
THE UNIVERSITY OF CHICAGO

PARALLEL FUNCTIONAL PROGRAMMING WITH MUTABLE STATE

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

LARS BERGSTROM

CHICAGO, ILLINOIS

JUNE 2013

Copyright © 2013 by Lars Bergstrom

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

CHAPTER

1 INTRODUCTION . 1
1.1 Our approach . 2
1.2 Challenge with current deterministic languages . 7
1.3 Contributions . 8
1.4 Dissertation overview . 9

2 BACKGROUND . 10
2.1 Non-deterministic languages . 11
2.2 Deterministic languages . 11
2.3 Atomicity-based language models . 12
2.4 Manticore . 13
2.5 Hardware . 21

3 MEMOIZATION . 22
3.1 Core-PML with memoization . 23
3.2 Translation to implement memoization . 24
3.3 Memoization table interface and behavior . 25
3.4 Full size memoization table . 27
3.5 Limited-size memoization table . 33
3.6 Dynamically sized memoization table . 39
3.7 Evaluation . 47
3.8 Conclusion . 65

4 MUTABLE STATE . 66
4.1 Core-PML with memoization and mutable state . 67
4.2 Translation to atomic expressions . 68
4.3 Lock-based implementation . 71
4.4 Serial execution . 75
4.5 Transaction-based implementation . 76
4.6 Transactional execution . 78
4.7 Removing unnecessary atomic wrappers . 79

iii

4.8 Evaluation . 87
4.9 Local reasoning . 95
4.10 Conclusion . 98

5 SEMANTICS . 99
5.1 Syntax . 99
5.2 Operational semantics . 101

6 RELATED WORK . 106
6.1 Memoization . 106
6.2 Hash tables . 107
6.3 Mutable State . 108

7 CONCLUSION . 115
7.1 Future Work . 115

REFERENCES . 119

iv

LIST OF FIGURES

1.1 The spectrum of parallel languages by deterministic behavior. 1

2.1 Tree product with parallel tuples. 14
2.2 Heap architecture for two processors. VProc 1 is running a minor collection, while

VProc 2 is running a major collection. 19

3.1 Source language with memoization . 24
3.2 Translation to remove memoization. 25
3.3 The in-memory representation of the simple memo table approach. 28
3.4 Insertion and lookup in a simple full-sized memoization table implementation. . . 28
3.5 The in-memory representation of the distributed memo table approach. 30
3.6 Insertion and lookup in a full-size distributed memoization table implementation. . 31
3.7 The in-memory representation of the partitioned memo table approach. 31
3.8 Insertion and lookup in a full-size partitioned memoization table implementation. 32
3.9 The in-memory representation of the fixed-sized partitioned memo table approach. 34
3.10 Lookup in a fixed-size partitioned memoization table implementation. 36
3.11 Insertion into a fixed-size partitioned memoization table implementation. 38
3.12 The in-memory representation of the dynamically-sized memo table approach. . . 40
3.13 Increasing the capacity of a dynamically sized memoization table implementation. 41
3.14 Initialization of a bucket in a dynamically sized memoization table implementation. 44
3.15 Lookup in a dynamically sized memoization table implementation. 45
3.16 Insertion into a dynamically sized memoization table implementation. 46
3.17 Parallel Fibonacci. 47
3.18 Parallel Fibonacci with memoization. 48
3.19 Comparison of five memoization implementation strategies on parallel Fibonacci

on 10,000 and 60,000. Execution times in seconds. 58
3.20 Simple parallel knapsack . 59
3.21 Memoized parallel knapsack . 60
3.22 Comparison of memoization implementation strategies on parallel 0-1 knapsack

with a small number of items. 61
3.23 Comparison of Manticore-based dynamically growing memoization implementa-

tion strategies on parallel 0-1 knapsack with two problem sizes. 62
3.24 The minimax algorithm in Parallel ML. 63
3.25 Comparison of minimax search on a 4x4 grid, using a cutoff depth of 4. 64

4.1 Source language with memoization and mutable state 68
4.2 Target language . 69
4.3 Translation into target language . 70
4.4 Basic ticket lock implementation. 73
4.5 Utility code for more advanced ticket lock usage. 74
4.6 Effects analyzed for removal of redundant atomics. 81
4.7 Location-augmented target language . 82

v

4.8 Finite maps produced and used by the analysis . 83
4.9 Effect merge rules . 83
4.10 Dataflow-based effect analysis . 84
4.11 Translation to remove atomics based on effect analysis. 86
4.12 Parallel account transfer code. 92
4.13 Comparison of mutable state implementation strategies for the account transfer

benchmark. 93
4.14 Comparison of array lock range sizes in the account transfer benchmark. 94
4.15 Comparison of the maximum tree number of moves searched versus timeout limit

across several timeout values. 94

5.1 Syntax of the reduced Parallel ML language . 100
5.2 Finite maps . 100
5.3 Program states . 101
5.4 Rules for function application including memoization. 102
5.5 Rules for parallel language features, with non-deterministic evaluation order of

subexpressions. 103
5.6 Rules for mutable state features. 103
5.7 Rules for the features related to atomicity. 104
5.8 Administrative rules. 105

vi

LIST OF TABLES

3.1 Comparison of three memoization implementation strategies on parallel Fibonacci
on 10,000 and 60,000. Execution times in seconds. 49

3.2 Comparison of memoization implementation strategies on parallel 0-1 knapsack
with a small number of items. Execution times in seconds. 51

3.3 Comparison of the effects of bucket size on on parallel 0-1 knapsack with a fixed-
sized memo table. Execution times in seconds. 53

3.4 Comparison of memoization implementation strategies on parallel 0-1 knapsack
with a larger number of items and weight budget. The memoization table uses
improved hashing. Execution times in seconds. 54

3.5 Comparison of Manticore-based dynamically growing memoization implementa-
tion strategies on parallel 0-1 knapsack with two problem sizes. Times are reported
in seconds and are mean execution times. 55

3.6 Timing for a sequential, explicitly memoizing Python implementation of 0-1 knap-
sack at small and large problem sizes. 56

3.7 Haskell implementation of parallel 0-1 knapsack using the Generate-Test-Aggregate
approach. Times are reported in seconds and are mean execution times. 56

3.8 Parallel implementation of minimax search on a 4x4 grid, using a cutoff depth of
4. Times are reported in seconds and are mean execution times. 57

3.9 Parallel implementation of minimax search on a 4x4 grid, using a cutoff depth of
5. Times are reported in seconds and are mean execution times. 57

3.10 Haskell implementation of minimax search on a 4x4 grid, using a cutoff depth of
4. Times are reported in seconds and are mean execution times. 57

4.1 Comparison of mutable state implementation strategies for the account transfer
benchmark. Execution times in seconds. 88

4.2 Comparison of array lock range sizes in the account transfer benchmark. Execution
times in seconds. 89

4.3 Comparison of the maximum tree number of moves searched versus timeout limit
across several timeout values. 90

4.4 Comparison of array lock range sizes in the STMBench7 benchmark on 1,000,000
transactions. Execution times in seconds. 91

vii

ACKNOWLEDGMENTS

I would like to thank my parents, Patricia and Larry, and my brother, Bjorn, for their unwavering

faith in my ultimate success, even when that was not at all clear to me. My wife, Yee Man, provided

love and support — both emotional and financial — throughout this process.

My adviser, John Reppy, has been not only a mentor and guide in my journey, but also a

collaborator across all levels of detail in our work together. It has truly been a joy to work with

him, on both this dissertation and the wide variety of other projects we have done during my tenure.

My other committee members, Matthew Fluet and David MacQueen, provided not only feed-

back on this work, but on much other work throughout my graduate career. They are two of the

most patient people I have ever met, readily making available as much time as I needed to teach,

mentor, or review my work.

Without the implementation help, design brainstorming, and moral support of my fellow gradu-

ate students, this work could not have been completed. I would especially like to thank Adam Shaw

and Mike Rainey, my fellow Manticore brothers-in-arms, for their many hours of collaborations.

My undergraduate adviser, Ian Horswill, provided me with the research experiences that would

ultimately weigh heavily in my decision to go to graduate school, though I did disappoint him by

pursuing programming languages instead of artificial intelligence.

Finally, I would like to thank my high school programming teacher, Edward Walter (1942–

2012). He ignited my interest in programming and continued to fan the flame and support me long

after I had exhausted all the resources the school could provide.

The research presented in this dissertation was supported by the NSF, under the NSF Grants

CCF-0811389 and CCF-1010568.

viii

ABSTRACT

Immutability greatly simplifies the implementation of parallel languages. In the absence of mutable

state the language implementation is free to perform parallel operations with fewer locks and fewer

restrictions on scheduling and data replication. In the Manticore project, we have achieved nearly

perfect speedups across both Intel and AMD manycore machines on a variety of benchmarks using

this approach.

There are parallel stateful algorithms, however, that exhibit significantly better performance

than the corresponding parallel algorithm without mutable state. For example, in many search

problems, the same problem configuration can be reached through multiple execution paths. Par-

allel stateful algorithms share the results of evaluating the same configuration across threads, but

parallel mutation-free algorithms are required to either duplicate work or thread their state through

a sequential store. Additionally, in algorithms where each parallel task mutates an independent

portion of the data, non-conflicting mutations can be performed in parallel. The parallel state-free

algorithm will have to merge each of those changes individually, which is a sequential operation at

each step.

In this dissertation, we extend Manticore with two techniques that address these problems while

preserving its current scalability. Memoization, also known as function caching, is a technique that

stores previously returned values from functions, making them available to parallel threads of ex-

ecutions that call that same function with those same values. We have taken this deterministic

technique and combined it with a high-performance implementation of a dynamically sized, paral-

lel hash table to provide scalable performance. We have also added mutable state along with two

execution models — one of which is deterministic — that allow the user to share arbitrary results

across parallel threads under several execution models, all of which preserve the ability to reason

locally about the behavior of code.

For both of these techniques, we present a detailed description of their implementations, exam-

ine a set of relevant benchmarks, and specify their semantics.

ix

CHAPTER 1

INTRODUCTION

Hardware has shifted over the last few years from mostly sequential to mostly parallel. While

the clock speed of top-end Intel processors has remained relatively constant from 2006–2013, the

number of parallel processing elements has transitioned from one processor per chip to up to six.

Further, GPUs and other acceleration boards are now delivering hundreds of parallel threads of

execution on a single expansion card.

Unfortunately, despite the new languages, new language features, and libraries invented to

help with parallelism, it is still hard to write general-purpose programs that take advantage of this

parallelism. Figure 1.1 depicts the space of language and library features for parallel programming

with shared state. In general, languages that are closer to the deterministic end of the spectrum

are easier to program but less able to take advantage of the parallel hardware due to the costs of

guaranteeing determinism. Languages that are non-deterministic make it hard to reason about the

correctness of the programs written in them, but generally provide less restrictions on taking full

advantage of the parallel hardware. This tradeoff forces programmers to choose: do I want to have

a program that I fully understand, or one that takes advantage of the parallel hardware?

Deterministic Non-deterministic

Haskell
DPJ
PML

C
CUDA

Databases
STM Haskell

Galois
Cilk++

SerializableLinearizable

Figure 1.1: The spectrum of parallel languages by deterministic behavior.

There are three points in the determinism spectrum that are well-explored. Languages such as

C and CUDA allow complete access to the parallel hardware, though they provide limited mech-

anisms for ensuring either the correctness or determinism of the programs, making it difficult to

reason about them. Deterministic Parallel Java (DPJ) and most of the parallel libraries used in

1

Haskell, on the other hand, provide deterministic programming models that make it easy to reason

about the correctness of the program but which make it difficult to take advantage of the parallel

hardware for all problems. Databases, STM Haskell, and Galois provide some points closer to the

middle of the space, where there are some guarantees on the semantics of programs, greatly reduc-

ing the space of possible executions, but still require the programmer to reason about the execution

of the entire program and its library usage to ensure correctness.

1.1 Our approach

Ideally, all programs would be written in a deterministic parallel programming language and they

would take full advantage of the hardware. Unfortunately, some problems cannot be efficiently

solved in a pure parallel program. These problems have asymptotically faster algorithms that rely

on state, forcing a programmer who uses a deterministic parallel language to choose between a

slower, state-free algorithm that is parallel and a faster sequential algorithm that uses state.

In this work, we extend our language, Parallel ML (PML), with language features that allow

restricted sharing between threads and high performance without the drawbacks of race conditions

provided by the other high performance models. Our goal is to add these language features while

preserving both the scalable performance and straightforward reasoning about program correctness

of PML. We add two language features in this work: memoization, which is deterministic, and

mutable state, which is linearizable.

1.1.1 Thesis

Memoization and mutable state extend the Parallel ML language with inter-thread communication

in a correct, concise, local, and high-performance manner.

Correctness is provided through an operational semantics that characterizes the full behavior

of these features. These extensions remain concise by using the traditional language features for

2

mutable values available in Standard ML and a single additional keyword for memoization. We

also do not require or support any additional type annotations, region, or effect declarations.

Our model supports local reasoning, which is a term used in separation logic that refers to

the ability to reason about the behavior of a function and its usage of the heap in isolation from

any other functions — including concurrent functions — that mutate the heap [59]. Providing

this property requires that the language and runtime ensure separation. That is, at any point in

the execution of the program, there exists a partition of the state such that each concurrent task

has private ownership of the portion of the heap that it accesses. The only impure portion of the

language that accesses the shared heap and thus requires proof of this property is mutable state.

In both of the execution models describe above, separation holds. In the serial model, there is

no concurrent access to the heap, ensuring that any task that accesses the heap has exclusive access

to it. In the transactional model, each task performs its updates in isolation from the global heap

and only modifies it during transactional commit, ensuring that each task is executed as if it had

exclusive ownership of the portion of the heap that it accessed throughout its execution.

Performance is shown through a series of example benchmarks and comparison to other im-

plementations.

1.1.2 Memoization

The first feature is memoization, also known as function caching. This technique takes advantage

of pure function calls by noting that once a pure function has been invoked with a given set of argu-

ments, all future calls sharing those arguments may simple reuse the first result. This approach has

long been used by hand, particularly in dynamically-typed functional languages such as Scheme

and LISP. Most efficient solutions to dynamic programming, state search, and SAT/SMT solvers

use some variant of result caching to turn exponential problems into polynomial ones. Our de-

sign provides this feature as an annotation to function definitions. This feature is deterministic.

While much work was previously done in the context of dynamic languages on making memoiza-

3

tion efficient, our extension of those concepts to a strongly typed, parallel language and runtime is

novel [61, 62].

Parallel Fibonacci A simple example of the usefulness of memoization is in the calculation of

the Fibonacci numbers, as this program is exponential in the naı̈ve case but linear if each Fibonacci

number is calculated only once. In the code below, the Fibonacci numbers are computed in parallel

and with memoization.

mfun pfib i = (case i

of 0 => 0

| 1 => 1

| n => let

val (a,b) = (| pfib i-1, pfib i-2 |)

in

a+b

end

(* end case *))

Parallelism is introduced by the parallel tuple construct used in the two recursive calls. Memoiza-

tion is introduced through the use of the keyword mfun, which is a hint to the runtime that it might

be profitable to cache the results from evaluating the pfib function.

Without memoization, the user has two options for implementing the parallel calculation of

Fibonacci numbers manually:

• Pass along and return a cache of computed values, merging them after each parallel subtask

completes.

• Dramatically transform the program based on deeper understanding of the dependency be-

tween tasks so that fewer values need to be recomputed.

4

The first option requires significantly more work and is particularly unfortunate for this pro-

gram since so little work (just a single addition) is done at each parallel step. The work done to

merge the cache will dominate the addition, even with very efficient operations to merge the data.

The second option requires reordering the computation so that parallel tasks are only spawned

when the tasks will not repeat a previous computation. In this example, that second option will

also remove all of the parallelism, as there are no subcomputations that can be performed in parallel

without possibly repeating previous computations.

1.1.3 Mutable state

The second feature is mutable state. We have extended our language with the traditional Standard

ML mechanisms for mutable storage — the ref cell and array type. In a sequential context,

these features are deterministic. In a parallel context, the allowable interleavings of concurrent

expressions that manipulate state determine the semantics. We provide two different execution

models for mutable state that affect these interleavings, both of which are a compile-time decision

for the programmer and require no additional annotations.

• Serial behavior ensures that any two expressions that modify state shared between them will

be executed in sequential program order.

• Transactional execution also allows multiple expressions that modify state to execute con-

currently, but the first expression to complete will have its changes reflected in memory.

The serial execution model is deterministic. The results of a program that uses these features

are guaranteed to be the same under a parallel execution as they were in a sequential execution.

The transactional execution model, however, may return not only a different result than the

sequential execution in parallel but also may return a different result on each parallel execution.

That said, these results are not completely non-deterministic, but are linearizable. That is, any two

functions called in parallel with one another will appear to the caller as if one of the two of them

5

ran to completion in isolation of the other, though it provides no guarantee on which one will do so.

This model provides the programmer the ability to perform local reasoning, which allows them to

reason about the behavior of their function in isolation from any changes that occur in concurrent

pieces of code.

The goal of our state design is to remain faithful to stateful programming in Standard ML while

at the same time providing both good parallel performance and code understandability. While there

has been a wealth of research on stateful programming with locks, transactions, and linearizable

data structures, ours is unique in that it does not require any explicit annotations of locking, trans-

action regions, or effects, unlike previous systems [41, 42].

Best move so far In games such as Pousse, the problem is to come up with the best possible move

in a limited amount of time [7]. The inter-thread communication in this type of program is small

(update the “best known move”), since the search space does not feature repeated positions that

would benefit from memoization and the space is easily subdivided up-front into parallel threads

of work. In the example below, the code update_best checks the best move so far to determine

if it should be updated and, if so, replaces the value in the global mutable state. When called from

multiple threads without any protection, there is a race condition if both of them decide to update

but the final writer’s score is not actually the best. In both of the state models provided by our

system, the resulting code will be deterministic, though this is not the case for mutable state in all

programs.

• In the serial model, concurrent inspections of the state space are not allowed to run in paral-

lel, since there is code that mutates shared state in them. The program execution is sequential.

• In the transactional model, the first writer to shared state wins and any other writer will be

aborted and retried.

In all cases, the locking and retry operations are generated automatically by the compiler and

runtime without user annotation. The following code provides an example of a core update function

6

that can be executed concurrently from multiple parallel tasks:

val best = ref EMPTY

fun update_best(new_move, score) =

case !best

of EMPTY => (best := MOVE(new_move, score))

| MOVE(_, old_score) => (

if (score > old_score)

then (best := MOVE(new_move, score))

else ()

Without our implementation of mutable state, in a non-deterministic language the programmer

would have to implement locking to update both the best new move and new high score. While

not a difficult solution in this case, the programmer is then also responsible for ensuring that any

other locks that might be used in conjunction with these are always used in the same order or risk

deadlock. Further, for all future changes to the program, any access to the value best must occur

ether within a properly-locked section or outside of the parallel work sections that update it. None

of these issues need to be handled by the programmer in our system.

1.2 Challenge with current deterministic languages

Parallel functional programming languages are a good fit for algorithms that have independent,

scalable pieces of work. Since there is no or limited communication between those pieces of work,

the compiler and runtime are free to optimize the implementation while still maintaining determin-

istic behavior. In the presence of communication, though, the compiler and runtime will at least

have to accommodate synchronization issues. On the examples mentioned before — dynamic pro-

gramming, state search, and SAT/SMT solvers — the shared state required for a high-performance

implementation requires significant synchronization and coordination in order to provide determin-

istic executions. For these problems, that level of determinism is unnecessary, as the correctness

7

of their results does not require identical executions and intermediate states. Additionally, these

problems might even have multiple correct solutions, all of which are equivalently useful. Deter-

minism is not only overkill for many problems, but results in degraded performance and a more

complicated programming model.

1.3 Contributions

The unique contribution of this work is the use of declarative annotations that make it easy for the

programmer to use shared state while enabling rich automatic compiler and runtime optimizations.

Memoization is particularly well-suited to automatic optimizations when relaxing the need to al-

ways cache and return results. If we always try to cache and share results, then inter-processor

communication on the shared memory location can cause scalability issues, as seen in the imple-

mentation of lazy evaluation in Haskell compilers even when synchronization is removed [36].

