2
gives a pictorial description of the operations on a vproc’s action
stack, which we describe below.

There are two operations that scheduling code can use to di-
rectly affect the host vproc’s scheduler stack.

val run : action -> fiber -> void
val forward : signal -> void

The run primitive initiates the execution of a fiber. It takes a
scheduler action that implements the scheduling policy for the fiber
and the fiber itself, pushes the action on the scheduler-action stack,
and then runs the fiber. The expression “forward sig” sends the
signal to the host vproc, which means that topmost signal action is
popped from the stack and applied to the sig. Our model uses this
operation to implement the stop function for fiber termination.

fun stop () = forward STOP

Preemption is generated by a hardware event, such as as timer
interrupt. When a vproc is preempted, it reifies the continuation of
the running fiber k, and then executes “preempt k,” where the
preempt function is defined as

fun preempt k = forward (PREEMPT k)

The vproc then handles the signal as usual; it applies the the current
scheduler action to the preemption signal. Using preempt, we can
define a function that yields the vproc to the current scheduler.

fun yield () = callcc (fn k => preempt k)

In addition to the scheduler stack, each vproc also has a queue
of ready threads. These queues are used to schedule threads, and
are used as a mechanism to dispatch threads on multiple vprocs.
There are three operations on these queues:

val enqueue : thread -> unit
val dequeue : unit -> thread
val enqueueOnProc : (vproc * thread) -> unit

The first two operations apply to the host vproc’s queue. The second
operator blocks a vproc on an empty queue. It can be unblocked
when another vproc puts a thread on its queue. The third operator
puts a thread on another vproc’s queue, and is the only mechanism
for parallel dispatch in the runtime model.

To avoid the danger of asynchronous preemption while schedul-
ing code is running, the forward operation masks preemption and
the run operation unmasks preemption on the host vproc. We also
provide operations for explicitly masking and unmasking preemp-
tion on the host vproc.

val mask : unit -> unit
val unmask : unit -> unit

3.4 Scheduling language-level threads
Language-level thread scheduling is round-robin, and is imple-
mented by the following scheduler action:

fun switch STOP = dispatch()
| switch (PREEMPT k) = (

enqueue (getTid(), k); dispatch())
and dispatch () = let

val (tid, k) = dequeue ()
in
setTid tid; run switch k

end

The dispatch function runs the next thread from the vproc’s
queue and is also used in the implementation of language-level

run

action stack

. . .
thread queue

E[run act ′ f]
act

action stack

. . .
thread queue

act

act
′

throw f ()

forward

action stack

. . .
thread queue

act

action stack

. . .
thread queue

act

act
′

E[forward sig] act ′ sig

preemption

action stack

. . .
thread queue

act

action stack

. . .
thread queue

act

act
′

f act
′(PREEMPT f)

Figure 2. How run, forward, and preemption affect a vproc.

concurrency operations. Note that it invokes the thread using the
run function with switch as the scheduler. This scheduler action
is the first action on every vproc’s stack. Our infrastructure can also
support more complex time-sharing and priority-based policies,
and can support migration policies, such as work stealing [CR95,
BL99].

3.5 Scheduling data-parallel fibers
Data-parallel computations require multiple fibers running on mul-
tiple vprocs. There are a number of different ways to organize this
computation, but we use a workcrew approach [VR88]. The com-
piler flattens the nested data parallelism into a flat operation [BG96,
LCK06], and partitions it into a number of jobs. Each job should
perform a significant chunk of the total work, employing SIMD
parallelism when possible. The code in Figure 3 is a function used
at runtime to schedule the jobs in parallel. It takes the number of
processors, number of jobs, and a function for computing the ith
job. The scheduler initializes itself by allocating a group of vprocs,
and then applying each to the init function. This function takes a
vproc, and enqueues on it a fiber that installs the scheduler action
dlpSwitch.