Further, under aggressive caching strategies the cache can grow quickly, potentially both using

excessive memory for the cache and defeating the weak generational hypothesis that most young

objects are not long-lived, resulting in poor garbage collector behavior. Our major contribution in

memoization is the efficient implementation of caching with least recently used (LRU) replacement

and a growth strategy tuned to avoid excessive growth.

Our model of state does not require any annotations, either of the operations performed by the

program or of the desired locking behavior. The removal of these annotations allows us to pro-

vide the programmer with the freedom to choose which implementation strategy delivers a good

tradeoff of performance and predictability. In addition, our transactional implementation differs

from other language implementations that are linearizable by avoiding requiring either explicit use

of software transactional memory (STM) libraries or special, safe data structures provided by the

implementation. With STM, the programmer needs to both reason about which transactional con-

text or contexts a function can be called from in order to write both correct and high-performance

code, since unnecessarily creating nested transactions increases overheads. With implementation-

8

provided data structures, if the programmer either needs to use multiple of them together or needs

a richer data structure, they must either reason globally about the concurrent operations that could

be performed or must create their own linearizable data structure. Our approach avoids all of these

issues.

Linearizability has mainly been investigated in terms of individual object-oriented classes or

functional datatypes and their related operations. Our transactional state model extends this con-

cept to the entire programming language, providing linearizability without user annotations or

global reasoning.

1.4 Dissertation overview

The rest of this dissertation elaborates the design, implementation, and evaluation of this thesis.

• Chapter 2 provides the background on existing models for communication between parallel

threads, the Manticore system, and Parallel ML.

• Chapter 3 describes the implementation of the memoization feature.

• Chapter 4 similarly details the implementation of state.

• Chapter 5 provides an operational semantics for a reduced version of Standard ML, extended

with memoization, ref cells, and a single parallel language feature from Parallel ML, par-

allel tuples.

• Chapter 6 surveys related work.

• Chapter 7 concludes.

9

CHAPTER 2

BACKGROUND

The initial design and implementation of the Manticore platform excluded shared mutable state at

the language level because the programming model is significantly simpler in the absence of that

state. For the user, a language that is parallel but where the parallel subtasks cannot communicate

eliminates both many correctness errors and race conditions. For the compiler implementer, re-

moving this communication reduces both the analysis burden of safely performing optimizations

and the implementation burden associated with efficient synchronization, locking, and memory

updates across parallel computations. Our prior work has shown that we can write benchmarks in

a pure functional language, Parallel ML (PML), that both provides good sequential performance

and that scales well on parallel hardware up to an AMD 48 core machine and an Intel 32 core

machine [10].

Unfortunately, there are some algorithms whose efficient parallel implementation requires com-

munication between subtasks. For example, in state search problems communication can reduce

a tree of computations to a directed acyclic graph (DAG) through sharing of results. Any par-

allel algorithm that operates on a large shared data structure, such as triangle mesh tesselation,

requires some form of communication in order to update that shared data structure. In these two

problems, the use of shared state is often not just constant factors faster than the intuitive parallel

implementation, but is asymptotically faster.

The approach we take in this work is to develop mechanisms that extend our programming

model with the ability to communicate between subtasks. Because our model lacks explicit threads

and do not want to complicate our model with them, these mechanisms are necessarily limited.

In this chapter, first we provide background information on several different implementation

models for shared-state parallel programming. Then, we describe our programming model and the

extensions we have made, along with how those extensions relate to those implementation models.

Finally, we describe the target hardware of our system, on which benchmarks are evaluated in this

10

work.

2.1 Non-deterministic languages

Languages such as C provide semantic guarantees of correctness or race freedom in the presence

of shared memory access between threads only as far as those provided by the hardware memory

model. In order to produce programs that are deterministic, there is access to low-level atomic

memory update instructions and libraries that provide a variety of lock and barrier instructions [16].

These instructions do not guarantee even race or deadlock freedom, much less determinism. It is

the burden of the programmer to write, test, and debug their programs.

Language extensions such as Cilk++ and libraries such as OpenMP do not reduce this bur-

den [12, 19]. While both of these approaches provide a dialect of C that is more well-behaved, it

is still the burden of the programmer to both adapt their program to the model required by those

approaches and ensure that no other portion of their program or any library that they use violates

that programming model.

2.2 Deterministic languages

Pure functional languages use stepwise parallelism with merging of intermediate results. The

previous implementation of Parallel ML (PML) provides this model, as does the Glasgow Parallel

Haskell (GPH) project through its par and pseq constructs. In these models, pure expressions

are performed in a parallel without sharing information, merging the threads of computation at

regular intervals to combine intermediate results and then again perform a parallel step of work.

This merge can be performed either by joining the parallel threads to collect their intermediate

results and then fork threads again or through a communication mechanism such as channels that

allows all threads to wait until a defined point in the execution of the program to combine those

results. This model works well at low numbers of threads, but suffers from poor scalability due to

11

the sequential merge operations.

2.3 Atomicity-based language models

Transactional memory provides a model in-between completely non-deterministic programming

models and deterministic ones and was inspired by the work in database systems on atomicity [66].

In this programming model, the programmer marks shared data that they want to control the access

to as transactional. This data is then read and written with special primitives and wrapped in begin

and end operations. The hardware or software will ensure that either all of the values read and

written between those two operations are the same as if they were read and written outside the

presence of any other threads. Otherwise, the wrapped region of code is transparently executed

again. These systems have been tuned for performance over the last decade, but many programmer

burdens remain:

• Overall system performance depends on transaction size, which also will need to vary for

different machines.

• In systems that allow data to be accessed outside of transactions, ensuring correctness re-

quires global reasoning about all variables and all possible transaction interactions.

• Individual transactional library settings have different performance based on the ratio of

conflicting to non-conflicting transactions, which again may be machine-specific.

The Galois [46] system provides an alternative programming model to explicit transactions that

also provides atomic semantics. In this model, experienced developers write custom implementa-

tions of objects such as queues and graphs that can be shared across threads but which are safe for

concurrent access. This model allows users of the language to write code with atomic semantics

without specifying the extent of transactions explicitly. The main challenge, though, is when there

is need for an atomic library object that does not exist. For example, if the program requires an

12

object to be atomically removed from a queue and inserted into a stack, unless the library provides

a merged stack/queue object, there will be a window where concurrent threads may experience a

state where the object is present in neither the queue nor the stack.

2.4 Manticore

Before describing the memoization and mutable state features, we first describe the design and

implementation of the host compiler and runtime, Manticore. The Manticore project began in

2007, with the goal of designing a compiler and runtime for general-purpose applications on

multicore processors. In this work, we are focused on the interaction of our language features

with the implicitly-threaded parallel features, particularly parallel tuples, parallel arrays, and par-

allel bindings. Interaction of the features implemented in this work with parallel case and the

explicitly-threaded features of PML is left for future work. A more complete discussion of their

implementation and the explicitly-threaded features of PML is available in our journal paper [24].

2.4.1 Implicitly-threaded parallelism

PML provides implicitly-threaded parallel versions of a number of sequential forms. These con-

structs can be viewed as hints to the compiler and runtime system about which computations are

good candidates for parallel execution. Most of these constructs have deterministic semantics,

which are specified by a translation to equivalent sequential forms [67]. Having a deterministic

semantics is important for several reasons:

• it gives the programmer a predictable programming model,

• algorithms can be designed and debugged as sequential code before porting to a parallel

implementation, and

• it formalizes the expected behavior of the compiler.

13

datatype tree
= Lf of int
| Nd of tree * tree

fun trProd (Lf i) = i
| trProd (Nd (tL, tR)) =

(op *) (|trProd1 tL, trProd1 tR|)

Figure 2.1: Tree product with parallel tuples.

The requirement to preserve a sequential semantics does place a burden on the implementation.

For example, we must verify that subcomputations in an implicit-parallel construct do not send

or receive messages. If they do so, the construct must be executed sequentially. Similarly, if a

subcomputation raises an exception, the implementation must delay the delivery of the exception

until all sequentially prior computations have terminated.

Parallel tuples

Parallel-tuple expressions are the simplest implicitly-threaded construct in PML. The expression

(|e1, . . ., en|)

serves as a hint to the compiler and runtime that the subexpressions e1, . . . , en may be usefully

evaluated in parallel. This construct describes a fork-join parallel decomposition, where up to n

threads may be forked to compute the expression. There is an implicit barrier synchronization

on the completion of all of the subcomputations. The result is a normal tuple value. Figure 2.1

illustrates the use of parallel tuples to compute the product of the leaves of a binary tree of integers.

The sequential semantics of parallel tuples is trivial: they are evaluated simply as sequential

tuples. The sequential semantics immediately determines the behavior of an exception-raising

subexpression: if an exception is raised when computing its ith element, then we must wait until

all preceding elements have been computed before propagating the exception.

14

Parallel arrays

Support for parallel computations on arrays is common in parallel languages. In PML, we sup-

port such computations using a nested parallel array mechanism that was inspired by NESL [11],

Nepal [17], and DPH [18]. A parallel array expression has the form

[|e1, . . ., en|]

which constructs an array of n elements. The delimiters [| |] alert the compiler that the ei may

be evaluated in parallel.

Parallel array values may also be constructed using parallel comprehensions, which allow con-

cise expressions of parallel loops. A comprehension has the general form

[| e | p1 in e1, . . ., pn in en where ef |]

where e is an expression (with free variables bound in the pi) computing the elements of the array,

the pi are patterns binding the elements of the ei, which are array-valued expressions, and ef is an

optional boolean-valued expression that is used to filter the input. If the input arrays have different

lengths, all are truncated to the length of the shortest input, and they are processed, in parallel, in

lock-step.1 For convenience, we also provide a parallel range form

[| el to eh by es |]

which is useful in combination with comprehensions. (The step expression “by es” is optional,

and defaults to “by 1.”)

Parallel bindings

Parallel tuples and arrays provide fork-join patterns of computation, but in some cases more flexible

scheduling is desirable. In particular, we may wish to execute some computations speculatively.

1. This behavior is known as zip semantics, since the comprehension loops over the zip of the inputs. Both NESL
and Nepal use zip semantics, but Data Parallel Haskell [18] supports both zip semantics and Cartesian-product se-
mantics where the iteration is over the product of the inputs.

15

PML provides the parallel binding form

let pval p = e1
in
e2

end

that hints to the system that running e1 in parallel with e2 would be profitable. The sequential

semantics of a parallel binding are similar to lazy evaluation: the binding of the value of e1 to the

pattern p is delayed until one of the variables in p is used. Thus, if an exception were to be raised

in e1 or the matching to the pattern p were to fail, it is raised at the point where a variable from

p is first used. In the parallel implementation, we use eager evaluation for parallel bindings, but

computations are canceled when the main thread of control reaches a point where their result is

guaranteed never to be demanded.

Parallel case

The parallel case expression form is a parallel non-deterministic counterpart to SML’s sequential

case form. Parallel case expressions have the following structure:

pcase e1 & . . . & em
of π1,1 & . . . & πm,1 => f1
| . . .
| π1,n & . . . & πm,n => fn

Here both e and f range over expressions. The expressions ei, which we refer to as the subcompu-

tations of the parallel case, evaluate in parallel with one another. Note that pcase uses ampersands

(&) to separate both the subcomputations and the corresponding patterns from one another. This

syntax simultaneously avoids potential confusion with tuples and tuple patterns, and recalls the

related join-pattern syntax of JoCaml [51].

The πi,j in a parallel case are parallel patterns, which are either normal patterns or the special

non-deterministic wildcard ?. A normal wildcard matches a finished computation and effectively

discards it by not binding its result to a name. A non-deterministic wildcard, by contrast, matches

a computation (and does not name it) even if it has not yet finished.

16

2.4.2 Runtime model

Our runtime system consists of a small core written in C, which implements a processor ab-

stract layer and garbage collection. The rest of our runtime system, such as thread scheduling

and message-passing, is written in ML extended with first-class continuations and mutable data

structures.

Process abstraction Our system has three distinct notions of process abstraction:

1. Fibers are unadorned threads of control. A suspended fiber is represented as a unit continu-

ation.

2. Threads correspond to the explicit threads of our language. Because threads may execute

fine-grain parallel computations, a single thread can consist of multiple fibers running in

parallel.

3. Virtual processors (“VProcs”) are an abstraction of a hardware processor. Each VProc is

hosted by its own pthread and we use use the Linux processor affinity extension to bind

pthreads to distinct cores.

Each VProc has local state, including a local heap and scheduling queue. A VProc runs at

most one fiber at a time, and, furthermore, is the only means of running fibers. The VProc

that is currently running a fiber is called the host VProc of the fiber.

We have designed our system to minimize the sharing of mutable state between VProcs. We

distinguish between three types of VProc state: fiber-local state, which is local to each individual

computation; VProc-local state, which is only accessed by code running on the VProc; and global

state, which is accessed by other VProcs. The thread-atomic state, such as that of machine registers,

is protected by limiting context switches to “safe points” (i.e., heap-limit checks).

17

Garbage collection Functional languages tend to have high allocation rates and require effi-

cient garbage collectors. We have designed our heap architecture and garbage collector to max-

imize locality and to minimize synchronization between processors. Our design is based on a

combination of Appel’s semi-generational collector [2] and the approach of Doligez, Leroy, and

Gonthier [21, 20].

The heap is organized into a fixed-size local heap for each VProc and a shared global heap,

which is a collection of memory chunks. Following Appel [2], each local heap is divided into a

nursery where new objects are allocated and an old-object region. In addition to its local heap, each

VProc “owns” a chunk of the global heap. We maintain the invariant that there are no pointers into

the local heap from either the global heap or another VProc’s local heap. Our runtime system uses

four different kinds of garbage collection:

1. Minor GC is used to collect the nursery by copying live data into the old region of the local

heap. After a minor GC, the remaining free space in the local heap is divided into half and

the upper half is used as the new nursery.

2. Major GC is used to collect the old data in the local heap. The major collector is invoked at

the end of a minor collection when the amount of local free space is below some threshold.

The major collector copies the live old data into the global heap (except for the data that was

just copied by the minor collector; it is left in the local heap).

3. Promotion is used to copy objects from the local heap to the global heap when they might

become visible to other VProcs. For example, if a thread is going to send a message, then

the message must be promoted first, since the receiver may be running on a remote VProc.

4. Global GC is used to collect the global heap. The global collector is invoked when a major

collection detects that the amount of data allocated in the global heap has exceeded a thresh-

old. The global collector is a stop-the-world parallel collector. We currently do not attempt

to load-balance the global collector; each VProc traces the from-space data that is reachable

18

old local
data

nursery

old local
data

Minor GC

Major GC

Proc 1 heap Proc 2 heap

Global heap

Figure 2.2: Heap architecture for two processors. VProc 1 is running a minor collection, while
VProc 2 is running a major collection.

from its roots, stopping when it hits a forward pointer.

Figure 2.2 shows the heap for a two-processor system.

There are two important consequences of our heap design. On the positive side, most garbage-

collection activity is asynchronous. The minor collections require no synchronization with other

VProcs, and major collections and promotions only require synchronization when the VProc’s

global chunk becomes full and a new chunk must be acquired. The major drawback of this design

is that any data that might be shared across VProcs must be promoted into the global heap. A more

detailed description and analysis is available in our workshop paper on the Manticore garbage

collector [5].

19

Inter-VProc communication Because of our heap architecture, code running on one VProc

cannot directly access data that lives on another VProc, but we do allow a VProc to push a fiber

onto another VProc. Each VProc has a landing pad, which is a stack that any VProc may push

a fiber onto. Each VProc periodically checks its landing pad and puts any fibers there into its

scheduling queue. If the originating VProc wants the fiber to be scheduled immediately, it can

send a POSIX signal to the other VProc, which will cause it to check its landing pad.

Work stealing Our runtime system uses work stealing [15, 35] to load-balance fine-grain parallel

computations. The basic strategy is to create a group of workers, one per VProc, that collaborate

on the computation. Each worker maintains a deque (double-ended queue) of tasks, represented

as continuations, in the global heap.2 When a worker reaches a fork in the computation, it pushes

a task for one branch on the bottom of the deque and continues executing the other branch. Upon

return, it pops the a task off the bottom of the deque and executes it. If the deque is empty, then

the worker steals a task from the top of some other worker’s deque. Because the deques are in

the global heap, the tasks must be promoted before they can be pushed onto the deque. These

promotions account for almost 50% of the overhead in the work-stealing scheduler.

2.4.3 Compilation model

The compiler operates on the whole program at once, reading in the files in the source code along-

side the sources from the runtime library. As covered in more detail in an earlier paper [23], there

are six distinct intermediate representations (IRs) in the Manticore compiler:

1. Parse tree — the product of the parser.

2. AST — an explicitly-typed abstract-syntax tree representation.

3. BOM — a direct-style normalized λ-calculus.

2. Our notion of a task is similar to GHC’s notion of a spark [53].

20

4. CPS — a continuation passing style λ-calculus.

5. CFG — a first-order control-flow-graph representation.

6. MLTree — the expression tree representation used by the MLRISC code generation frame-

work [27].

All of the features described in this work are implemented as a combination of new libraries,

runtime features, and extensions of the frontend phases of the compiler — the Parse Tree, AST,

and BOM representations. No modifications were required to the backend.

2.5 Hardware

In addition to the ongoing increase in the core count of processors, modern servers also have

between 2 and 4 processors. Modern multi-processor systems use a non-uniform memory archi-

tecture (NUMA), where each processor is attached to a private bank of memory and requests for

data in those private banks from another processor are serviced via the interconnect between the

processors [9]. This design presents an additional challenge, as poor allocation behavior can place

all of the frequently-used data on a single NUMA node’s memory bank and then the requests from

the other processors may saturate the interconnect and result in poor program performance where

an alternative allocation strategy may have not resulted in this bottleneck. Further complicating

efficient use of these systems, the default allocation policies for physical memory pages are also

dynamic. The two most popular policies are interleaved and first-touch. In the interleaved policy,

memory pages are allocated in a round-robin strategy around the processors. In the first-touch pol-

icy, memory pages are allocated on the closest physical memory bank to the executing code that

has unallocated pages. In our system, we rely on the first-touch policy (which is also the default

behavior) and have engineering our system to attempt to preserve locality. This work is the first

attempt to implement a parallel hash table that addresses these NUMA issues.

21

CHAPTER 3

MEMOIZATION

Memoization, also known as function caching, is a technique that caches previously computed

results to avoid recomputing them unnecessarily. This optimization exploits the fact that a pure

function will always return the same result when called with the same arguments. The tradeoff,

though, is that in order to save time by avoiding recomputation, the system must now manage the

cache of values, which costs both time and space. The space cost is associated with the storage of

the cache of values in memory. The time costs are both from looking up entries in the cache to see

if they have already been computed and in managing the cache itself. For example, the runtime

may need to to dynamically grow or shrink the size of the cache.

While memoization has long been used in sequential programming languages to avoid sequen-

tial redundant computations, we are introducing it to a parallel programming language in order to

also avoid redundant computations across separate parallel threads. Without the explicit addition

of this feature to the language and runtime, parallel threads could each memoize the results of their

computations, but would have to join the parallel threadsand then perform a sequential merge of

their results before again forking parallel work to share results across those parallel threads. This

feature also preserves deterministic behavior, so long as the memoized function is pure. Since the

result of the program with memoization is the same as the result of the program without memoiza-

tion, reasoning is easy for the programmer.

This feature is designed for use in portions of the program where both recomputation costs are

high and restructuring the program to explicitly share results would either be unwieldy or result in

a loss of parallelism. For example, in Section 1.1.2, we presented the parallel Fibonacci algorithm.

In this case, recomputation of previously computed results is expensive and restructuring the com-

putation to share prior results produces a program that is sequential. In Section 3.7.2, we evaluate

this benchmark and our implementation of memoization in more detail.

A more compelling example is game search. In this example, multiple parallel threads search-

22

ing for the best move may evaluate the same game configuration repeatedly if the result of evalu-

ating those configurations is not shared. In Section 3.7.4, we provide a search problem as a bench-

mark and show how memoization allows the programmer to share evaluation results across parallel

threads without either synchronizing the threads or resorting to non-deterministic programming.