Once it is initialized on a vproc, the dlpSwitch action ac-
quires jobs from the work pool, and handles preemptions. The
STOP signal is used to signal the completion of a job; if there are
no more jobs available, then we relinquish the host vproc by releas-
ing the vproc and then stopping. The last vproc to complete a job

does not stop, but instead returns from the forkN function. When
the scheduler receives a PREEMPT signal, it yields control to the
parent scheduler. At some point in the future, the parent scheduler
will resume the data-parallel scheduler. If, for example, the parent
is the language-level thread scheduler, the thread scheduler will re-
sume the data-parallel scheduler once it cycles through its ready
queue. In this way, the host vproc can be multiplexed among both
data-parallel and explicit-parallel computations.

3.6 Other scheduling disciplines
Our infrastructure is general enough to implement a wide variety
of schedulers and we have sketched implementations of a num-
ber of different mechanisms [Rai07]. These include engines [HF84]
and nested engines [DH89], which are an elegant mechanism that
provide timed preemption for a collection of threads. Other exam-
ples include work stealing [MKH90, CHRR95, BL99] and wait-
free cache-affinity work stealing [KD03]. We are also implement-
ing schedulers that can adaptively provision vprocs via an exten-
sion to our signaling mechanism that is similar to scheduler activa-
tions [ABLL92].

In the long run, we believe that application-specific scheduling
policies may be an important tool in maximizing parallel perfor-
mance. Since implementing scheduling and load-balancing policies
in general-purpose languages is error prone and tedious, we plan
to explore domain-specific languages for programming schedulers.
For example, the Bossa scheduler language ameliorates implemen-

fun forkN (nProcs, nJobs, job : int -> unit) =
callcc (fn doneK => let

val (cnt, done) = (ref 0, ref 0)
fun dlpSwitch STOP = let

val nextJob = fetchAndAdd(cnt, 1)
in

if (nextJob < nJobs) then
run dlpSwitch
(fiber (fn () => job nextJob))

else if (fetchAndAdd(done,1) =
nProcs-1)

then throw doneK ()
else (
release [hostVP ()];
stop())

end
| dlpSwitch (PREEMPT k) = (

yield ();
run dlpSwitch k)

fun init vp = enqueueOnProc (vp,
(getTid(),
fiber (fn () =>
run dlpSwitch (fiber stop))

))
in

List.app init (provision nProcs);
stop()

end)

Figure 3. Creating fibers for data-parallel computations

tation difficulties by using specialized abstractions for expressing
policies and static checks of those policies [MLD05].

4. Multiprocessor CML
Concurrent ML is embedded in Standard ML of New Jersey. It is
implemented uses the first-class continuations of SML/NJ and is in-
herently single threaded [Rep91, Rep99]. Thus, we are faced with
developing a new multi-threaded implementation of CML’s primi-
tives suitable for modern multicore processors. The main challenge
is the implementation of event synchronization, which involves a
form of distributed agreement. In the general case, an event con-
sists of a choice of channel communications and synchronization
involves picking one of the enabled communications in the choice
and executing it. What makes this problem difficult is that the other
party involved in the communication may itself be involved in a
choice, so we need a protocol that guarantees that both parties agree
on the communication. Furthermore, a choice may involve multiple
operations on the same channel, which makes deadlock avoidance
a bit tricky.

The single-threaded implementation achieves this agreement by
executing the following steps atomically [Rep99]:

• Poll the communication operations (e.g., sends, recvs, etc.) in
the the choice to see if they are enabled.

• If one or more operations are enabled, pick one and do it.
• Otherwise, enqueue continuations for each of the choices and

dispatch another thread.

The single-threaded implementation relies on the global lock for
correctness and, since there is only one processor, it does not hurt
performance, but in a parallel implementation the global lock is a
bottleneck.

An obvious first step is to give each channel its own lock, but
to avoid deadlock when there are multiple operations on the same
channel, we must either release the lock after polling the channel
or use reentrant locks. We explored this approach, but found that

the implementation was complicated. Instead, we have designed an
optimistic protocol for implementing choice that has the following
steps:

• First we poll channels for possible communications, which can
be done in a lock-free way).