We have added memoization to our programming model through an extension of the syntax of

the fun keyword in Standard ML. As in the work on selective memoization by Harper et al. [1], we

use the keyword mfun to mark functions that the programmer would like memoized. Unlike in that

prior work, our system does not guarantee memoization but, similarly to the parallel language fea-

tures in Parallel ML, this annotation is a hint to the system that memoization may be profitable for

a given function. Since the results of memoization on the evaluation of pure functions are equiv-

alent to the function evaluation without memoization, our runtime system is provided additional

freedom to perform optimizations that reduce overheads that could otherwise limit parallelism.

In this chapter, we first describe and explore the translation of the surface language implemen-

tation of memoization to library calls. Then, we explore implementation alternatives for those

library calls, and finally evaluate the performance of these alternatives with some benchmarks.

3.1 Core-PML with memoization

Figure 3.1 contains the base language that we will use to explain the semantics of this work.

This language is a core subset of the Parallel ML (PML) language, extended with memoization

and mutable state. Variables, constants, functions, application, case statements (with exactly two

branches), and binding behave as in Standard ML. The parallel tuple (pair) form evaluates a two

expressions in parallel. In PML the evaluation steps for these two expressions have an unspecified

interleaving. Similarly, the parallel binding form evaluates an expression in parallel with the body

of the binding form, waiting for that parallel expression to complete when its bound variable is

accessed in the body. Memoization is provided through a new keyword, mfun, which otherwise

has the same syntax as a normal function declaration.

23

e ∶∶= x variables
∣ b constants
∣ () unit value
∣ SOME e option type with value
∣ NONE option type with no value
∣ mfun f x= e1 in e2 memoized functions
∣ fun f x= e1 in e2 functions
∣ e1 e2 application
∣ case e1 of p1 ⇒ e2 | p2 ⇒ e3 case analysis
∣ (|e1, e2|) parallel tuples
∣ let p = e1 in e2 bindings
∣ plet p = e1 in e2 parallel bindings

p ∶∶= x
∣ b
∣ ()
∣ (p1, p2)
∣ SOME p
∣ NONE

Figure 3.1: Source language with memoization

3.2 Translation to implement memoization

We translate the language shown in Figure 3.1, which includes the mfun keyword, with the trans-

lation shown in Figure 3.2. This translation replaces the mfun definition with a fun definition and

calls to library functions that implement the caching behavior. These function calls consist of:

• The allocation and creation of the memoization table via the mktable function.

• A function, hash, that maps values of the parameter type down to an integer suitable for

lookup in a generic hashtable. In the current implementation, we restrict the function domain

to those with a single integer parameter.

• A search function, find, that looks up a value in the memoization table.

• An update function, insert, that makes a new cached value available for future calls in the

memoization table.

24

T [[x]] = x

T [[b]] = b

T [[mfun f x= e1 in e2]] = let table = mkTable() in
fun f x=
let hashed = hash (x) in
let entry = find (table, hashed) in
case entry

of SOME v ⇒ v

| NONE ⇒
let result = T [[e1]] in
let () = insert (table, hashed, result) in
result

in T [[e2]]
T [[fun f x= e1 in e2]] = fun f x=T [[e1]] in T [[e2]]

T [[e1 e2]] = T [[e1]] T [[e2]]
T [[(|e1, e2|)]] = (|T [[e1]], T [[e2]]|)

T [[let p = e1 in e2]] = let p = T [[e1]] in T [[e2]]
T [[plet p = e1 in e2]] = plet p = T [[e1]] in T [[e2]]

T [[ref e]] = ref (T [[e]])
T [[!e]] = !(T [[e]])

T [[e1 := e2]] = (T [[e1]]) := (T [[e2]])

Figure 3.2: Translation to remove memoization.

3.3 Memoization table interface and behavior

As the previous section implies, the performance of memoization is dominated by the implemen-

tation of the memoization table. Over the next several sections, we investigate several alternative

implementations of the memoization table that explore different points in the design space.

Each of the implementations of the memoization table implement the same signature:

signature MEMO_TABLE =

sig

25

type ’a table

val insert : ’a table * int * ’a -> unit

val find : ’a table * int -> ’a option

end

As a simplification for the implementation, this signature currently restricts the domain of hash

keys to integers. In Section 7.1.1, we discuss extending this mechanism to handle more arbitrary

types and the case where hash keys collide.

Since memoization is an optimization, the implementation requirements are looser than those

of a traditional hash table, which must be safe for concurrent access [65]. In particular, the imple-

mentations described in this chapter may take advantage of the following properties:

• Insertions need not be visible to subsequent find operations, even within the same function

that performed the insertion.

• There is no guarantee which insertion will win when two are performed simultaneously.

Both of these properties are safe because memoization is an optimization that relies on the purity

of the function whose values are cached. In the case where a function is evaluated even though a

cached result should have been available, the resulting value from the computation is the same as

if the cached result had been found and returned. These properties remove all need for atomic op-

erations or locking and greatly simplify the implementation, at the cost of unpredictable execution

behavior.

The insert function adds an entry to the table in the slot specified by the integer. The find

function looks up an entry in the table. Allocation of the memoization table implementations

varies for each of the different structures, depending on their configuration space (e.g., starting

size, maximum size, etc.).

26

3.4 Full size memoization table

When designing a memoization table that maps from integer hash keys to arbitrary values, one

simplifying design is to assume that there is sufficient space to store all of the hash keys in memory

and that the associated space cost is not prohibitive. While clearly not a design that will scale to

all problems, this approach allows us to investigate some performance tradeoffs in data layout in

isolation. This design requires problems whose keys are in a range that fits into memory and where

there are no collisions.

If we do nothing special but simply allocate a large array to hold all of the values, then the

default behavior of the memory system will be to physically assign an underlying memory page to

each block of that array on the associated memory subsystem of the node that first touches it [9].

As mentioned in Section 2.5, when there are multiple NUMA nodes in the system, this allocation

behavior can result in program slowdowns due to bandwidth saturation if most of the values used

are located on only one NUMA node.

There are two obvious alternative designs for a hash table that is memory system aware. First,

we could distribute the data at each NUMA node, caching only values discovered at that node. Al-

ternatively, we could partition the data, so that both the hash values are split across more partitions

and we can support larger table sizes than the simple single array approach.

3.4.1 Simple hash table

The default memoization table is a datatype consisting of an integer that counts the maximum size

of the table and an array that holds pointers to the values. To distinguish unset entries, we store an

option type, using an initial NONE value in all slots to represent an unset entry. The datatype is

defined below:

type ’a table = int * ’a option Array.array

27

A picture of the representation in-memory is shown in Figure 3.3. The maximum size — in

this example, six — is stored in a tuple alongside a pointer to the underlying array. The array then

can either contain the in-place value NONE, indicating that no element has yet been stored there,

or a pointer to a value wrapped in the constructor SOME. Unfortunately, due to representation

limitations, our runtime cannot currently store simple values (such as an integer wrapped in an

option) inline in the array.

max arr

NONE SOME

v

NONE NONE NONE NONE

Figure 3.3: The in-memory representation of the simple memo table approach.

Insert and lookup are implemented as direct references into this array, as shown in Figure 3.4.

This implementation is designed to support only hash key values that are within the allocated

size of the memoization table, so it raises an exception if a key greater than that allocated size is

provided.

fun insert ((max, arr), key, item) = (
if (key >= max)
then raise Fail "Index out of range"
else ();
Array.update (arr, key, SOME item))

fun find ((max, arr), key) = (
if (key >= max)
then raise Fail "Index out of range"
else ();
Array.sub (arr, key))

Figure 3.4: Insertion and lookup in a simple full-sized memoization table implementation.

28

3.4.2 Distributed

In the distributed memoization implementation, each NUMA node in the system has a separate

copy of the simple memoization table described previously. This implementation introduces one

extra level of indirection (shared among all of the nodes) to retrieve the target table and removes

some sharing, but also reduces the amount of memory traffic between NUMA nodes because a

given node will never look up values from another NUMA node. The datatype extends the previous

implementation by creating an array of the memoization tables. The datatype is defined below:

type ’a table = int * ’a option Array.array option Array.array

Allocation of the individual memoization tables is done lazily. This approach has two benefits.

First, it avoids creating any memoization tables that will never be accessed. More importantly, by

waiting for the first access to perform the initialization, we ensure that memoization table will be

located on a physical memory page close to the thread that accesses it, as described in Section 2.5,

rather than allocating it in one local to the node that happened to allocate the memo table. In

Figure 3.5, there is an example memory layout of the data structure used in a four-node machine

(similar to the benchmark machine described in Section 3.7.1). Two of the nodes have accessed

the memo table, causing the underlying arrays, again of size six, to be created. The second node

has computed and stored the second value, but that value will not be made available to processors

on other nodes.

The insert function must first check to see if the per-node array has already been created.

If it has not, the code creates it and initializes the value to NONE. This initialization step, since it

touches all of the memory pages of the array, forces them to be allocated on the physical memory

bank located adjacent to the currently executing processor. The find operation simply checks

the appropriate key within per-node array, if that array exists. The corresponding PML code is in

Figure 3.6.

29

max arr

NONE SOME

v

NONE NONE NONE NONE

NONE SOME SOMENONE

NONE NONE NONE NONE NONENONE

Figure 3.5: The in-memory representation of the distributed memo table approach.

3.4.3 Partitioned

The final full-sized table implementation partitions the values into chunks, to test the performance

when we explicitly balance those chunks across the NUMA nodes in the system. This implementa-

tion is nearly identical in representation to the distributed implementation except that it also has an

integer to track how many elements are in the per-partition arrays. The datatype is defined below:

type ’a table = int * int * ’a option Array.array option Array.array

The partitioned implementation cycles each consecutive hash value across the separate arrays

in a round-robin fashion. So, on a system with four partitions and with the six entries from the

previous examples, the layout would be as shown in Figure 3.7. The value stored, whose hash

value corresponds to the second index, is now in the first entry of the second partition. Unlike the

distributed design, that value is available to processors on all nodes.

Insertion and lookup both first compute the partition by dividing the hash value by the size

of the partition (leafSize in the code below). Then, the individual slot used for the hash value

is just the remainder when divided by the size of the partition. The implementation is shown in

Figure 3.8.

30

fun insert ((max, arr), key, item) = (
if (key >= max)
then raise Fail "Index out of range"
else ();
case Array.sub (arr, VProcUtils.node())
of NONE => (

let
val newarr = Array.array (max, NONE)
val _ = Array.update (newarr, key, SOME item)

in
Array.update (arr, VProcUtils.node (), SOME newarr)

end)
| SOME internal => (

Array.update (internal, key, SOME item)))

fun find ((max, arr), key) = (
if (key >= max)
then raise Fail "Index out of range"
else ();
(case Array.sub (arr, VProcUtils.node())
of NONE => NONE
| SOME internal => Array.sub (internal, key)))

Figure 3.6: Insertion and lookup in a full-size distributed memoization table implementation.

max leafSize

NONESOME

v

NONE SOME SOMENONE

NONE NONE

arr

Figure 3.7: The in-memory representation of the partitioned memo table approach.

31

fun insert ((max, leafSize, arr), key, item) =
if (key >= max)
then raise Fail "Index out of range"
else ();
case Array.sub (arr, key div leafSize)
of NONE =>

let
val newarr = Array.array (leafSize, NONE)
val _ = Array.update (newarr, key mod leafSize, SOME item)

in
Array.update (arr, key div leafSize, SOME newarr)

end
| SOME internal =>

Array.update (internal, key mod leafSize, SOME item)

fun find ((max, leafSize, arr), key) =
if (key >= max)
then raise Fail "Index out of range"
else ();
case Array.sub (arr, key div leafSize)
of NONE => NONE
| SOME internal => (Array.sub (internal, key mod leafSize))

Figure 3.8: Insertion and lookup in a full-size partitioned memoization table implementation.

32

3.5 Limited-size memoization table

It is often neither possible nor desirable to allocate sufficient space to memoize every potential

computed value. Some problems, such as the 0-1 knapsack problem described in Section 3.7.3,

use space that is quadratic in the size of the inputs. For those problems, it is not possible to retain

all computed values except for very small input sizes.

Large tables also increase the memory pressure on the garbage collector, increasing the amount

of memory that must be copied and scanned during each global collection. Further, if values are

cached past their useful lifetime, then all of that space is unnecessary overhead.

3.5.1 Fixed size

The fixed-size table extends the partitioned approach described in Section 3.4.3, but contains addi-

tional support for collisions in the memoization table, where two different hash values map to the

same storage location due to a hash value space that is larger than the number of unique locations

in the memoization table. We have chosen this implementation strategy because the partitioned

approach provides better performance than the distributed approach at larger dataset sizes, as de-

scribed in Section 3.7.2.

As in the partitioned implementation, indexes are cycled between the memoization table entries

for each partition. But, rather than guaranteeing that there is sufficient space for all entries, we

instead use a fixed number of elements combined with a finite bucket size for each element, to

handle collisions. The entries in this table thus need to maintain not only the corresponding value,

but also the original key (since many map down to the same element) and an additional piece of

data to help decide which entry to discard if the finite bucket is full. This additional piece of data

is currently a timestamp that corresponds to either the insertion time of the entry or the last time

that it was retrieved, whichever is more recent. These entries use the following type, where the

first element is a long integer used for the timestamp, the second is the key, and the final element

33

is the value:

datatype ’a entry = ENTRY of long * int * ’a

The datatype for the fixed-size table itself is defined below:

(* (Number of nodes, elements per node,

buckets per element, array of arrays) *)

type ’a table = int * int * int *

’a entry option Array.array option Array.array

Again on a system with four partitions and with the six entries from the previous examples,

the layout would be as shown in Figure 3.9. The value stored, which corresponded to the second

global element, is now in the first entry of the second partition and is available to processors on

other nodes. The time value in the entry corresponds to the long value from the ENTRY datatype

above and records the age of the entry. This value is used in the collision-handling policy.

leafSize max

NONESOME

time

NONE SOME SOMENONE

NONE NONE

arr

1 v

nEntries

Figure 3.9: The in-memory representation of the fixed-sized partitioned memo table approach.

34

3.5.2 Replacement policy

Since there are fixed numbers of buckets, a replacement policy is needed to determine which value

stored in a full bucket of a memo table should be overwritten when a new entry needs to be stored.

In this design, we remove the oldest element in the bucket, where the age of an element is the

newer of:

• The time at which it was inserted into the memo table.

• The time at which it was last found and returned.

3.5.3 Finding an entry

The strategy listed above provides a fairly straightforward implementation of insertion, as shown in

Figure 3.10. First, we find the corresponding partition for the key by computing key mod nodes.

Then, starting at the entry within that node’s table, we search through them to find the requested

key. In the event that the element is found, its entry is updated with the new current time.

3.5.4 Insertion and replacement policy

Insertion is more complicated than lookup, owing to the need to replace the oldest element cur-

rently in the memo table. As shown in Figure 3.11, we first create the entry, then ensure that

partition-specific array has been created. After looping through all of the non-matching elements

corresponding to that key, we then update the oldest element of the array to point at the entry.

3.5.5 Improved hashing

One potential problem is that for certain table sizes and hash value domains, there is an unevenly

distributed chance of hash collisions. For example, if the table is of size 6 but the data is of size

9, then items 0-3 and 7-9 will collide, but items 4-5 will not. Further, if the access patterns are

35

fun find ((leafSize, max, nEntries, arr), key) =
case Array.sub (arr, (key mod max) div leafSize)
of NONE => NONE
| SOME internal => (

let
val startIndex = (key mod leafSize) * nEntries
fun findEntry (i) = (
if (i = nEntries)
then NONE
else (

let
val e = Array.sub (internal, startIndex + i)

in
case e
of NONE => findEntry (i+1)
| SOME (ENTRY(_, key’, value)) =>

if key’ = key
then (Array.update (internal, startIndex+i,

SOME (ENTRY(Time.now(), key’, value)));
SOME value)

else (findEntry (i+1))
end))

in
findEntry 0

end)

Figure 3.10: Lookup in a fixed-size partitioned memoization table implementation.

regular and close to the size of the table, then it is possible that very little of the memoization table

will be touched at a given time, but there will still be a large number of collisions.

A common method of addressing this problem is to implement a hashing function of the fol-

lowing form:

h(K) = c ∗K mod P

where c is a large constant and P is a large prime number. This method (known as the division

method) has been shown effective in practice [49], though some choices of constant and prime

will work better than others on particular data sets. Other implementations of hashing also use this

approach [32, 48], and we evaluate its effectiveness in our implementation in the experiments in

36

Section 3.7.

37

fun insert ((leafSize, max, nEntries, arr), key, item) = let
val age = Time.now()
val new = ENTRY (age, key, item)
val subarray = (
case Array.sub (arr, (key mod max) div leafSize)
of NONE =>
let

val newarr = Array.array (leafSize * nEntries, NONE)
val _ = Array.update (arr, (key mod max) div leafSize,

SOME newarr)
in

newarr
end

| SOME arr => arr)
val startIndex = (key mod leafSize) * nEntries
fun insertEntry (i, oldestTime, oldestOffset) =

if i = nEntries
then (Array.update (subarray, startIndex + oldestOffset,

SOME new))
else (

case Array.sub (subarray, startIndex + i)
of NONE => (Array.update (subarray, startIndex + i,

SOME new))
| SOME (ENTRY (t, _, _)) =>

if t < oldestTime
then insertEntry (i+1, t, i)
else insertEntry (i+1, oldestTime, oldestOffset))

in
insertEntry (0, Int.toLong (Option.valOf Int.maxInt), 0)

end

Figure 3.11: Insertion into a fixed-size partitioned memoization table implementation.

38

3.6 Dynamically sized memoization table

Even if the performance of the fixed-sized tables can be made acceptable, the problem still re-

mains of needing to tune the size of the table to both individual benchmarks and input data sets.

Therefore, the final design we investigate is based on work originally done on dynamic hash tables

by Larson [48]. Similar to the partitioned implementation in Section 3.4.3, we start with an array

of pointers to individual partitions. In this case, however, only one partition is allocated initially.

Keys are hashed using the hashing function described in Section 3.5.5 and then found in the ta-

ble by taking the hash value modulo the total current capacity. When the table exceeds a fullness

threshold, we allocate another segment and increase the total available capacity, moving elements

in an on-demand basis from the bucket they previously were mapped to into the new one. In order

to distinguish empty elements from uninitialized ones, we have changed the entry datatype to

use multiple constructors, rather than simply wrapping it in the option type. There are now two

empty states, UNINIT and INIT. The ENTRY constructor again has a first element that is a long

integer used for the timestamp, the second is the key, and the final element is the value:

datatype ’a entry = UNINIT | INIT | ENTRY of long * int * ’a

The datatype for the dynamically sized memoization table itself is defined below. Here we need

to track the current number of segments, a fullness threshold, and a pointer to the actual underlying

array of segments.

(* (number of segments, current status, array of segments) *)

type ’a table = int Array.array * int Array.array *

’a entry Array.array option Array.array

Using our example from before, we have the layout shown in Figure 3.12. The segment array

will always be filled in from left to right as the individual segments fill. All elements of a segment

that have not yet been touched will be set to the value UNINIT.

39

segments itemCount

UNINITENTRY

time

NONESOME NONE

allSegments

1 v

...

...

NONE

UNINITUNINIT

Figure 3.12: The in-memory representation of the dynamically-sized memo table approach.