• If there are available communications, attempt to commit to
one of them. This commit may fail because another thread has
“stolen” the communication.

• If there are no available communications (or all attempts to
commit failed), we block the thread on the channels. In this
process, we may discover that a communication has become
available, in which case we commit to it.

This protocol is optimized to the common case where a given
channel is not shared between more than two threads, but it remains
to be seen how well it works when there is contention for a shared
channel.

Another aspect of our approach to implementing message pass-
ing is the development of a program analysis for detecting spe-
cial patterns of channel usage. For example, our analysis can detect
when a channel is only used by a single sender and single receiver
in non-choice contexts. In such a case, the channel operations can
be implemented using a single atomic compare-and-swap instruc-
tion, which is much faster than the general protocol. This program
analysis and optimization technique, which we are implementing
as part of the Manticore compiler, is discussed in full detail else-
where [Xia05, RX07].

5. Status
We are currently working on an initial implementation of Manti-
core that will provide a testbed for future research in both language
design and implementation techniques. Our initial implementation
targets the 32 and 64-bit versions of the x86 architecture on Linux
and we hope to have a public release ready by the Spring of 2007.
This effort is proceeding along two tracks.

The first is a compiler and interpreter for the Manticore lan-
guage. To speed the construction of this prototype, we have ex-
tended the HaMLet SML compiler [Ros] with syntax for our
data-parallel and concurrency operations. We are using HaMLet as
both a parser/typechecker for our compiler and as source-to-source
translator that converts Manticore programs to CML programs. Al-
though this translator does not support parallelism, it does allow us
to gain experience with programming in Manticore. For our com-
piler, we are using the MLRISC framework for code generation
and register allocation [GGR94, GA96].

We have also implemented a prototype of the runtime scheduler
infrastructure described in Section 3. The implementation is writ-
ten in C on Linux, with each vproc being represented by a POSIX
thread. We are using this framework to gauge both the expressive-
ness of our model for writing schedulers and their performance.
So far, we have implemented several data-parallel examples, but
we have not yet made any performance measurements. We are also
integrating the multiprocessor implementation of CML described
above into the Manticore runtime system. Lastly, the runtime sys-
tem model has been formalized as a parallel CEK machine [Rai07],
which will provide a guide for both the compiler and runtime im-
plementation efforts.

References
[ABLL92] Anderson, T. E., B. N. Bershad, E. D. Lazowska, and H. M.

Levy. Scheduler activations: Effective kernel support for the
user-level management of parallelism. ACM TOCS, 10(1),
February 1992, pp. 53–79.

[App92] Appel, A. W. Compiling with Continuations. Cambridge
University Press, Cambridge, England, 1992.

[AVWW96] Armstrong, J., R. Virding, C. Wikström, and M. Williams.
Concurrent programming in ERLANG (2nd ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

[BCH+94] Blelloch, G. E., S. Chatterjee, J. C. Hardwick, J. Sipelstein,
and M. Zagha. Implementation of a portable nested data-
parallel language. JPDC, 21(1), 1994, p. 4=14.

[BG96] Blelloch, G. E. and J. Greiner. A provable time and space
efficient implementation of NESL. In ICFP ’96, New York,
NY, May 1996. ACM, pp. 213–225.

[BL99] Blumofe, R. D. and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5), 1999, pp. 720–
748.

[Ble96] Blelloch, G. E. Programming parallel algorithms. CACM,
39(3), March 1996, pp. 85–97.

[BWD96] Bruggeman, C., O. Waddell, and R. K. Dybvig. Representing
control in the presence of one-shot continuations. In PLDI
’96, New York, NY, May 1996. ACM, pp. 99–107.

[CHRR95] Carlisle, M., L. J. Hendren, A. Rogers, and J. Reppy.
Supporting SPMD execution for dynamic data structures.
ACM TOPLAS, 17(2), March 1995, pp. 233–263.