3.6.1 Increasing capacity

In this design, segments are of a fixed size (we use 200,000 elements) and the table is grown by

one segment each time that the fullness threshold is reached. The best-performing design, shown

in Figure 3.13, uses a fullness threshold that is based on the total number of collisions on a per-

NUMA node basis, allocating a new segment and clearing all of the collision counts. A collision

is an instance where an insertion was performed but there was insufficient space in the memoiza-

tion table and so a previously memoized result was discarded. We also investigated several other

strategies, whose performance is detailed in the context of a benchmark in Section 3.7.3. These

strategies include:

• Tracking the global number of entries in the table

• Tracking the number of entries on a per-NUMA node basis

• Tracking the number of entries on a per-NUMA node basis with padding

• Tracking the global number of collisions

• Tracking the number of collisions on a per-NUMA node basis

40

• Tracking the number of collisions on a per-NUMA node basis with padding

The design tension in this implementation is the tradeoff between tracking a quickly-updating

value across many processors versus tracking a representative number that we can reference inde-

pendently. The padding option involves ensuring that the location where the number of entries or

collisions are tracked fits within its own cache block, to avoid false sharing between processors.

fun growIfNeeded (segments, itemCount, allSegments) = let
val segmentCount = Array.sub (segments, 0)

in
if ((maxCollisions < (Array.sub (itemCount,

VProcUtils.node() * padding)))
andalso segmentCount < maxSegments)

then let
val segmentCount = segmentCount +1
val newSize = (capacity segmentCount -

capacity (segmentCount-1))

* buckets
val new = Array.array (newSize, UNINIT)
val _ = Array.update (allSegments, segmentCount-1,

SOME new)
fun clearCollisions i =

if i < 0
then ()
else (Array.update (itemCount, i*padding, 0);

clearCollisions (i-1))
val _ = clearCollisions (VProcUtils.numNodes() - 1)

in
Array.update (segments, 0, segmentCount)

end
else ()

end

Figure 3.13: Increasing the capacity of a dynamically sized memoization table implementation.

3.6.2 Initializing a segment and its buckets

Each segment has many buckets, each of which holds entries. Due to the dynamically growing

nature of this implementation, before we can perform a find or insert, we first need to ensure

41

that a segment is initialized. In the first segment, all buckets are initialized by default. In any

additional segment, however, buckets begin in the uninitialized state. This engineering decision

was made because when the memoization table grows in size, some of the previously stored entries

may now belong to a new bucket. For example, given an initial capacity of 4, element 5 would

be hashed to bucket 1. But, once the capacity is increased to 8, that same element now belongs in

bucket 5. The decision is therefore whether to move items aggressively or lazily. Following the

example of actual implementations, we lazily initialize buckets [32, 65]. The code in Figure 3.14

lays out the procedure that we follow. If we are in the first segment, we assume that the item is

initialized. If we are in a subsequent segment, then we first perform an initialization of the bucket

that we need to split items from at the prior size. Once it is initialized, we scan the entries for

pre-existing items that hash to the new location and copy them as appropriate. In the event that

there are no items, we mark the new bucket initialized.

This strategy is more like the original strategy proposed by Larson [48] than the more modern

work in Icon [32]. Icon was designed to handle very large numbers of tables and limited available

memory, which led to a design with smaller starting segment sizes that grew through doubling.

The cost of this approach, unfortunately, is significant additional copying at small sizes. Since

memory is less of a concern in our context than theirs — both because memories are larger and

these tables are limited to one per static function definition — we have elected to use larger, fixed-

sized segments.

3.6.3 Finding an entry

With the exception of ensuring initialization of the bucket, the implementation of find is nearly

identical to that of the fixed table. As shown in Figure 3.15, we first distribute the key and then

find the corresponding partition for the key by computing key mod capacity. Then, starting at

the entry within that node’s table, we search through them to find the requested key. In the event

that the element is found, its entry is updated with the new current time.

42

3.6.4 Insertion and replacement policy

Insertion also uses a similar strategy as in the fixed-sized implementation. The code shown in

Figure 3.16 performs nearly identical operations, with the small addition of tracking whether or

not we needed to perform an overwrite in order to log that on a per-NUMA node basis for use by

the table growth mechanism. We first create the entry and then loop through all elements of the

bucket that corresponds to the key until we find either an empty spot or reach the end and have to

replace the oldest element of the array to point at the new entry.

43

fun initBucket (segmentIndex, subIndex, hash, index,
segmentCount, allSegments) = let

val startIndex = subIndex * buckets
val SOME(segment) = Array.sub (allSegments, segmentIndex)

in
case Array.sub (segment, startIndex)
of UNINIT => (
if segmentCount = 1
then (Array.update (segment, startIndex, INIT))
else (let

val segmentCount’ = segmentCount-1
val index’ = hash mod (capacity segmentCount’)
val (segmentIndex’, subIndex’) = findSegment index’
val _ = initBucket (segmentIndex’, subIndex’,

hash, index’, segmentCount’, allSegments)
val startIndex’ = subIndex’ * buckets
val M’ = capacity segmentCount’
fun maybeMoveItems (i, next) = (

if (i = buckets)
then (Array.update (segment, startIndex, INIT))
else (let

val SOME(segment’) = Array.sub (allSegments,
segmentIndex’)

val e = Array.sub (segment’, startIndex’ + i)
in

case e
of INIT => Array.update (segment, startIndex+next,

INIT)
| ENTRY(t, key’, value) => (

if (key’ mod M’ = index)
then (Array.update (segment, startIndex+next,

ENTRY(t, key’, value));
maybeMoveItems (i+1, next+1))

else (maybeMoveItems (i+1, next)))
| UNINIT => Array.update (segment,

startIndex+next,
INIT)

end))
in

maybeMoveItems (0, 0)
end))

| _ => ()
end

Figure 3.14: Initialization of a bucket in a dynamically sized memoization table implementation.

44

fun find ((segments, itemCount, allSegments), key) = let
val key’ = Int.toLong key
val hash = (c * key’) mod M
val hash = Long.toInt hash
val segmentCount = Array.sub (segments, 0)
val index = hash mod (capacity segmentCount)
val (segmentIndex, subIndex) = findSegment index
val _ = initBucket (segmentIndex, subIndex, hash, index,

segmentCount, allSegments)

val SOME(segment) = Array.sub (allSegments, segmentIndex)
val startIndex = subIndex * buckets
fun findEntry (i) = (
if (i = buckets)
then NONE
else (

let
val e = Array.sub (segment, startIndex + i)

in
case e
of INIT => NONE
| ENTRY(_, key’, value) =>

if key’ = key
then (Array.update (segment, startIndex+i,

ENTRY(Time.now(), key’, value));
SOME value)

else findEntry (i+1)
| UNINIT => (NONE)

end))
in

findEntry 0
end

Figure 3.15: Lookup in a dynamically sized memoization table implementation.

45

fun insert ((segments, itemCount, allSegments), key, item) = let
val age = Time.now()
val new = ENTRY (age, key, item)
val key’ = Int.toLong key
val hash = (c * key’) mod M
val hash = Long.toInt hash
val segmentCount = Array.sub (segments, 0)
val index = hash mod (capacity segmentCount)
val (segmentIndex, subIndex) = findSegment index
val _ = initBucket (segmentIndex, subIndex, hash, index,

segmentCount, allSegments)
val SOME(segment) = Array.sub (allSegments, segmentIndex)
val startIndex = subIndex * buckets
val _ = growIfNeeded (segments, itemCount, allSegments)
fun insertEntry (i, oldestTime, oldestOffset, overwrite) = (
if i = buckets
then (if overwrite

then (let
val node = VProcUtils.node() * padding

in
Array.update (itemCount, node,

Array.sub (itemCount, node) + 1)
end)

else ();
Array.update (segment, startIndex + oldestOffset, new))

else (case Array.sub (segment, startIndex + i)
of INIT => (Array.update (segment, startIndex + i, new))
| ENTRY (t, _, _) =>

if t < oldestTime
then insertEntry (i+1, t, i, overwrite)
else insertEntry (i+1, oldestTime, oldestOffset,

true)
| UNINIT => (Array.update (segment, startIndex + i,

new))))
in

insertEntry (0, Int.toLong (Option.valOf Int.maxInt), 0, false)
end

Figure 3.16: Insertion into a dynamically sized memoization table implementation.

46

3.7 Evaluation

In this section, we compare the implementation strategies described earlier for the memoization

table. These strategies are explored through three benchmarks.

3.7.1 Experimental setup

Our benchmark machine is a Dell PowerEdge R815 server, outfitted with 48 cores and 128 GB

physical memory. This machine runs x86 64 Ubuntu Linux 10.04.2 LTS, kernel version 2.6.32-

42. The 48 cores are provided by four 12 core AMD Opteron 6172 “Magny Cours” processors.

Each of the four processors is connected directly to a 32 GB bank of physical memory. Each core

operates at 2.1 GHz and has 64 KB each of instruction and data L1 cache and 512 KB of L2 cache.

There are two 6 MB L3 caches per processor, each of which is shared by six cores, for a total of

48 MB of L3 cache.

We ran each experiment configuration 30 times, and we report the average performance results

in our graphs and tables. Times are reported in seconds.

3.7.2 Parallel Fibonacci

Using the parallel tuple syntax of PML, we compute each of the subcomputations in parallel and

then add their result. Without any sharing, this strategy requires exponential time in the number of

values. The PML code is shown in Figure 3.17.

fun add (m, n) = m + n

fun pfib i =
case i
of 0 => 0
| 1 => 1
| n => add (| pfib(i-1), pfib(i-2) |)

Figure 3.17: Parallel Fibonacci.

47

This micro-benchmark is ideal for testing the overhead associated with each of the proposed

approaches, as extending the calls to pfib with memoization support performs minimal work

other than exercising the memoization infrastructure. Extended to use memoization, the code now

first checks the implementation of memoization for a value before recomputing it. Each of the

three approaches described below use identical code, substituting only the implementation of the

memoization infrastructure, as shown in Figure 3.18.

fun add (m, n) = m + n;

fun pfib (memo, i) = (
case i
of 0 => (0)
| 1 => (1)
| n =>

(case MemoTable.find (memo, i)
of NONE => (

let
val res = add (| pfib(memo, i-1), pfib(memo, i-2) |)

in
MemoTable.insert (memo, i, res);
res

end)
| SOME res => res));

Figure 3.18: Parallel Fibonacci with memoization.

Performance data is shown graphically in Figure 3.19 and in numeric form in Table 3.1 when

computing the Fibonacci numbers 10,000 and 60,000.1 Data is provided only for the four memoization-

based strategies, as the sharing-free parallel implementation strategy requires more than 11 seconds

for a problem size of only 47. The time required for the Fibonacci of 10,000 does not differ signifi-

cantly from 60,000 except at large numbers of processors on the dynamic implementation strategy.

As expected, at low numbers of processors, the simple hash table is the fastest. That approach

uses only a single pointer indirection, rather than the two required by both the distributed and

1. Owing to an internal design limitation of the Manticore runtime’s scheduler, processes that generate more than
64k of simultaneous work items are not supported, limiting the total problem size we can handle here.

48

Number of Processors
Strategy 1 4 8 16 24 32 40 48
Simple 0.0110 0.0132 0.0144 0.0190 0.0255 0.0355 0.0497 0.0635

Distributed 0.0130 0.0146 0.0163 0.0209 0.0279 0.0405 0.0499 0.0696
Partitioned 0.0140 0.0156 0.0167 0.0210 0.0279 0.0360 0.0489 0.0709

Fixed 0.0219 0.0250 0.0267 0.0315 0.0380 0.0468 0.0552 0.0774
Dynamic 0.0451 0.0463 0.0488 0.0610 0.0837 0.0984 0.122 0.148

(a) Fibonacci number 10,000

Number of Processors
Strategy 1 4 8 16 24 32 40 48
Simple 0.125 0.130 0.133 0.147 0.164 0.185 0.219 0.316

Distributed 0.121 0.126 0.131 0.163 0.207 0.235 0.278 0.440
Partitioned 0.129 0.134 0.138 0.196 0.224 0.246 0.277 0.365

Fixed 0.256 0.291 0.292 0.314 0.331 0.361 0.449 0.569
Dynamic 0.406 0.408 0.412 0.450 0.675 0.779 0.942 1.21

(b) Fibonacci number 60,000

Table 3.1: Comparison of three memoization implementation strategies on parallel Fibonacci on
10,000 and 60,000. Execution times in seconds.

partitioned strategies.

Once 40 or more processors are in use, however, the partitioned strategy becomes competitive

with the simple hash table strategy and is better than the distributed strategy. The distributed strat-

egy performs additional, duplicated, work between the different processors, resulting in slightly

more load, particularly on the Fibonacci of 60,000. In the partitioned strategy, the memory traffic

is balanced among the various packages. The dynamic strategy performs significantly more per-

element work (in particular, tracking collisions) in order to provide resizing capabilities, resulting

in a factor of 2–3 slower performance on this artificial benchmark.

That said, parallel Fibonacci with caching support is not a showcase of performance scalability

for Manticore — the 1 processor version provides the best performance in all cases. Scheduler

overheads are very large in this benchmark relative to the amount of computation, which is why

performance steadily degrades with increased numbers of processors.

49

3.7.3 0-1 knapsack

The 0-1 knapsack problem is to determine the maximum-value set of items that satisfy a cost

constraint. By analogy to packing a knapsack, the question is: given a maximum weight budget

and a set of items that each have a weight and value, which items should be selected subject to that

weight budget to maximize the value?

Without remembering previously calculated values, this problem requires exponential time to

compute. It is a standard example of the type of problem for which dynamic programming is

appropriate. In dynamic programming, a table stores previously computed values by the algorithm.

In this case, we would use that table to store information about a smaller problem size — with

either fewer items or a lower weight budget. A straightforward example implementation is shown

in Figure 3.20. While this implementation is clean and correct, its exponential runtime makes it

inefficient for even moderate problem sizes.

This implementation can be made quadratic in the input parameters by adding the use of the

memo table to store previously-seen values.

With a small problem size whose memoization table fits entirely in memory, this benchmark

provides a test of the simple strategy against the fixed-size memoization table. In order to evaluate

the cost of the fixed-size implementation’s additional overhead, we first ran the knapsack problem

with a smaller problem size. In this case, we use 155 distinct elements and a weight budget of

3100. At that size, no more than 490,000 elements need to be remembered, which easily fits into

memory.

The results are shown graphically in Figure 3.22 and numerically in Table 3.2. The simple

memoization table implementation — just an array — outperforms both the standard fixed imple-

mentation and the fixed implementation augmented with a hash distribution function. By compar-

ison, a sequential memoizing Python implementation of this problem size requires 0.480 seconds

to complete — worse than all parallel benchmarks and even the fixed hashing scheme on one pro-

cessor. The difference between implementation strategies in our system largely comes down to the

50

Number of Processors
Strategy 1 4 8 16 24 32 40 48
Simple 0.130 0.129 0.131 0.0638 0.0598 0.0620 0.0745 0.0846

Fixed 0.460 0.271 0.201 0.157 0.142 0.138 0.141 0.155
Hashed 0.531 0.302 0.228 0.161 0.146 0.137 0.138 0.155

Dynamic 0.810 0.810 0.810 0.814 0.274 0.275 0.273 0.291

Table 3.2: Comparison of memoization implementation strategies on parallel 0-1 knapsack with a
small number of items. Execution times in seconds.

cost of the additional pointer indirections due to an additional layer of pointers in all but the simple

strategy. These additional pointer traversals cost nearly a factor of 4 at low processor counts, but

less than a factor of 2 at large numbers of processors.

Additionally, we can see from these numbers that the additional work done in the hash-distributed

implementation does not cost very much, except at low numbers of processors. Given that the goal

of hash distribution is to gain performance by avoiding collisions but that we have no collisions in

this problem and table size, this evaluation provides a good measure of the overhead associated in

the calculation of the distribution function.

For the next experiment, we run at a larger benchmark size and evaluate the tradeoff between

the number of elements in the fixed array and the number of collision buckets available, assuming

the same overall memory budget. Additionally, we compare the direct-hash scheme with the hash-

distributed implementation. The problem size used below is 200 distinct items and a weight budget

of 4000. At that size, only roughly 800,000 elements need to be remembered, which can still fit into

memory, but we will assume in this benchmark a budget of only 600,000 entries. A larger problem

size cannot be used because this benchmark requires quadratic time, and at any size large enough to

tax the memory system, the simple execution of the PML code (and the Python baseline) no longer

completes in seconds, particularly at lower processor counts. The 600,000 entries were chosen

because that enables us to test up to buckets of size 4. With any fewer entries (e.g., 400,000),

using buckets of size 4 results in a program that does not terminate within tens of minutes on this

problem size.

51

Table 3.3 shows performance results using a fixed-size memoization table and straight address-

ing of the hash values. In contrast, Table 3.4 provides results using the hashing function described

in Section 3.5.5. There are several conclusions to take away from this data:

• Application of a hashing function both uniformly improves performance and narrows the

range of observed values, particularly when there are a smaller number of elements and

larger buckets.

• At large numbers of processors, performance is generally better the closer the size of the

table is to the underlying data sets (or, the smaller the number of buckets).

• Best performance is not only a function of the problem size, but also the number of proces-

sors. At each table size, in Table 3.4(a), the best performance is at 24 processors whereas

on (b) and (c) the best results are at 40 processors, with (d) rounding out the group with best

performance at 32 processors.

Although they perform well, fixed-sized tables require too much manual tuning for use in an

automatic feature, such as memoization. Therefore, we have taken the good ideas from the fixed-

sized tables (generally small buckets and the application of a hashing function to better distribute

the keys) and applied them to a dynamically resizing implementation, as described in Section 3.6.

Results of comparing the dynamic resizing strategy on both the 155 item and 200 item problem

sizes are shown graphically in Figure 3.23 and numerically in Table 3.5. The six strategies all

use relatively small buckets (two elements per bucket) and the same hash functions described

previously. They differ in how they choose to count when an expansion of the underlying table

is required, as described in Section 3.6.1. In both the small and large problem sizes, the best

solution is to track conflict counts individually on NUMA nodes and to make sure that the storage

assigned to each conflict count is padded out to a full cache block size. This implementation does

not provide better performance than the best manually-tuned parameters to the fixed-sized table.

Its performance is within a factor of 2 on this benchmark, which performs very little work apart

52

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 1.45 2.59 4.78 10.2 18.4 77.9 33.8 42.2
Max 1.46 4.88 11.8 92.8 263 1430 458 386

(a) 150,000 elements × 4 buckets per element

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 1.94 1.068 0.925 0.625 0.520 0.620 0.747 1.07
Max 1.96 1.31 1.98 1.04 1.14 1.01 1.94 3.00

(b) 200,000 elements × 3 buckets per element

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 3.92 1.06 0.735 0.485 0.399 0.356 0.340 0.372
Max 3.96 1.26 1.09 0.672 0.573 0.508 0.463 0.514

(c) 300,000 elements × 2 buckets per element

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 20.7 5.83 3.90 3.31 2.98 2.57 2.65 2.82
Max 20.8 7.16 5.12 4.83 3.97 3.58 4.13 4.26

(d) 600,000 elements × 1 buckets per element

Table 3.3: Comparison of the effects of bucket size on on parallel 0-1 knapsack with a fixed-sized
memo table. Execution times in seconds.

from lookups in the memoization table.

Python implementation

One baseline program that we used in the above evaluation of the 0-1 knapsack problem is against

a sequential Python implementation with an explicitly memoizing implementation of the algo-

rithm. As shown in Table 3.6, this program has reasonable performance for a single-processor

implementation. At a small problem size, the Python code is four times slower than the baseline

fixed memoization table strategy and roughly the same speed as the fixed-sized table on a single

processor. It outperforms Manticore at the large problem size with 1 and 2 processors, but once

4 processors are in use Manticore is faster. This baseline shows that our implementation has both

53

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 1.33 1.78 1.44 1.25 1.19 1.37 1.63 1.56
Max 1.34 2.36 2.63 2.37 2.11 2.43 4.55 2.28

(a) 150,000 elements × 4 buckets per element

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 1.14 0.687 0.448 0.335 0.273 0.245 0.241 0.249
Max 1.15 0.761 0.663 0.412 0.356 0.303 0.342 0.325

(b) 200,000 elements × 3 buckets per element

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 1.01 0.592 0.414 0.302 0.253 0.231 0.219 0.238
Max 1.02 0.677 0.590 0.396 0.337 0.303 0.287 0.371

(c) 300,000 elements × 2 buckets per element

Number of Processors
Statistic 1 4 8 16 24 32 40 48

Mean 0.891 0.509 0.367 0.268 0.235 0.196 0.207 0.214
Max 0.897 0.612 0.536 0.345 0.329 0.239 0.276 0.269

(d) 600,000 elements × 1 buckets per element

Table 3.4: Comparison of memoization implementation strategies on parallel 0-1 knapsack with a
larger number of items and weight budget. The memoization table uses improved hashing. Execu-
tion times in seconds.

good baseline sequential performance and that it scales well.