[CK00] Chakravarty, M. M. T. and G. Keller. More types for nested
data parallel programming. In ICFP ’00, New York, NY,
September 2000. ACM, pp. 94–105.

[CKLP01] Chakravarty, M. M. T., G. Keller, R. Leshchinskiy, and
W. Pfannenstiel. Nepal – Nested Data Parallelism in Haskell.
In Euro-Par ’01, vol. 2150 of LNCS, New York, NY, August
2001. Springer-Verlag, pp. 524–534.

[CR95] Carlisle, M. C. and A. Rogers. Software caching and
computation migration in Olden. In PPoPP ’95, New York,
NY, July 1995. ACM, pp. 29–38.

[Dem97] Demaine, E. D. Higher-order concurrency in Java. In
WoTUG20, April 1997, pp. 34–47. Available from http:
//theory.csail.mit.edu/∼edemaine/papers/
WoTUG20/.

[DG04] Dean, J. and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04, December 2004,
pp. 137–150.

[DH89] Dybvig, R. K. and R. Hieb. Engines from continuations.
Comput. Lang., 14(2), 1989, pp. 109–123.

[FF04] Flatt, M. and R. B. Findler. Kill-safe synchronization
abstractions. In PLDI ’04, June 2004. (to appear).

[FR02] Fisher, K. and J. Reppy. Compiler support for lightweight
concurrency. Technical memorandum, Bell Labs, March 2002.
Available from http://moby.cs.uchicago.edu/.

[GA96] George, L. and A. Appel. Iterated register coalescing. ACM
TOPLAS, 18(3), May 1996, pp. 300–324.

[GDF+97] Gaudiot, J.-L., T. DeBoni, J. Feo, W. Bohm, W. Najjar, and
P. Miller. The Sisal model of functional programming and its
implementation. In pAs ’97, Los Alamitos, CA, March 1997.
IEEE Computer Society Press, pp. 112–123.

[GGR94] George, L., F. Guillame, and J. Reppy. A portable and
optimizing back end for the SML/NJ compiler. In CC’94,
April 1994, pp. 83–97.

[GR93] Gansner, E. R. and J. H. Reppy. A Multi-threaded Higher-
order User Interface Toolkit, vol. 1 of Software Trends, pp.
61–80. John Wiley & Sons, 1993.

[Ham91] Hammond, K. Parallel SML: a Functional Language and its
Implementation in Dactl. The MIT Press, Cambridge, MA,
1991.

[Hed98] Hedqvist, P. A parallel and multithreaded ERLANG
implementation. Master’s dissertation, Computer Science

Department, Uppsala University, Uppsala, Sweden, June
1998.

[HF84] Haynes, C. T. and D. P. Friedman. Engines build process
abstractions. In LFP’84, New York, NY, August 1984. ACM,
pp. 18–24.

[HFW84] Haynes, C. T., D. P. Friedman, and M. Wand. Continuations
and coroutines. In LFP’84, New York, NY, August 1984.
ACM, pp. 293–298.

[HJT+93] Hauser, C., C. Jacobi, M. Theimer, B. Welch, and M. Weiser.
Using threads in interactive systems: A case study. In SOSP
’93, December 1993, pp. 94–105.

[JH93] Jones, M. P. and P. Hudak. Implicit and explicit parallel
programming in Haskell. Technical Report Research Report
YALEU/DCS/RR-982, Yale University, August 1993.

[KD03] Kurt Debattista, Kevin Vella, J. C. Wait-free cache-affinity
thread scheduling. IEEE Proceedings Software, 150(2), 2003,
pp. 137–146.

[LCK06] Leshchinskiy, R., M. M. T. Chakravarty, and G. Keller. Higher
order flattening. In V. Alexandrov, D. van Albada, P. Sloot,
and J. Dongarra (eds.), ICCS ’06, number 3992 in LNCS,
New York, NY, May 2006. Springer-Verlag, pp. 920–928.