Haskell implementation

While, in general, dynamic programming problems are easy to solve with an array in a sequential

Haskell program, writing a deterministic parallel Haskell program that shares data across threads is

more challenging. The best recent work on writing parallel Haskell programs that enable dynamic

programming problems with good asymptotic behavior uses extensive program analysis and trans-

formation to mimic the caching behavior of memoization approaches with a producer/consumer

strategy [22]. This work provided a tuned parallel version of 0-1 knapsack, whose performance we

54

Number of Processors
Strategy 1 4 8 16 24 32 40 48

Elements 0.821 0.813 0.819 0.775 0.572 0.625 0.699 0.786
Per-Node Elements 1.20 1.08 1.07 1.00 0.423 0.443 0.484 0.537

Padded Per-Node Elements 0.973 0.971 0.974 0.776 0.313 0.315 0.273 0.316
Conflicts 0.805 0.797 0.801 0.722 0.518 0.492 0.565 0.677

Per-Node Conflicts 0.935 0.935 0.939 0.859 0.350 0.374 0.380 0.398
Padded Per-Node Conflicts 0.810 0.810 0.810 0.814 0.274 0.275 0.273 0.291

(1) 155 item problem size

Number of Processors
Strategy 1 4 8 16 24 32 40 48

Elements 1.85 1.37 1.35 1.40 1.16 1.17 1.40 1.51
Per-Node Elements 2.15 1.41 1.33 1.19 0.673 0.759 0.822 0.877

Padded Per-Node Elements 1.72 1.27 1.21 1.05 0.604 0.541 0.501 0.599
Conflicts 2.22 1.53 1.48 1.47 0.921 1.047 1.28 1.50

Per-Node Conflicts 2.01 1.35 1.29 1.16 0.547 0.550 0.619 0.617
Padded Per-Node Conflicts 2.24 1.43 1.39 1.28 0.522 0.481 0.519 0.574

(b) 200 item problem size

Table 3.5: Comparison of Manticore-based dynamically growing memoization implementation
strategies on parallel 0-1 knapsack with two problem sizes. Times are reported in seconds and are
mean execution times.

can see across a number of processors in Table 3.7. This Haskell implementation is more than two

orders of magnitude slower than our memoization-based approach.

3.7.4 Minimax

Computer programs for games, such as chess, typically use α-β search with iterative deepening

to determine the best move for a given board position [64]. A naı̈ve implementation will treat the

search space as a tree of possible board positions, where the edges correspond to moves. Since a

given board position may be reached by different paths (e.g., because of transposition of moves),

many nodes in the tree will be redundant. A transposition table is a hash table that maps nodes in

the search space to their evaluation [64]. Memoization is similar to that approach, as memoizing

the evaluation function associated with each board position performs the same function as that

55

Size Time (s)
155/3100 0.480
200/4000 0.790

Table 3.6: Timing for a sequential, explicitly memoizing Python implementation of 0-1 knapsack
at small and large problem sizes.

Number of Processors
Size 1 4 8 16 24 32 40 48

155/3100 83.7 76.4 72.4 80.7 87.9 99.8 112 132
200/4000 195 174 175 192 215 255 287 329

Table 3.7: Haskell implementation of parallel 0-1 knapsack using the Generate-Test-Aggregate
approach. Times are reported in seconds and are mean execution times.

transposition table.

The minimax algorithm is a simple version of α-β search, with the goal to find a move that

maximizes the expected outcome from the game [64]. In this case, we are investigating the perfor-

mance of several language implementations in searching for the best next move on a 4x4 tic-tac-toe

board, limiting the depth of our search to four moves deep, since the full search space is impractical

the benchmarked language implementations on modern hardware. The core inner loop is shown

in Figure 3.24. At a given board state, for each possible move in parallel it investigates all of the

possible selections of other positions by the other player and then reports back the best choice from

those possible moves.

The performance of Manticore is shown in Table 3.8. Performance of the Haskell benchmark,

obtained from the nofib parallel benchmark suite that is part of the compiler sources [28], is shown

in Table 3.10. These implementations are compared graphically in Figure 3.25. As shown, though

Manticore is slower at lower number of processors, once more processors are used, its imple-

mentation is faster even on the default parallel baseline. Further, memoization using the dynamic

table-sizing strategy reduces the overall execution time.

In Table 3.9, we also show the performance of Manticore on the 5x5 tic-tac-toe board with a

56

depth of five moves. Though the parallel strategy takes nearly ten times as long at 48 cores as

a depth of four moves, the memoized strategy is only twice as long, due to the sharing provided

by the memoization strategy. This example shows how memoization can reduce the asymptotic

complexity of an algorithm, at the expense of additional memory usage.

Number of Processors
Strategy 1 4 8 16 24 32 40 48
Parallel 6.36 1.59 0.811 0.445 0.344 0.315 0.307 0.317

Memoized 1.75 0.458 0.241 0.141 0.114 0.112 0.110 0.128

Table 3.8: Parallel implementation of minimax search on a 4x4 grid, using a cutoff depth of 4.
Times are reported in seconds and are mean execution times.

Number of Processors
Strategy 1 4 8 16 24 32 40 48
Parallel 76.8 22.2 13.2 7.80 3.99 3.46 3.03 2.93

Memoized 7.09 1.89 0.960 0.506 0.369 0.312 0.284 0.285

Table 3.9: Parallel implementation of minimax search on a 4x4 grid, using a cutoff depth of 5.
Times are reported in seconds and are mean execution times.

Number of Processors
Strategy 1 4 8 16 24 32 40 48
Parallel 2.67 0.792 0.506 0.395 0.445 0.505 0.598 0.721

Table 3.10: Haskell implementation of minimax search on a 4x4 grid, using a cutoff depth of 4.
Times are reported in seconds and are mean execution times.

57

● ● ●
●

●

●

●

●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20
● Simple

Dist ributed
Part it ioned
Fixed
Dynamic

(a) Fibonacci number 10,000

● ● ● ● ● ●
●

●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

1.0

1.2
● Simple

Dist ributed
Part it ioned
Fixed
Dynamic

(b) Fibonacci number 60,000

Figure 3.19: Comparison of five memoization implementation strategies on parallel Fibonacci on
10,000 and 60,000. Execution times in seconds.

58

val weights = ...
val values = ...

fun knap (i, avail, weights, values) =
if (avail = 0) orelse (i < 0)
then 0
else (if Vector.sub(weights, i) < avail
then

let
val (a, b) = (| knap (i-1, avail, weights, values),

knap (i-1, avail - Vector.sub(weights, i),
weights, values) +

Vector.sub(values, i) |)
in

if a > b
then a
else b

end
else knap (i-1, avail, weights, values))

Figure 3.20: Simple parallel knapsack

59

val weights = ...
val values = ...

fun knap (i, avail, memo) =
if (avail = 0) orelse (i < 0)
then 0
else (
if Vector.sub(weights, i) < avail
then let
fun lookup (a, b) = let

val index = a + Vector.length values * b
in

case MemoTable.find (memo, index)
of SOME a => a
| NONE => let

val res = knap (a, b, memo)
in

MemoTable.insert (memo, index, res);
res

end
end
val (a, b) = (| lookup (i-1, avail),

lookup (i-1, avail - Vector.sub(weights, i))
+ Vector.sub(values, i) |)

in
if a > b
then a
else b

end
else knap (i-1, avail, memo))

Figure 3.21: Memoized parallel knapsack

60

● ● ●

● ● ● ● ●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

● Simple
Fixed
Hashed
Dynamic

Figure 3.22: Comparison of memoization implementation strategies on parallel 0-1 knapsack with
a small number of items.

61

● ● ●
●

●

●

●

●

Number of processors

T
im

e
in

 s
ec

on
d

s

1 4 8 16 24 32 40 48

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4
● Elements

Per− Node Elements
Padded Per− Node Elements
Conflicts
Per− Node Conflicts
Padded Per− Node Conflicts

(a) 155 item problem size

●

● ●
●

● ●

●

●

Number of processors

T
im

e
in

 s
ec

on
d

s

1 4 8 16 24 32 40 48

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

● Elements
Per− Node Elements
Padded Per− Node Elements
Conflicts
Per− Node Conflicts
Padded Per− Node Conflicts

(b) 200 item problem size

Figure 3.23: Comparison of Manticore-based dynamically growing memoization implementation
strategies on parallel 0-1 knapsack with two problem sizes.

62

datatype player = X | O

type board = player option list

datatype ’a rose_tree (* general tree *)
= Rose of ’a * (’a rose_tree list)

(* minimax : player -> board -> (board * int) rose_tree *)
(* Build the tree of moves and score it at the same time. *)
(* p is the player to move *)
(* X is max, O is min *)
fun minimax (p : player, depth) (b : board) : game_tree =

if (depth=0 orelse gameOver(b)) then
mkLeaf (b, score b)

else let
val trees = parMap (minimax (other p, depth-1),

(successors (b, p)))
val scores = map (compose (snd, top)) trees

in
case p
of X => Rose ((b, listmax scores), trees)
| Y => Rose ((b, listmin scores), trees)

end

Figure 3.24: The minimax algorithm in Parallel ML.

63

●

●

●

● ● ● ● ●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

0

1

2

3

4

5

6

0

1

2

3

4

5

6
● PML

PML Memoized
Haskell

Figure 3.25: Comparison of minimax search on a 4x4 grid, using a cutoff depth of 4.

64

3.8 Conclusion

Memoization is a syntactically small extension to the surface language of Parallel ML (PML) that

takes advantage of the purity of PML code to enable sharing across tasks without synchronization.

Because it relies on purity and does not itself change the behavior of the code, the memoization

feature itself is pure. While we could have built this feature on top of the implementation of

mutable state, discussed in Chapter 4, we would lose the purity of the implementation, would have

less sharing, and would be forced to implement synchronization, as described in that chapter.

From an implementation perspective, we have shown in this chapter that memoization is best

implemented with a dynamically resized hash table. We have also shown that the use of the di-

vision method to distribute those hash values has a positive effect on performance. Finally, we

have shown several example benchmarks that demonstrate that this feature both scales down to

microbenchmarks with little computation and up to larger programs that perform more work.

65

CHAPTER 4

MUTABLE STATE

In Parallel ML (PML), it is not possible for multiple implicitly-threaded parallel computations to

share results asynchronously. Memoization, as described in Chapter 3, adds the ability to share

results between parallel threads for pure functions. But, that feature does not address the need

to share the results of non-deterministic expressions, monotonically increasing values, or other

forms of shared state where the result is not a pure function of its input. For example, consider the

following code:

let val x = ref 1

in

(| x := !x+1, x := !x+1 |);

!x

end

There are two parallel threads that each should increment the value associated with the mutable

reference cell bound to the variable x by 1. In this chapter, we provide an extension to PML called

mutable state that implements two execution models, one of which is deterministic and one which

is non-deterministic. In both, the value associated with !x at the end of this code will be 3.

Our mutable state implementation extends the current Manticore programming model with two

stateful language features commonly used in Standard ML [25]. The reference cell, or ref cell,

is a single location in memory that is mutable. Arrays are mutable vectors of data, providing

a compact, integer-addressed sequence of mutable locations. These features permit mutation of

values that can be shared between threads asynchronously. This sharing is unique to mutable state,

as all other forms of inter-thread communication by Parallel ML programs require synchronization.

The key challenges with adding these two features are:

• Preserving local reasoning. Programmers should be able to understand the behavior of a

given function by analyzing it in isolation from the rest of the program.

66

• Efficient implementation. The cost for using these features in parallel must not outweigh the

alternatives of either writing the algorithm sequentially or using a less-efficient mutation-free

parallel algorithm.

In this chapter, we first explain the design of our model and the translation of the high-level lan-

guage with parallelism and direct access to mutable state into one with explicit parallel constructs

and locks. In that model, we can then remove locks from expressions guaranteed not to access

mutable state, preserving parallelism for pure computations. These locks and their optimizations

are discussed in detail. We provide an evaluation of this approach on several benchmarks, which

we follow with a more detailed discussion of local reasoning before we conclude.

4.1 Core-PML with memoization and mutable state

In Figure 4.1, we extend the language of Figure 3.1 with mutable state, in the form of reference

cells. A reference cell is a location in memory that stores a value that is free to change over

time. The ref operation creates a reference cell holding a value that is the result of evaluating an

expression. The ! and := operators respectively read and update the value of the reference cell.

67

e ∶∶= x variables
∣ c constants
∣ () unit value
∣ SOME e option type with value
∣ NONE option type with no value
∣ fun f x= e1 in e2 functions
∣ e1 e2 application
∣ case e1 of p1 ⇒ e2 | p2 ⇒ e3 case analysis
∣ (e1, e2) tuples (pairs)
∣ (|e1, e2|) parallel tuples
∣ let p = e1 in e2 bindings
∣ ref e create mutable state
∣ !e read mutable state
∣ e1 := e2 update mutable state

p ∶∶= x
∣ c
∣ ()
∣ (p1, p2)
∣ SOME p
∣ NONE

Figure 4.1: Source language with memoization and mutable state

4.2 Translation to atomic expressions

In this section, we translate a subset of the PML source language with parallel expressions and state

to one that is also augmented with atomic expressions, which contain the extra static information

required by the implementations of the two execution models. This target language is in Figure 4.2

In this translation, expressions that execute in parallel are wrapped within an atomic expres-

sion. This wrapper indicates that its expression should be evaluated in isolation from all other

similarly wrapped expressions. In particular, this wrapper requires that the result of the evaluation

should be as if no update operation performed by a parallel evaluation became visible during the

evaluation of the isolated expression. The lock expression allocates a new lock.

The translation from the source to target language is shown in Figure 4.3. The parallel tuple

construct is expanded and its subexpressions wrapped in atomic wrappers. These wrappers take

three arguments: the first is a lock variable, the second is an integer used for sequencing that

68

e ∶∶= x variables
∣ c constants
∣ () unit value
∣ SOME e option type with value
∣ NONE option type with no value
∣ fun f x= e1 in e2 functions
∣ x e application
∣ case e1 of p1 ⇒ e2 | p2 ⇒ e3 case analysis
∣ (e1, e2) tuples (pairs)
∣ (|e1, e2|) parallel tuples (pairs)
∣ let p = e1 in e2 binding
∣ atomic (e, c, e) isolated execution
∣ lock () allocate a new lock
∣ ref e create mutable state
∣ !e read mutable state
∣ e1 := e2 update mutable state

p ∶∶= x
∣ c
∣ ()
∣ (p1, p2)
∣ SOME p
∣ NONE

Figure 4.2: Target language

corresponds to the either the first or second position within a parallel tuple, and the third is an

arbitrary expression. In preparation for later effect analysis, the application form now requires a

named variable for the target of the application instead of an expression.

Translation rules are written T ′[[e]], where e is a source language expression. In the parallel

tuple rule, T ′[[(|e1, e2|)]], first we allocate a new lock to share among the subexpressions.

Then, we wrap the subexpressions in an atomic wrapper, annotating it with the static order of

the expressions within the tuple. The allocated lock is only captured and accessed by these two

wrapper expressions.

69

T ′[[x]] = x

T ′[[c]] = c

T ′[[()]] = ()

T ′[[SOME e]] = SOME T ′[[e]]
T ′[[NONE]] = NONE

T ′[[fun f x= e1 in e2]] = fun f x=T ′[[e1]] in T ′[[e2]]
T ′[[e1 e2]] = let x = T ′[[e1]] in

x (T ′[[e2]])
where x is fresh

T ′[[case e1 of p1 ⇒ e2 | p2 ⇒ e3]] = case T ′[[e1]] of p1 ⇒ T ′[[e2]] | p2 ⇒ T ′[[e3]]
T ′[[(e1, e2)]] = (T ′[[e1]], T ′[[e2]])

T ′[[(|e1, e2|)]] = let l = lock () in

(|atomic (l,1,T ′[[e1]]), atomic (l,2,T ′[[e2]])|)
where l is fresh

T ′[[let p = e1 in e2]] = let p = T ′[[e1]] in T ′[[e2]]
T ′[[ref e]] = ref (T ′[[e]])
T ′[[!e]] = !(T ′[[e]])

T ′[[e1 := e2]] = (T ′[[e1]]) := (T ′[[e2]])

Figure 4.3: Translation into target language

70

4.3 Lock-based implementation

In this work, we have used a lock-based implementation. This implementation strategy allows us to

preserve the semantics required by the two execution models (serial and transactional) without im-

plementing any form of logging related to the reads and writes performed by a task. Unfortunately,

this strategy reduces the amount of parallelism available in the program, as it will dynamically

prohibit expressions that may perform conflicting mutations of state from doing so, rather than

allowing them and only penalizing performance in the case of conflicts.

4.3.1 Ticket lock

In the Manticore scheduler, we use simple spin locks because they have a single owner and rarely

more than one writer [63]. This balance of threads is not present in our implementation of these

parallel features, where many tasks will access the same lock. Additionally, under some of our

execution models we would like to statically determine the dynamic order in which the locks

should be acquired. For these reasons, we have chosen to use a ticket lock implementation [54].

Ticket locks consist of a pair of values. These values correspond to the number of requests

for the lock and the number of times that it has been unlocked. When a thread wishes to acquire

the lock, it performs an atomic operation to both increment and retrieve the number of requests

for the lock. Then, that thread waits for the number of unlocks to reach the number of requests

returned. After it has completed its work, the thread unlocks by incrementing the unlock count.

Thus, the number returned from the atomic increment serves as a ticket and defines the order in

which threads acquire and release the lock.

Our implementation in Manticore is written in a compiler-specific dialect of Standard ML

called inline BOM [23]. This dialect directly corresponds to one of our intermediate represen-

tations and allows access to primitives not available at the Standard ML level, at the expense of

lacking nearly all of the syntactic sugar of the surface language (e.g., polymorphism, functors,

71

datatypes). The basic ticket lock implementation is shown in Figure 4.4. As described above, the

type of a raw ticket_lock is a mutable data structure consisting of two long (64-bit) integers.

The @create function allocates this structure and calls promote to ensure that it has been copied

into a globally visible heap page. By default in Manticore, newly allocated values are only locally

visible and access from other threads is prohibited [5].

The @lock function acquires a ticket using an atomic operation (I64FetchAndAdd) that re-

trieves and increments the number of requests and then spins until the number of unlocks is equal

to the request number retrieved. In the case where the current ticket is not the same as the held

one, the loop sleeps. As in other ticket lock implementations, we sleep for a constant multiple of

the minimum possible hold time for the lock. Since this lock has ordered acquisitions, there is a

risk of starvation if a thread uses another strategy, such as exponential backoff [54]. Finally, the

@unlock method sets the number of releases to one more than the current ticket. We do not need

to read the value that was previously in there, since we always know it will be the same as our

ticket, avoiding one atomic operation.

Figure 4.5 contains more utility code for ticket locks that is used by this implementation of

state. The function @get_ticket returns a ticket without spinning to acquire the lock. The

@current_ticket function returns the number associated with the current lock holder. This

function allows clients to poll for the lock at the surface language level using a custom strategy.

Finally, the @lock_with_ticket function allows consuming code to attempt to take the lock

based on some other ticket allocation strategy. As will be shown later when we discuss preserving

static program order, this function allows us to statically ensure a dynamic lock acquisition order.

72

structure TicketLock = struct
_primcode (

typedef ticket_lock =
![

long, (* num unlocks *)
long (* num requests *)

];

define @create (_ : unit / exh : exh) : ticket_lock =
let l : ticket_lock = alloc (0:long, 0:long)
let l : ticket_lock = promote(l)
return(l)

;
define @lock (l : ticket_lock / exh : exh) : ml_long =

let ticket : long = I64FetchAndAdd (&1(l), 1:long)
let p : ml_long = alloc(ticket)
fun spinLp () : ml_long =

let difference : long = I64Sub(ticket,#0(l))
if I64Eq(difference, 0:long)
then

return (p)
else

let t : long = I64Mul(difference, 100000:long)
do SchedulerAction.@sleep (t)
apply spinLp ()

apply spinLp()
;

define @unlock (l : ticket_lock, t : ml_long / exh : exh) : unit =
let t : long = #0(t)
let t : long = I64Add(t,1:long)
do #0(l) := t
return (enum(0):PrimTypes.unit)

;
)
type ticket_lock = _prim(ticket_lock)
val create : unit -> ticket_lock = _prim(@create)
val lock : ticket_lock -> long = _prim(@lock)
val unlock : ticket_lock * long -> unit = _prim(@unlock-w)

end

Figure 4.4: Basic ticket lock implementation.

73

define @get_ticket (l : ticket_lock / exh : exh) : ml_long =
let ticket : long = I64FetchAndAdd (&1(l), 1:long)
let p : ml_long = alloc(ticket)
return (p)

;

define @current_ticket (l : ticket_lock / exh : exh) : ml_long =
let ticket : long = #0(l)
let p : ml_long = alloc(ticket)
return (p)

;

define @lock_with_ticket (l : ticket_lock, ticket : ml_long
/ exh : exh) : unit =

let ticket : long = #0(ticket)
fun spinLp () : unit =

let difference : long = I64Sub(ticket,#0(l))
if I64Eq(difference, 0:long)
then

return (enum(0):PrimTypes.unit)
else

let t : long = I64Mul(difference, 100000:long)
do SchedulerAction.@sleep (t)
apply spinLp ()

apply spinLp()
;

Figure 4.5: Utility code for more advanced ticket lock usage.

74

4.4 Serial execution

In the serial execution model, the dynamic execution of the program must respect the static pro-

gram order of the expressions. We use the utility code shown in Figure 4.5 to ensure a serial

execution while still permitting parallelism elsewhere in the program. In the translation shown in

Figure 4.3, expressions executed in parallel are augmented with their static program order, gener-

ating expressions of the form:

atomic (lock , n, e)

Where lock is the dynamically-created lock, n is the static program order of the atomic within the

parallel tuple, and e is the expression. Our implementation generates locking code directly from

this information. For the above code segment, we will generate the following code:

let val _ = TicketLock.lockWithTicket (lock, n)

val result = e

val _ = TicketLock.unlock (lock, n)

in

result

end

4.4.1 Correctness

In this implementation, we are using a ticket lock with a static acquisition order provided by the

original source translation, which annotated the atomic expressions with their sequential order

within the parallel constructs. To show that this translation is correct, we need to prove that for

any two expressions e1 and e2 that both mutate state where e1 is evaluated before e2 in the serial

program order, under any parallel execution with this serial implementation, e1 will acquire and

release a lock before e2. Consider the history corresponding to the serial execution and any history

corresponding to a parallel execution under this model. We need to show that for all parallel

75

executions, e1 will still precede e2. In this naı̈ve translation, that property is straightforward, as

this locking strategy, as described, removes all parallelism and forces serial and in-order execution

of all expressions in a parallel tuple.

Consider an extension of this translation where expressions that do not mutate state are allowed

to proceed in parallel with any other expression. We now have a set of potential parallel executions

and many potential histories for a given program execution. But, in all of these executions, the only

operations that may be reordered within the history are those that do not mutate state. Therefore,

we have preserved the serial execution order on expressions that mutate state.

4.4.2 Deadlock freedom

A deadlock occurs when two parallel threads or tasks have cyclic dependencies. In this system,

such a dependency could be created if they were each waiting on locks that the other holds. One

way to avoid deadlock is to order all locks so that if any subset of them are acquired, they must

be acquired in the same order [41]. In the serial execution model, we ensure deadlock freedom

by limiting the static scope of our locks. Any given lock will be acquired only by the expressions

within the original parallel tuple. Upon entry to the lock’s allocation, the individual task will own

a (possibly empty) list of locks. There is no operation performed between the creation of the lock

and its acquisition, eliminating the possibility of acquiring another lock. Further, no other task may

acquire that newly created lock, as its scope is restricted to the single parallel execution of tasks.

Therefore, each new lock will always be acquired by tasks with an identical set of preceding locks,

guaranteeing that any lock was acquired using a fixed ordering of preceding locks.

4.5 Transaction-based implementation

While our transactional implementation relies on the ticket locks described in Section 4.3.1 above,

we use a straightforward implementation of transactional memory that is further simplified by the

76

Manticore execution model and constraints of the PML language. Our software-based implemen-

tation of transactional memory is similar to the approach used in Haskell [37]. Upon entry to a

atomic block, a transaction record is created and associated with the task (nesting, if needed). All

reads and writes to atomic objects are stored in that transaction record. At the end of the atomic

block, the code will attempt to commit those changes. A commit is designed with two forms in our

system:

• If the transaction occurred at the toplevel, then locks are taken on the atomic objects. If

those atomic objects have the same original values as read by the transaction, then the logged

changes are written and transaction is done. If not, then the transaction is aborted and we

retry starting at the beginning of the atomic block.

• If the transaction is nested, then its parent transaction is similarly locked and checked for

local changes to the read or written objects. If there are none, then the nested changes are

logged to the parent and the nested transaction is done. If there were conflicting changes,

then the transaction is aborted and we retry starting at the beginning of the atomic block.

Nested transactions are not currently implemented, though we describe their integration with the

rest of the system here and their semantics in Chapter 5.

There are two types of transactional objects tracked in our system. They are the analogs of the

ref cell and array datatype. The transactional reference cell, or tref, is the underlying imple-

mentation of a reference cell and contains a lock and a global ordering number. The transactional

array is a standard array, except that it has both a global ordering number and a set of locks,

defaulting to one lock per element. While locking each entry requires additional memory for those

locks, as we show in the account transfer benchmark results in Section 4.8.1, if the program has

large numbers of interfering concurrent operations, reducing the number of locks reduces perfor-

mance. The global ordering numbers are shared between the two types of transactional objects and

are used to establish a lock order that prevents deadlock between committing transactions.

77

4.6 Transactional execution

In the transactional execution model, the only semantic constraint that we have is that two expres-

sions that modify the same piece of mutable state must see either all or none of the changes made

by one another. So, in this case, we again use the ticket lock interface shown in Figure 4.4, but

require significant additional code for the implementation of read/write logging, starting transac-

tions, and committing them. Again, as shown in the translation shown in Figure 4.3, expressions

executed in parallel are augmented with their static program order, generating expressions of the

form:

atomic (lock , n, e)

Where lock is the dynamically-created lock, n is the static program order of the atomic within

the parallel tuple, and e is the expression.

4.6.1 Starting a transaction

A transaction record contains both the read and write logs. These logs record all of the values read

or written during the execution of the transaction. In the case of a nested transaction system, the

record also maintains a pointer to the parent transaction, which is empty in the case of a top-level

transaction.

4.6.2 Reading and writing values

When reading a value from a piece of transactional memory, the transaction cannot just query the

object directly. First, it must check its transactional structure to determine if a new value has been

written to that object. Then, it must follow the parent chain of transactional structures to see if any

of them have written a new value. Finally, if none of them have, it may read the value from the

object in memory. This value is stored into the current transactional structure’s read log and then

returned to the executing program. Writing is simpler; the value is written directly into the current

78

transactional structure’s write log.

4.6.3 Commit

As mentioned earlier in this section, the procedure used by commit is different depending upon

whether the current transaction is the top-level transaction or a nested transaction. In a top-level

transaction, first we take locks on all read and written objects, using their global numbering as

the order for lock acquisition. Then, we check for any changes that occurred in global memory to

values read or written by the transaction. If there were none, then we write our changes and the

transaction is done. If there were conflicts, then we remove our transactional record and retry the

operation from the beginning of the atomic block. In either case, all locks are released.

In a nested transaction, we only need to check our parent transaction for read or write conflicts.

If there are none, we simply concatenate our read and write log entries to those of the parent

transaction. If there were conflicts, then we remove our transactional record and retry the nested

operation from the beginning of the atomic block. Note that during this operation, we needed to

lock our parent transaction, as otherwise we could conflict with a sibling transaction when reading

or editing the logs. Other than these log edits, the parent transaction is unaffected.

4.7 Removing unnecessary atomic wrappers

Each atomic wrapper corresponds to an additional transaction record and set of dynamic locking

operations. When semantically valid, removing these wrappers will reduce the transactional over-

head. There are two cases where atomic wrappers may be removed without altering the semantics

of the program.

• If the wrapped expression is pure; that is, it does not modify mutable state.

• If the wrapped expression modifies mutable state, but there are no concurrent expressions

that modify the same regions of memory.

79

In this section, we address only the first case. We note in the analysis where this approach may

be extended to the second case, but the first suffices for the primary design goal — we do not

want to slow down mutation-free code that previously was executed in parallel and might have

performance penalties under the transformation presented in Figure 4.3.

4.7.1 Effects

Effects are the computational actions performed during the evaluation of code, beyond simply

the type of the value resulting from the evaluation [31]. Languages that treat effects explicitly

commonly make one or more of mutable state, I/O, and concurrency explicitly tracked and verified

by the implementation [30]. In this work, we track only mutable state.

There are two broad categories of effect systems. The first — and most popular — is anno-

tation-based systems. In these languages, the programmer is required to annotate their programs

with additional information about the effects performed by expressions as well as possibly how

the runtime should handle these effects. Typically, the compiler then implements a validator that

ensures the effect annotations are provably correct.

The other major approach is effect inference. Either as an extension of type inference or as a

separate analysis pass of the compiler, the system itself will determine the effects associated with

each expression. Our system uses this approach, as it fits more cleanly with the Manticore project

design goal of minimizing programmer burden.

4.7.2 Effect language

Our analysis computes effects after type inference has been performed, against the BOM direct-

style intermediate representation in Manticore, as described in Section 2.4. The effect analysis

computes the effects related to mutable state usage for each expression and each function definition

in the entire program (including all libraries). These effects are represented by values from the

grammar shown in Figure 4.6.

80

ε ∈ effect ∶∶= PURE
∣ MUTATE
∣ ATOMIC
∣ ⊺

Figure 4.6: Effects analyzed for removal of redundant atomics.

These effects are a conservative characterization of the possible effects of each expression.

The PURE effect corresponds to an expression guaranteed not to manipulate mutable state. We

also mark expressions in unreachable code that has not yet been eliminated by the dead code

elimination optimization with this effect. The effect MUTATE describes allocation, reading, or

writing mutable state. ATOMIC indicates an expression that performs a synchronization operation

(i.e., the atomic wrapper described earlier in the transformation). Finally, ⊺ is the catch-all effect

that indicates anything could happen. This value is introduced when, owing to the imprecision of

our analysis, we are unable to reason about a given expression. We use this value instead of simply

promoting to MUTATE in order to be able to track the analysis imprecision directly, though

the two distinct effect values are treated identically by the optimization phase. Since the goal of

this analysis is to provide sufficient information to remove atomic wrappers when they appear

around an expression that is guaranteed to be mutation-free, this coarsening suffices. If we wish

to also allow non-overlapping uses of mutable state, then we need to additionally condition the

MUTATE operation with either a static or dynamic value associated with each piece of mutable

state. We do not perform this more detailed analysis and optimization in this work for two reasons.

First, the analysis is significantly more complicated, as useful optimizations — such as allowing

parallel recursive decomposition of mutable structures — require also reasoning about subregions

of arrays, multiple dynamic allocation paths, and understanding partitioning of data in the recursive

calls of divide-and-conquer algorithms. Recursive calls and support for higher-order functions are

both common usage patterns in functional languages and more complicated than for loops to

analyze. Second, code that is sufficiently simple in its partitioning for a practical static analysis

to infer non-overlapping regions has proven to perform well and scale through translation to pure

81

functional code in previous work on Manticore [10].

4.7.3 Effect analysis

The result of effect analysis is a finite map, E , that maps from program locations — also known as

program points — to effects. In order to build up this map, we need to augment the intermediate

representation from Figure 4.2 with locations for each expression. Figure 4.7 shows the new inter-

mediate representation, which differs from the original by changing the original expression nodes,

e, into terms, t, which are now paired with a location at every occurrence. These locations are from

a countable set and are unique for each expression in the program.

e ∶∶= (`, t) pair of a location and a term
t ∶∶= x variables

∣ c constants
∣ () unit value
∣ fun f x= e in functions
∣ x e application
∣ (e1, e2) tuples (pairs)
∣ (|e1, e2|) parallel tuples (pairs)
∣ let p = e1 in e2 binding
∣ atomic (e, c, e) isolated execution
∣ lock () allocate a new lock
∣ ref e create mutable state
∣ !e read mutable state
∣ e1 := e2 update mutable state

p ∶∶= x
∣ c
∣ ()
∣ (p1, p2)

Figure 4.7: Location-augmented target language

This analysis builds up a finite map, E , from locations to their effects, as defined in Figure 4.6

over the language in Figure 4.7. It also tracks the latent effects associated with the invocation

of a function in a second finite map, F , from variables (restricted to function names from fun

bindings) to latent effects.

82

E : `
fin
Ð→ ε

F : var
fin
Ð→ ε

C : var
fin
Ð→ var

Figure 4.8: Finite maps produced and used by the analysis

The analysis is defined as a dataflow analysis, augmented with control-flow information, as

shown in Figure 4.10. The overall effect for each expression is defined in terms of the effects of

each of its subexpressions. At the start of the analysis, all locations and variables in the maps E and

F are initialized with the value PURE , with the exception of the library functions that perform

mutation operations, which are initialized as follows:

F[Array .array] = MUTATE

F[Array .sub] = MUTATE

F[Array .update] = MUTATE

Arrays are the only portion of the library that need to be initialized separately, as references cells

are treated as a special language form.

M ∶ E × E → E
M[PURE , x] = x
M[x,PURE] = x

M[ATOMIC ,MUTATE] = MUTATE
M[MUTATE ,ATOMIC] = MUTATE

M[,⊺] = ⊺
M[⊺,] = ⊺

Figure 4.9: Effect merge rules

Effects across multiple subexpressions are merged by theM function, defined in Figure 4.9.

Finally, we use C to denote the possible function targets of a given variable, as returned by the

Manticore control-flow analysis [8].

Variables and constants are pure expressions. Function definitions update both of the effect

83

Expression form Update rule

(`, x) E[`] =M[E[`],PURE]
(`, c) E[`] =M[E[`],PURE]

(`,fun f x= e1 in e2) { F[f] =M[F[f],E[e1]]
E[`] =M[E[`],E[e2]]

(`, x e) E[`] =M[E[`], ε′]
where ε′ = ⊺

if C[x] = ⊺
where ε′ = E[e]

∀f∈C[x](ε′ =M[F[f], ε′])
otherwise

(`,(e1, e2)) E[`] =M[E[`], ε′′]
where ε′ = E[e1]

ε′′ =M[ε′,E[e2]]
(`,(|e1, e2|)) E[`] =M[E[`], ε′′]

where ε′ = E[e1]
ε′′ =M[ε′,E[e2]]

(`,let p = e1 in e2) E[`] =M[E[`], ε′′]
where ε′ = E[e1]

ε′′ =M[ε′,E[e2]]
(`,atomic (e1, c, e2)) E[`] =M[E[`],ATOMIC]

(`,lock ()) E[`] =M[E[`],PURE]
(`,ref e) E[`] =M[E[`],M[MUTABLE ,E[e]]]

(`,!e) E[`] =M[E[`],M[MUTABLE ,E[e]]]
(`, e1 := e2) E[`] =M[E[`],M[MUTABLE ,M[E[e1],E[e2]]]]

Figure 4.10: Dataflow-based effect analysis

maps — the effect associated with the function is updated with the effect associated with the

execution of its body, and the binding itself is PURE (since capturing a closure is a pure operation).

Application is the most complicated rule and the place where control-flow analysis influences the

result. During the earlier translation in Figure 4.3, we normalized applications so that a variable

is always the target of the application. This normalization allows control-flow analysis to build a

mapping from these variables to all of the potential target functions. To compute the overall effect

of the application, we merge the effects of all of those potential target functions and the effect

associated with evaluating the argument to them.

84

Tuples, parallel tuples, and let bindings are all perform a straightforward merge of the effects

of their subexpressions. The atomic expression always has the same effect. Creation of a lock is

pure, and all operations on reference cells have the mutable effect.

This analysis is iterated over the entire program until there are no longer any changes to the

effect set. Since there is an upper-bound on the values (⊺) and a fixed number of locations and

function binding variables, this analysis is guaranteed to terminate. The ⊺ value results when the

control-flow analysis is unable to determine the potential target of an invocation, due to the lack of

precision in that analysis. In practice, this algorithm takes < 0.1% of compilation time even on our

largest benchmarks. For example, on Barnes-Hut, the entire compilation process took 19.4s but

the analysis and transformation (discussed in the next section) took only 0.022s.

4.7.4 Transformation

In Figure 4.11, we describe the translation, R, that removes redundant atomic operations from

the code. The only expression that is modified is the atomic expression. In the case where the

effect associated with the program point of the expression to execute is PURE , we can remove the

expression from the wrapper, leaving around a stub that increments the ticket lock but otherwise

leaving the expression alone. This stub is required for the serial execution model, which relies on

the ticket numbers assigned to the ticket lock. In the transactional execution model, we can omit

the atomic expression entirely.

4.7.5 Limitations of this analysis

In addition to the restrictions listed earlier in this section, this analysis does not distinguish encap-

sulated uses of state. The code below exhibits a common idiom in otherwise mutation-free PML

code. Rather than passing along a boolean flag to indicate whether any information was updated

during complex recursive operations (e.g., computing the effect analysis discussed in this chapter),

programs frequently have a single ref cell that is reset on each iteration that tracks whether an

85

R[[x]] = x

R[[c]] = c

R[[fun f x= e1 in e2]] = fun f x=R[[e1]] inR[[e2]]
R[[x e]] = x (R[[e1]])

R[[(|e1, e2|)]] = (|R[[e1]], R[[e2]]|)
R[[atomic (e1, c, e2)]] = let () = atomic ((), c, ()) inR[[e2]]

when E[`] = PURE

where ` is the location of e2
atomic (R[[e1]], c,R[[e2]])

otherwise
R[[let p = e1 in e2]] = let p = R[[e1]] inR[[e2]]

R[[ref e]] = ref (R[[e]])
R[[!e]] = !(R[[e]])

R[[e1 := e2]] = (R[[e1]]) := (R[[e2]])

Figure 4.11: Translation to remove atomics based on effect analysis.

update occurred. This mutable state does not escape the function and should not prohibit multiple

calls to this function from proceeding in parallel, but our current analysis is unable to handle this

case.

fun compute i = let

val updated = Ref.new false

in

. . .

end

val result = (| compute 1, compute 2 |)

In order to handle this case, we would need to implement a region-based effect system, along

the lines of the work done in Deterministic Parallel Java [13], though inferring those regions using

an extension to our effect analysis instead of their static annotations.

86

4.8 Evaluation

The experimental setup is identical to that described in the experiments in the previous chapter, in

Section 3.7.1. The effects optimization was performed, but since there were no atomic operations

to remove in these benchmarks, there is no difference in the resulting code.

4.8.1 Account transfer

Our account transfer benchmark is a microbenchmark designed to test the overhead associated

with the implementation of parallel mutable state. It is shown in Figure 4.12. As shown in the

transfer function, this benchmark has almost no work — just one subtraction and one addition.

Because of this design, the workload is entirely a measure of the results of heavy contention on the

locking infrastructure and parallelism.

We have compiled and tested this benchmark in four configurations. First, we disable all lock-

ing and allow random and unprotected access to the array. This result provides an estimate of how

fast this particular task could go, if correctness is not a concern. Second, we disable parallelism

and locking, simply running in the single-processor sequential configuration. Third, we use serial

execution, which causes the transfers to occur in the same dynamic order as the single-processor

sequential configuration. Finally, we use transactional execution, which will run operations con-

currently, retrying any operation whose transfer method conflicts with another. Results are

shown graphically in Figure 4.13 and numerically in Table 4.1.