[Ler00] Leroy, X. The Objective Caml System (release 3.00), April
2000. Available from http://caml.inria.fr.

[MJMR01] Marlow, S., S. P. Jones, A. Moran, and J. Reppy. Asyn-
chronous exceptions in Haskell. In PLDI ’01, June 2001, pp.
274–285.

[MKH90] Mohr, E., D. A. Kranz, and R. H. Halstead Jr. Lazy task
creation: a technique for increasing the granularity of parallel
programs. In LFP’90, New York, NY, June 1990. ACM, pp.
185–197.

[MLD05] Muller, G., J. L. Lawall, and H. Duchesne. A framework
for simplifying the development of kernel schedulers: Design
and performance evaluation. In HASE ’05, October 2005, pp.
56–65.

[NA01] Nikhil, R. S. and Arvind. Implicit Parallel Programming in
pH. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[Nik91] Nikhil, R. S. ID Language Reference Manual. Laboratory for
Computer Science, MIT, Cambridge, MA, July 1991.

[Rai07] Rainey, M. The Manticore runtime model. Master’s
dissertation, University of Chicago, January 2007. Available
from http://manticore.cs.uchicago.edu.

[Ree83] Reeves, W. T. Particle systems — a technique for modeling a
class of fuzzy objects. ACM TOG, 2(2), 1983, pp. 91–108.

[Reg01] Regehr, J. Using Hierarchical Scheduling to Support Soft
Real-Time Applications on General-Purpose Operating
Systems. Ph.D. dissertation, University of Virginia, 2001.

[Rep89] Reppy, J. H. First-class synchronous operations in Standard
ML. Technical Report TR 89-1068, Dept. of CS, Cornell
University, December 1989.

[Rep91] Reppy, J. H. CML: A higher-order concurrent language. In
PLDI ’91, June 1991, pp. 293–305.

[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge
University Press, Cambridge, England, 1999.

[Rey93] Reynolds, J. C. The discoveries of continuations. LASC,
6(3-4), 1993, pp. 233–248.

[Ros] Rossberg, A. HaMLet. Available from http://www.ps.
uni-sb.de/hamlet.

[RP00] Ramsey, N. and S. Peyton Jones. Featherweight concurrency
in a portable assembly language. Unpublished paper available
at http://www.cminusminus.org/abstracts/
c--con.html, November 2000.

[Rus01] Russell, G. Events in Haskell, and how to implement them.
In ICFP ’01, September 2001, pp. 157–168.

[RX07] Reppy, J. and Y. Xiao. Specialization of CML message-
passing primitives. In POPL ’07, January 2007.

[Shi97] Shivers, O. Continuations and threads: Expressing machine
concurrency directly in advanced languages. In CW ’97,
January 1997.

[ST95] Shavit, N. and D. Touitou. Software transactional memory. In
PODC ’95, New York, NY, 1995. ACM, pp. 204–213.

[VR88] Vandevoorde, M. T. and E. S. Roberts. Workcrews: an
abstraction for controlling parallelism. IJPP, 17(4), August
1988, pp. 347–366.

[Wan80] Wand, M. Continuation-based multiprocessing. In LISP’80,
August 1980, pp. 19–28.

[Xia05] Xiao, Y. Toward optimization of Concurrent ML. Master’s
dissertation, University of Chicago, December 2005.

[YYS+01] Young, C., L. YN, T. Szymanski, J. Reppy, R. Pike,
G. Narlikar, S. Mullender, and E. Grosse. Protium, an
infrastructure for partitioned applications. In HotOS-X,
January 2001, pp. 41–46.

[ZSJ06] Ziarek, L., P. Schatz, and S. Jagannathan. Stabilizers: a
modular checkpointing abstraction for concurrent functional
programs. In ICFP ’06, New York, NY, September 2006.
ACM, pp. 136–147.