The results of this benchmark across both 1,000,000 transactions and 10,000,000 transactions

have similar patterns. On a single processor, the sequential version (which does not use any of

the parallel features) is the fastest implementation, but is quickly overtaken by the unprotected

version at even 2 cores. The performance of the sequential version continues to decline because

of scheduler overhead in Manticore. When only one thread is performing useful work, the other

threads in the system will attempt to steal work from it, interrupting it from making progress. As

87

Number of Processors
Strategy 1 4 8 16 24 32 40 48

Unprotected 0.176 0.0930 0.0530 0.0330 0.0310 0.0350 0.0420 0.0565
Sequential 0.127 0.128 0.130 0.136 0.145 0.158 0.176 0.208

Serial 0.235 0.401 0.629 0.942 1.00 0.945 1.17 1.78
Transactional 0.328 0.153 0.085 0.0522 0.0463 0.0475 0.0571 0.0712

(a) 1M transactions

Number of Processors
Strategy 1 4 8 16 24 32 40 48

Unprotected 2.79 1.40 0.780 0.422 0.307 0.257 0.236 0.247
Sequential 2.00 2.00 2.01 2.02 2.04 2.07 2.10 2.19

Serial 3.66 5.65 7.91 12.3 13.7 13.1 15.8 19.2
Transactional 5.13 2.24 1.23 0.684 0.514 0.447 0.425 0.603

(b) 10M transactions

Table 4.1: Comparison of mutable state implementation strategies for the account transfer bench-
mark. Execution times in seconds.

the number of cores increase, so do those attempts to steal work, degrading performance.

As should be expected, the unprotected execution model is the fastest at all other numbers

of processors. While it is not a practical execution model (since the unprotected version is not

guaranteed to compute a correct answer), it does help us to measure the overhead of the transaction

model. The serial execution model, where lock order is explicitly specified, is faster than the

transactional model only where there is a single processor. This behavior is because under the serial

model there are both no contended locks and none of the logging behavior and additional value

checking that is required in the transactional version. Once there are many processors, though, the

transactional model is faster than both the serial and sequential versions.

Graphically in Figure 4.14 and numerically in Table 4.2, we investigate the performance trade-

off in the size of the array chunk that we track for edits. As mentioned earlier, the smaller the

size, the more memory is taken (in number of locks allocated), but it also reduces the odds of a

conflict. When the size is larger, the transaction commit time may increase, as lock contention

increases when concurrent tasks attempt to commit their changes to elements that share the same

88

Number of Processors
Locking size 1 4 8 16 24 32 40 48

1 5.13 2.24 1.23 0.684 0.514 0.447 0.425 0.603
10 5.06 2.26 1.27 0.727 0.561 0.502 0.502 0.826
50 4.99 2.34 1.39 0.910 0.915 1.14 1.45 2.23

100 5.00 2.46 1.55 1.23 1.64 2.11 2.91 4.60

Table 4.2: Comparison of array lock range sizes in the account transfer benchmark. Execution
times in seconds.

chunk. As is shown in the table, for this benchmark — which has a very large ratio of transactional

operations to work — smaller chunk sizes result in the best performance. This performance comes

at the cost of memory, as there is one lock object per chunk, and in the degenerate case (one lock

per account), the size of the lock array is larger than the size of the account array.

4.8.2 Minimax with time limit

In Section 3.7.4, we introduced the minimax benchmark. In this benchmark, we performed an

α-β search over a game tree, trying to find a move that optimized the expected outcome. In that

benchmark, we limited our depth of investigation to 4 moves, and had corresponding times based

on the CPU and processor. But what if we wanted to instead limit ourselves to a specific amount

of time? One method for handling this problem is to spawn parallel searches from 1 move to the

full game board (16 moves) and to cut off execution after a fixed amount of time. While we could

return all of the results sort them, in this implementation we investigate the approach of having a

single global variable with the result and updating that variable. In the following example, we have

sample code that stores the best result so far into a reference cell, as shown below:

val best = ref EMPTY

fun update_best(new_move, score) =

case !best

of EMPTY => (best := MOVE(new_move, score))

| MOVE(_, old_score) => (

89

Number of Processors
Timeout 1 4 8 16 24 32 40 48

100ms 7,200 22,000 38,000 60,000 69,000 66,000 61,000 40,000
250ms 18,000 55,000 95,000 160,000 181,000 190,000 180,000 150,000
500ms 36,000 108,000 190,000 310,000 380,000 390,000 380,000 340,000

Table 4.3: Comparison of the maximum tree number of moves searched versus timeout limit across
several timeout values.

if (score > old_score)

then (best := MOVE(new_move, score))

else ()

We have augmented the minimax benchmark to do exactly the same thing, and Table 4.3 evaluates

the number of unique board depths that can be evaluated versus the number of processors at a given

time threshold using the transactional execution model. This evaluation is shown graphically in

Figure 4.15. This facility not only allows more states to be evaluated than the default memoized

strategy (at depth 4, counting from 0, we visit at most 16 ∗ 15 ∗ 14 ∗ 13 ∗ 12 = 524,160 states, not

including shared states eliminated by memoization), but also allows the user to set a fixed amount

of time for their evaluation. Note that for the most part values increase up to around 40 processors,

but past that point, it tends to diminish because of some extremely poor runs. Generally the best

runs are the same, but the lowest quartile is significantly worse at higher processors because of

occasional scheduling orders that cause limited sharing of memoized work before spawning off

huge amounts of work that could ultimately have been shared.

4.8.3 STMBench7

The STMBench7 benchmark was created in 2007 to measure the performance of transactional

memory system implementations [33]. This benchmark simulates random workloads over a large

number of objects, simulating an in-memory object graph for a CAD/CAM system. We evaluate

our implementation of transactional memory through a benchmark that re-creates these objects and

90

Number of Processors
Strategy 1 4 8 16 24 32 40 48

Unprotected 0.685 0.688 0.694 0.715 0.750 0.807 0.892 1.01
Transactional 0.964 0.969 0.975 1.07 1.04 1.09 1.31 1.61

Table 4.4: Comparison of array lock range sizes in the STMBench7 benchmark on 1,000,000
transactions. Execution times in seconds.

uses a workload similar to their balanced workload — 60% transactions that just read state, and

40% transactions that mutate state.

In this benchmark, there are a large number of objects. At the top, there are 500 composite

objects. Below each of these composites are 3 local objects, each of which has 200 elements.

There are additionally 600 connections between these elements. Different ports of this program

have used a variety of implementations, from object-oriented representations (in the original Java

version) to a set-based version in Ziarek’s Concurrent ML-based implementation [69]. Since our

transactional memory implementation is based on large arrays and reference cells, we have simply

used arrays to hold the data and indexes into those arrays for the various items.

In Table 4.4, we provide an evaluation of our transactional implementation against a lock-

free, unprotected implementation, to understand how much overhead our system imposes. We

ran against the number of objects as described in the previous paragraph, with 1,000,000 parallel

transactions, on a varying number of processors from 1 to 48. Even with a very simple atomic

strategy with coarse locking — global transactional locks for updates — we incur less than a

factor of two slowdown in this benchmark, with significantly worse performance at larger number

of processors because of the additional interference between tasks.

91

structure Transfer = struct
val numAccounts = 10000
val accounts = Array.tabulate (numAccounts, fn i => 1000)
val transfers = Array.tabulate (10001,

fn i => Rand.inRangeInt(0, numAccounts))

fun transfer (index) = let
val index = index mod Global.numAccounts
val v = 100
val i = Array.sub (transfers, index)
val j = Array.sub (transfers, (index+1))
val i’ = Array.sub (accounts, i)
val j’ = Array.sub (accounts, j)

in
Array.update (accounts, i, i’-v);
Array.update (accounts, j, j’+v)

end
end

fun doTransfers (start, n) =
if (n = 1)
then (Transfer.transfer (start))
else let

val half = n div 2
val _ = (| doTransfers (start, half),

doTransfers (start + half, half) |)
in

()
end

val _ = doTransfers (0, problemSize)

Figure 4.12: Parallel account transfer code.

92

●

●
● ● ● ● ● ●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

● Unprotected
Sequent ial
Serial
Transact ional

(a) 1M transactions

●

●
●

● ● ● ● ●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

0

5

10

15

0

5

10

15

● Unprotected
Sequent ial
Serial
Transact ional

(b) 10M transactions

Figure 4.13: Comparison of mutable state implementation strategies for the account transfer bench-
mark.

93

●

●

●

●
● ● ●

●

Number of processors

T
im

e
in

 s
ec

on
ds

1 4 8 16 24 32 40 48

1

2

3

4

5

1

2

3

4

5

● Lock per element
Lock per 10
Lock per 50
Lock per 100

Figure 4.14: Comparison of array lock range sizes in the account transfer benchmark.

●
●

●

●
● ● ●

●

Number of processors

N
um

be
r

of
 m

ov
es

1 4 8 16 24 32 40 48

10,000

100,000

200,000

300,000

400,000

10,000

100,000

200,000

300,000

400,000
● 100ms

250ms
500ms

Figure 4.15: Comparison of the maximum tree number of moves searched versus timeout limit
across several timeout values.

94

4.9 Local reasoning

Local reasoning refers to the ability to reason about the behavior of a function and its usage of the

heap in isolation from any other functions — including concurrent functions — that mutate the

heap [59]. In order to preserve local reasoning, we have based our mutable state design around

the model of linearizability [42, 41]. In this model, every function invocation appears to the rest

of the system as if it occurred instantaneously — none of its internal uses of state are visible to

any concurrently executing code. In a sequential context without concurrency, this linearizability

property is trivial. Callers cannot distinguish intermediate states of their callees because of the

call/return discipline. Further, there are no parallel or concurrent invocations, so there is no other

code executing that could discern intermediate states.

From the point of view of shared memory and parallelism, linearizability requires that any

two concurrent operations provide results consistent with their shared memory operations having

occurred either entirely before or after one another. This requirement is handled directly in both of

our execution models.

Serial In the serial state model, each parallel expression will be executed in sequential program

order if it uses mutable state. The sequential program order is the same order as the sequential

execution of the program without any parallelism. This execution model is stricter than the lin-

earizable model, as it provides a guarantee of sequential in-order execution with respect to changes

in mutable state, at the cost of parallelism.

Transactional In this model, the first expression to complete its work will successfully commit

its changes to shared memory, irrespective of program order. But, any expressions executed in

parallel will either see all of the changes or none of the changes performed by that expression.

Further, any conflicting changes will cause the second writer to abort and retry their changes. This

model preserves local reasoning because within the scope of a sequential function, only global

95

changes committed before the call can change its behavior. No changes made concurrently will

affect its behavior, other than to cause a semantically invisible abort and re-execution.

In both of these models, the implementation enforces these properties and there are no annota-

tions required in the code.

4.9.1 Example

In games such as Pousse [7], the problem is to come up with the best possible move in a limited

amount of time. One key part of the inter-thread communication in this benchmark is to update

the “best known move.” In the example below, the code update_best checks the best move so

far to determine if it should be updated and, if so, replaces the value in the global mutable state.

In all execution models, the programmer can reason locally about the correctness of the function

update_best without worrying about either other writers to the variable best or concurrent

executions.

val best = ref EMPTY

fun update_best(new_move, score) =

case !best

of EMPTY => (best := MOVE(new_move, score))

| MOVE(_, old_score) => (

if (score > old_score)

then (best := MOVE(new_move, score))

else ()

The code below that calls update_best has different potential executions under the two exe-

cution models, but in both cases the result will be the same.

(| update_best(move1, 27), update_best(move2, 30) |)

96

Serial In this model, the two parallel subexpressions both perform mutations of state, so they

must run in serial program order. This code will execute as if there were no parallel expressions,

simply executing them in sequence. That is, it will execute the same as if the code had been written:

(update_best(move1, 27), update_best(move2, 30))

Transactional In the transactional model, the second expression may begin to execute before the

first one. There are four permissible interleavings of these expressions under this model, which are

handled semantically in the following manner:

1. The first expression runs to completion before the second begins. In this case, the second

expression will then run to completion.

2. Both run concurrently, with the first committing before the second. Upon attempt to com-

plete the second expression, there will be a conflict on the reference cell corresponding to

best, so the second expression will be aborted and re-executed.

3. The first and second run concurrently, with the second committing before the first. Upon

attempt to complete the first expression, there will be a conflict on the reference cell corre-

sponding to best, so the first expression will be aborted and re-executed.

4. The second expression runs to completion before the first begins. In this case, there is no

work for the system to do.

These examples under the different execution models describe the full set of permissible behav-

iors and their expected runtime behavior. The system, though, may limit those possible executions

in order to simplify or remove the need for conflict handling.

97

4.10 Conclusion

Mutable state is an extension to the language of Parallel ML (PML) that simply adds back fea-

tures that were originally in Standard ML. By preserving the syntax familiar to Standard ML

programmers and providing an execution model that preserves local reasoning, we have provided

a mechanism that does not burden the programmer with annotations or type system hurdles.

The evaluation demonstrates that the transactional implementation of this feature introduces

little overhead and scales well across a range of processors. We have shown this behavior both on

a microbenchmark and on a larger one, additionally providing better performance than some other

implementations.

This programming model does not allow unrestricted access to mutable state. Because we

implicitly provide atomic guarantees around any concurrent expressions that access mutable state,

for programs whose correctness does not change in the absence of locking our model introduces

unnecessary overhead. For example, an implementation of memoization as presented in Chapter 3

could be written using mutable state, but rather than sharing results between parallel threads to

reduce re-execution, this implementation would require parallel threads to complete and commit

before their results are shared with other threads. That implementation of memoization would both

dramatically reduce sharing, due to the restriction of computed results until transaction commit,

and increase synchronization overhead.

98

CHAPTER 5

SEMANTICS

In this chapter, we define an operational semantics that specifies the behavior of a subset of the

Parallel ML (PML) language, including parallelism, memoization, and mutable state. This for-

malism is in the style of Moore and Grossman’s work on a small-step operational semantics for

transactions [56]. We have several major differences from their presentation:

• Memoization is added, using the syntax of Harper et al. [1], and its interaction with transac-

tional memory is specified.

• Rather than their three forms of threads, we have a single fork-join model of parallelism,

which substantially simplifies their thread pool representation, though it reduces the flexibil-

ity of the programming model.

• We do not provide a type system and associated type-safety proofs, leaving that to future

work.

5.1 Syntax

Figure 5.1 contains the expression forms in the reduced version of the PML language that we use

in this formal system. This language is further simplified from those presented in Figure 3.1 and

Figure 4.1 in order to reduce the number of purely mechanical rules. Variables, x, refer to bound

variables in let expression and parameters of functions, which are distinguished from function

identifiers, f . We assume that variables names are distinct. Locations are the value that results

from the allocation of a reference cell, and serve as the argument to both retrieve and set the

current value of a reference cell. The atomic keyword wraps any parallel expression that may

use mutable state to ensure that it is executed as if it had exclusive access to the heap. The let

form is used to introduce fork-join parallelism and bind the results to a pair of variables.

99

Memoization is provided through the mfun keyword which otherwise has the same syntax as

a normal function declaration. This syntax is identical to that used in the recent work on selective

memoization by Harper et al. [1] and that presented in Chapter 3. In this language, function

definitions are closed (i.e., they have no free variables) and may not be recursive.

The inatomic and memo forms are not surface syntax, but are administrative expressions

introduced by the rules in the operational semantics when entering an atomic block and invoking

a memoized function that does not have a previously recorded value, respectively.

e ∶∶= x variables
∣ c constants
∣ f function identifiers
∣ l locations
∣ fun f(x).e functions
∣ mfun f(x).e memoized functions
∣ e1 e2 application
∣ seq (e1, e2) sequencing
∣ ref e reference cell allocation
∣ !e access the value of a reference cell
∣ e1 ∶= e2 update the value of a reference cell
∣ atomic e enter an atomic block
∣ inatomic(a, e) evaluation within an atomic block
∣ memo(f, e1, e2) evaluation within a memoized function, f
∣ let (x, y) = (∣e1, e2∣)in e3 parallel evaluation with binding

v ∶∶= c constants
∣ l locations
∣ fun f(x).e functions
∣ mfun f(x).e memoized functions

Figure 5.1: Syntax of the reduced Parallel ML language

H ∶ l
fin
Ð→ v

M ∶ (f ∗ v)
fin
Ð→ v

Figure 5.2: Finite maps

These rules build up two finite maps, shown in Figure 5.2. The first, H, is a map from from

100

each of the allocated heap locations l to a value, v. The second, M, is a memo table from a function

identifier and input value to a cached output value. A value is retrieved with the syntax H(l) and

is updated by H(l)← v. If a value is unset in the finite map, we denote that with H(l) ↑.

5.2 Operational semantics

This semantics ensures two dynamic constraints on the execution of programs:

• The mutable heap, H, may only be accessed by one thread at a time.

• During the evaluation of a memoized function, the mutable heap is inaccessible.

Program states are made of three parts, separated by semicolons:

m;a; e

The first part, m, indicates whether we are currently evaluating an expression that is within a

memoization function context, ◾, or outside of one, with the ◽ symbol. The second is a similar

indicator for atomic tracking. In this case, the ● symbol indicates that there is a concurrent thread

currently executing in an atomic block, and ○ indicates that there is no other thread in one. When

the current program context is set to ○, any rules that access the heap may be performed, as it is the

case that there may be other transactions executing but the current evaluation context has exclusive

access to the heap. These values are also shown in Figure 5.3. Finally, e is an expression, from the

language in Figure 5.1.

a ∶∶= ○ ∣ ● atomic operation tracing
m ∶∶= ◽ ∣ ◾ memoization operation tracing

Figure 5.3: Program states

Figure 5.4 provides the rules for function application, both for normal functions and memoized

functions. BETA-FUN simply performs capture-avoiding substitution in the body of the function

101

m;a; (fun f(x).e) v →m;a; e[v/x]
(BETA-FUN)

M(f, v1) = v2
m;a; (mfun f(x).e) v1 →m;a; v2

(BETA-MFUN-1)

M(f, v1) ↑
m;a; (mfun f(x).e) v1 →m;a;memo(f, v1, e[v1/x])

(BETA-MFUN-2)

◾; a; e→ ◾; a′; e′

m;a;memo(f, v, e)→m′; a′;memo(f, v, e′)
(MEMO-1)

m;a;memo(f, v1, v2)→m;a; v2 M(f, v1)← v2
(MEMO-2)

Figure 5.4: Rules for function application including memoization.

with the argument value. The syntax e[v/x] means to replace all occurrences of x in the expression

e with the value v. The first memoized function rule, BETA-MFUN-1, covers the case where the

memo table associated with the function f already has a result value associated with v1. In that

case, the rule does not execute the body expression but instead returns the cached value. In the

second rule, BETA-MFUN-2, there is no value associated with the argument in the memo table,

so the function body will be evaluated. First, though, we wrap the body of the function in the

memo form, which both provides the name of the function and the original argument value for

later caching purposes and supports tracking the evaluation of expressions within a memoized

function.

The MEMO-1 rule steps the evaluation within the body of a memoized function. Note that

when evaluating the body expression, we require that only rules that are safe during memoization,

i.e., allowing ◾, are permitted. This condition is what prevents allocating, reading, or setting mu-

table state within a memoized function. See Figure 5.6 and rules ALLOC, GET-2, and SET-3,

along with their administrative forms in Figure 5.8, all of which require that the ◽ flag is set in the

program state.

102

m;a; e1 →m′; a′; e′1
m;a;let (x, y) = (∣e1, e2∣)in e3 →m′; a′;let (x, y) = (∣e′1, e2∣)in e3

(LET-1)

m;a; e2 →m′; a′; e′2
m;a;let (x, y) = (∣e1, e2∣)in e3 →m′; a′;let (x, y) = (∣e1, e′2∣)in e3

(LET-2)

m;a;let (x, y) = (∣v1, v2∣)in e3 →m;a; e3[v1/x, v2/y]
(LET-3)

Figure 5.5: Rules for parallel language features, with non-deterministic evaluation order of subex-
pressions.

l ∉ dom(H)
◽; a;ref v → ◽; a; l H(l)← v

(ALLOC)

◽; a; !l → ◽; a;H(l)
(GET-2)

◽; a; l ∶= v → ◽; a; v H(l)← v
(SET-3)

Figure 5.6: Rules for mutable state features.

Parallelism is introduced in Figure 5.5. This feature combines the parallel tuple expression

from Parallel ML with a binding form. Unlike all of the other rules in this semantics, the LET-1

and LET-2 rules can both be eligible for evaluation on the same expression and introduce non-

determinism. Once both of the expressions have been full reduced to values, we substitute them

for their bound variables in the body expression with LET-3.

The operation of mutable state is shown in Figure 5.6. The rule ALLOC allocates a new label

in the heap, associates the value with it, and then returns that label. This rule may not be evaluated

during evaluation of a memoized function. GET-2 reads a value from the heap and returns it,

whereas SET-3 updates the heap with the newly assigned value.

Finally, Figure 5.7 describes the operation of this language with respect to the atomic keywords.

Their design — and the atomic markers ● and ○— provides exclusive access to the heap for a single

expression at a time, while still supporting nested atomic usage and parallelism. The first rule,

103

m; ○;atomic e→m; ●;inatomic(○, e)
(ATOMIC)

m;a; e→m′; a′; e′

m; ●;inatomic(a, e)→m; ●;inatomic(a′, e′)
(INATOMIC-1)

m; ●;inatomic(○, v)→m; ○; v
(INATOMIC-2)

Figure 5.7: Rules for the features related to atomicity.

ATOMIC, can only step when there are no other expressions concurrently operation with atomic

access to the heap, which is denoted by ○. When this rule steps, it changes the outer atomic marker

to ●, indicating that there is a subexpression with atomic access to the heap. This rule wraps the

expression in the inatomic keyword and the atomic marker ○, indicating that it has access to the

heap.

The rule INATOMIC-1 steps the expression within the inatomic expression. Note that it

uses the outer memoization, heap, and function caches, but the inner atomic marker. This feature

is also what enables nested entry into an atomic block. When a nested block is entered, the

outer program context is then instead the inner context of the inatomic block, which prevents

any other expressions in a parallel executions from gaining exclusive access to the heap until the

current nested block is finished. The last rule, INATOMIC-2, handles termination of the atomic

expression. When it terminates, it also resets the outer atomic marker to ○, indicating that another

expression may now gain access to the heap.

Figure Figure 5.8 contains all of the administrative rules for this semantics. Each of these rules

wrap an evaluation step with its context.

104

m;a; e1 →m′; a′; e′1
m;a; e1 e2 →m′; a′; e′1 e2

(APP-1)

m;a; e2 →m′; a′; e′2
m;a; v e2 →m′; a′; v e′2

(APP-2)

◽; a; e→ ◽; a′; e′

◽; a;ref e→ ◽; a′;ref e′
(REF)

◽; a; e→ ◽; a′; e′

◽; a; !e→ ◽; a′; !e′
(GET-1)

◽; a; e1 → ◽; a′; e′1
◽; a; e1 ∶= e2 → ◽; a′; e′1 ∶= e2

(SET-1)

◽; a; e2 → ◽; a′; e′2
◽; a; v ∶= e2 → ◽; a′; v ∶= e′2

(SET-2)

m;a; e1 →m′; a′; e′1
m;a;seq (e1, e2)→m′; a′;seq (e′1, e2)

(SEQ-1)

m;a;seq (v, e2)→m;a; e2
(SEQ-2)

Figure 5.8: Administrative rules.

105

CHAPTER 6

RELATED WORK

The challenge of creating a programming model and language implementation that supports paral-

lelism, communication between threads, and high performance has been the subject of research for

as long as there has been parallel computing hardware. In this work, we focused on two smaller

problems: adding memoization and explicit mutable variables.

Both memoization and hash tables have been the subject of significant prior work. Our primary

contribution is in combining memoization with hash tables and improving the performance of both

by taking advantage of the looser semantic guarantees required by memoization.

Mutable state in the context of parallel languages has been widely studied and is available in a

large number of different forms in various languages. Our work is unique in its combination of no

required annotations, a linearizable execution model, and scalable parallel performance.

6.1 Memoization

Memoization of functions was originally proposed by Donald Michie [55]. In that work, he used

the example of factorial, remembering a fixed number of applications, and discarding based on

the least recently used value. William Pugh extended this work to an incremental evaluator, in the

context of using it to incrementalize computation and evaluation [62]. Pugh investigated the use of

a fixed-size hash table and focused on cache replacement strategies that work well in that context

and are smarter than LRU, though not applicable for all problems [61]. Our work differs from that

by relying instead on dynamically-sized hash tables, which avoid some of the pathological cases

that lead Pugh to investigate smarter replacement strategies for individual problems.

Hughes extended memoization to the context of lazy languages [43], relying on pointer equality

and lazy evaluation to determine equality when performing a lookup within the hashed memo

functions. We do not handle complex arguments to functions in this work.

106

Ziarek, Sivaramakrishnan, and Jagannathan investigated memoization in the context of message-

passing concurrency [69]. Unlike our work, which prohibits access to mutable state within a mem-

oized function, in addition to the function arguments they track and record the actions related to

threads and communication performed by the function. Their system will return the same value

when they determine that the call site satisfies all of those same constraints with respect to the

concurrency features.

An extension of their earlier work on self-adjusting computation, Acar, Blelloch, and Harper

specified an extension of Standard ML with selective memoization [1]. Their work differs from

ours and is more similar to the work by Ziarek et al. in that it also tracks the control-flow path

through the function in order to potentially increase the memoization cache hit ratio. They suggest

that this approach would be able to ignore unrelated arguments and provide further gains, whereas

our work specifies that the argument to the function is identical to the value in the memoization

cache.

6.2 Hash tables

The idea of a dynamically growing hash table for in-memory storage of data originates with Lar-

son [48]. In that work, he extended the earlier research on external hashing in file systems and

external data storage. His system used fixed-sized segments that were pointers to linked lists of el-

ements with incremental growth of the table by a single fixed segment when the number of records

in the table exceeded a percentage of the current capacity. It also incrementally updated elements

by expanding the table one bucket at a time into the newly-allocated space.

The implementation of dynamic hashing in Icon extended that approach for use in a language

where nearly everything is either a table or a set — and both of those use a dynamic hash table for

their implementation [32]. They adapted Larson’s scheme to start with a smaller initial table and

segment size, but then grow it by a power of two each time the table needs to increase. This change

supported their need to have many tables in memory at once, some of which might remain small.

107

Shalev and Shavit extended this implementation in a concurrent context with the idea of re-

cursive split-ordering to order the elements in each bucket so that they are in binary digit order

of their hash value [65]. That order means that if the sizes of the underlying table are always

grown by powers of two, then splitting an entry only involves a single split for each list in each

bucket. Their implementation is also linearizable and lock-free, which makes it both semantically

and performance-size ready for use in a parallel setting. Larson recently extended that work to

implement table contraction and to stabilize performance across a variety of work sets by returning

to the incremental bucket splitting technique of the original work [68]. Our implementation differs

from both of these concurrent implementation by removing both locking and atomic operations.

Since the surface language feature that uses these hash tables — memoization — does not require

correctness from the underlying table, we avoid synchronization between concurrent operations.

6.3 Mutable State

Research in the area of combining mutation and parallelism has focused either on fully automatic

approaches that preserve determinism at the cost of performance or completely manual approaches

that provide good performance but require significant annotations. Our approach to mutable state

is automatic, but relaxes determinism to something still better than unrestricted non-determinism

without requiring manual annotations or locking. This strategy — providing a programming model

without explicit transactions, locks, or annotations while still providing a linearizable semantics

and scalable performance — is the fundamental difference between our approach to mutable state

and the prior art.

6.3.1 Speculation

Pingali and his colleagues have described the Galois Approach [46], which extends imperative,

object-oriented programming with two optimistic iterators: one for unordered collections and one

108

for partially-ordered collections. These iterators are hints to the system that multiple instances

of the loop bodies may be executed in parallel. The correctness of this approach depends on the

libraries that implement the collection abstractions. If two operations on a collection are com-

mutative, then they may be executed in parallel, since the order in which they are executed does

not affect the result. Since Galois optimistically executes the loop bodies in parallel, it may have

to undo the effects of a loop body when a commutative conflict is detected. Thus the collection

abstractions must define what operations commute (e.g., add(x) commutes with add(y) when

x ≠ y), and provide undo operations. This approach to parallel execution in the presence of muta-

ble data structures is one implementation of speculation.

The main drawback to the Galois approach is that implementing the collection abstractions

is challenging, since they must correctly detect interference and provide a rollback mechanism.

These collection abstractions provide a form of parallelism similar to our mutable state, as each of

the operations that are marked as commutative are similar to our atomic regions. If commutativity

annotations are used, a programmer can explicitly write similar code to that performed by our

translation and effect analysis for mutable state that will reproduce the behavior of a program in

Parallel ML.

6.3.2 Imperative parallel languages

The JAVA memory model defines a consistency model that is relaxed (weaker) compared to sequen-

tial consistency [47, 52]. This model is based on a set of constraints derived from program order

and data type. One goal of this memory model is to provide sequential consistency to correctly-

synchronized programs and define the behavior of programs with data races to make the allowable

executions clear to language implementers and programmers. These data races require explicit

barriers on memory operations. This requirement forces programmers implementing concurrency-

safe objects manually verify that the methods are linearizable to avoid race conditions, as there is

no explicit language or tool support currently available to verify object safety.

109

The proposed C++ memory model is similar to the JAVA memory model in starting from a

weaker model than sequential consistency [14]. While this model also provides sequential con-

sistency for atomic operations, it differs from the JAVA model by providing no semantics for data

races. Programs written in this memory model are non-deterministic and, again, require significant

programmer effort to ensure correctness without, in general, the aid of static verification.

Single-Assignment C (SAC) was extended by Herhut et al. with a mechanism for extending

data-parallel loops with side effects [39]. Their design serializes the effects in any given iteration

and serializes the effects between iterations, but does not prescribe a specific order of the iterations.

This implementation has similar semantics to our implementation of arrays and mutable state.

The FX language introduced the use of region and effect inference to identify regions of a

program that could be executed in parallel because they were guaranteed to be non-interfering [29,

30]. In their approach, users annotate the program with regions and the compiler infers the effects

using a unification-based approach (similar to type inference). They then produced a dataflow

graph, identifying the parts of the program that could potentially be executed in parallel. In our

work we do not use regions to identify disjoint portions of the heap. We do perform a similar

effect inference, however, and rely on control-flow analysis to improve the precision of our effect

analysis over the unification-based approach.

Deterministic Parallel Java (DPJ) provides a strictly data-race-free, explicitly parallel lan-

guage [13]. This system relies on a type-based effect system in concert with method-level par-

allelism annotations (requiring annotations in an average of 12.3% of the lines of code) to guar-

antee a parallel execution that is the same as some sequential execution. While that approach of

sequential execution is similar to ours, we omit the need for user annotations, at the cost of less

scalable parallelism. For example, in DPJ, the user can mark parallel subtasks as working on dis-

joint portions of the heap, allowing parallelism without synchronization. In our implementation,

we require a check of the transaction log at commit. However, our fundamental approaches to

non-deterministic behavior are similar — in both DPJ and our system, non-deterministic behavior

110

is still sequentially consistent.

6.3.3 Transactional memory

Software Transactional Memory (STM) provides an interface that implements a memory consis-

tency model on reads and writes across multiple threads of execution [66]. This model is usually

exposed as a new language feature — an atomic block, along with failure and retry handlers. In

the space of declarative programming, Harris et al. showed how to cleanly integrate STM with

the type system of a functional language [37] and integrated this work in the Glasgow Haskell

Compiler (GHC). One challenge with this work is that since the user defines the size of the atomic

regions, there is a granularity problem associated with identifying the transaction size that provides

the best results [60], similar to our investigation of the performance tradeoffs in lock sizes in Sec-

tion 4.8.1. While our work does not provide a full solution to this problem, we have attempted to

engineer our system to support small transaction sizes and to rely on the effect analysis to reduce

the size of transactions.

When compared to arbitrary locking, the transactional model limits the performance of STM

in situations with heavily-shared objects. Even in cases where two transactions against an object

could commute in theory, as when adding distinct items to a set, the shared writes to the same object

will cause one of those two transactions to be aborted. Transactional boosting is a technique for

annotating objects with commutativity and inverses for methods, enabling those objects to be used

concurrently when the standard transactional model would not normally permit it without aborting

one [40]. As in the Galois approach above, significant expertise and work are required from the

implementer of these boosted objects. Coarse-grained transactions provide a formalism proving the

preservation of atomic semantics when transactional models are extended to reduce false sharing

as in models like transactional boosting [45]. This work does not support transactional boosting.

111

6.3.4 Logic programming

Logic programming provides one of the earliest examples of implicit parallelization implementa-

tion techniques and their integration with explicit threading and shared state [34]. Three forms of

implicit parallelism are readily apparent in logic programs:

• And-parallelism is over the different goals to solve

• Or-parallelism is over the different clauses to solve

• Unify-parallelism is between the sets of terms to be instantiated1

Different logic programming language implementations have provided a variety of language con-

structs for explicit parallelism and integrated these constructs with the implicit parallelism. The

cut and cavalier commit operations cause the search of a logic program to terminate early along

branches of exploration. The cut operation is similar to the explicit threading, shared state design

because it requires synchronization of all prior cut threads to return the first one that would have

returned in the sequential execution [50]. The cavalier commit model, which does not require

synchronization with prior work, is an example of the explicit threading, shared state design.

In the presence of shared variables, logic programming implementations, such as Ciao, ana-

lyze the goals for independence of variables and only evaluate them in parallel if the goals are

both independent and the parallel execution does not change the search space [26]. The black-

board language feature allows shared state between parallel threads, with access synchronized in

implementation-specific ways [34].

6.3.5 Automatic

The language Id and its successor pH, a dialect of Haskell, provide automatic parallelization of

user programs [57, 58]. This approach generates fine-grained parallel work, conceptually creating

1. Unify-parallelism is not often used in practice due to the extremely fine-grained parallelism [34].

112

a new thread for each available reducible expression except for those guarded by a conditional.

The Manticore approach relies on user annotations for identification of potential parallelism.

These languages introduced the I-structure [3] and M-structure [6]. I-structures are shared state

that is restricted to a single write operation but an unlimited number of reads. A second write to an

I-structure is a dynamic error, resulting in an invalid store. Reading an I-structure before its data

has been written causes the reading thread to block until the data is available. M-structures provide

shared state with paired readers and writers. The read operation blocks until data is available,

clearing and returning the value once it is available. The write operation blocks if the M-structure

is full, until a read has been performed and the cell cleared. Our system does not provide direct

analogs to either of these communication mechanism.

The Parcel Scheme compiler and runtime also provide automatic parallelization [38]. That

work performs static analysis of Scheme programs to determine lifetimes of mutable variables.

The compiler then determines the available parallelization that respects the dependencies between

the pieces of code. While that work also performs a flow-based effect analysis, it predates the

control-flow analysis techniques that we use, limiting its ability to handle higher-order functions

as generally as we can in identifying where atomic annotations are not needed because the com-

putation is guaranteed to be pure.

6.3.6 Explicit parallelism

One of the most popular implementations of explicit parallelism is the use of POSIX threads

(pthreads) in C [16]. This language and library combination offers great performance, but re-

quires the programmer to handle all issues related to the number of threads, granularity of work,

locking, synchronization, and data consistency. This proposal aims to capture a significant portion

of the performance achievable with this combination while reducing the programmer burden.

Glasgow Parallel Haskell (GPH) supports explicit par and pseq constructs for parallel execu-

tion of work. Obtaining good performance from these keywords requires careful programming and

113

machine-specific tuning using advanced profiling tools[44]. Unlike the PML implicitly-threaded

language features, this approach requires that the runtime create a lightweight parallel thread

(spark) for any work explicitly occurring within the par or pseq constructs, though depend-

ing on the scheduling that work may be executed on the original processor. Since these constructs

require pure computations, any use of impure language features must occur within the IO monad,

explicitly defining a sequential order of operation.

GPH also has explicit thread creation routines. These routines operate in the context of the

IO monad, so all synchronization between the threads must be explicitly performed by the pro-

grammer through shared state. For example, if two threads perform putStrLn operations, the

order in which those strings appear is not defined. But, if a data structure — such as an MVar,

which is based on the M-structures from Section 6.3.5 — is used by the programmer to sequence

the operations, then the operations will be performed in sequence. Shared data structures at risk of

concurrent access are implemented with explicit atomic operations or locking, where necessary to

ensure consistency.

114

CHAPTER 7

CONCLUSION

The addition of features that enable communication between threads in a parallel functional pro-

gram without halting parallel work to share intermediate results is both important and challenging.

There are algorithms that are significantly faster when they are permitted to share intermediate

results if the synchronization penalties for doing so are minimized. These algorithms are currently

implemented in other programming languages using low-level locking operations, atomic memory

instructions, or software transactional memory libraries, all of which require both specific knowl-

edge of the target hardware and application workload to achieve high performance.

Our approach extends the Parallel ML (PML) language with two features, memoization and

mutable state, that provide this sharing without requiring per-machine or per-workload reasoning

from the programmer. Memoization exploits the pure nature of functions to achieve synchronization-

free sharing between threads. Mutable state requires synchronization, but when paired with our

analysis and implementation techniques, those synchronization costs are reduced. Our operational

semantics precisely describes the allowable sharing and execution model of programs that use

memoization and mutable state.

7.1 Future Work

This work shows promising results, but also suggests many potential further avenues of research.

The largest current limitation is due to the state of our compiler — the team is in the process of

rewriting the entire frontend, so use of both of these features currently requires direct calls to the

underlying library functions rather than the high-level syntax proposed in this dissertation. Addi-

tionally, while this work was integrated with many of the implicitly-threaded parallel constructs of

PML, it has not been integrated with parallel case or explicitly-threaded parallelism.

115

7.1.1 Memoization

While this replacement policy addresses the issue of providing an implementation that supports a

fixed table size, it does not address the issue of holding on to entries that are no longer needed. The

garbage collector for Manticore supports custom, datatype-specific functions during collection [5].

This support could be used to automatically prune any elements from the table whose time had

exceeded a threshold. Implemented during global collection, this change would simply copy an

empty entry (NONE) value and abandon the original value.

Past some point, the work required to look up and store memoized data may outweigh the cost

of simply recomputing the value. Previously in the Manticore project, we have had success per-

forming static analysis of well-structured recursive parallel programs to determine when it might

be more efficient to perform work sequentially instead of in parallel [4]. That analysis could be

extended to recursive functions that perform memoization to determine when the expected work

size is smaller than the overhead of using memoization. In those cases, memoization could be

removed.

Currently, we only memoize functions whose parameter type is int. This design choice is

extremely limiting, since it relies on both a user-provided and implemented hash function and the

ability to avoid collisions. We would like to extend the signature in future work to something more

general, such as the following:

signature MEMO_TABLE =

sig

type (’dom,’rng) table

val insert : (’dom, ’rng) table * ’dom * int * ’rng -> unit

val find : (’dom, ’rng) table * ’dom * int -> ’rng option

end

This implementation would require users to provide both a hashing function and equality for the

116

argument types (to handle the case where distinct arguments have the same hash value), but would

dramatically increase the number of programs that could take advantage of this feature. The im-

plementation of the memoization table would also be required to store the original argument type

for the equality check.

Finally, currently our implementation of memoization does not guarantee that a function will

be evaluated exactly once at any argument. At the cost of additional synchronization overhead and

a table implementation that never discards values, we could provide an alternative implementation

that does provide that guarantee.

7.1.2 Mutable state

Currently, we support only transactional variables. But, there are other interesting forms of mutable

state. For example, some state may only ever be filled with a particular value (such as a per-index

answer in an array). These idempotent values could be implemented with a mechanism similar to

the I-structure of Id [3]. Additionally, some state may have monotonic behavior. That is, many

threads might access it, but they would perform operations that strictly overwrite it with either

increasing or decreasing values, such as performing a parallel max search over a large set of values

using a single global update cell instead of a reduction-style implementation. Both of these features

could be implemented using techniques that are more expensive than memoization but less than

the transactional logging and rollback currently associated with mutable state.

Our programming model also prevents the programmer from writing their own high-performance

implementations of features that do not require atomic behavior. For example, the memoization

feature cannot be implemented using mutable state in a way that avoids locking, temporary addi-

tional storage for results, and synchronization, as the implementation of memoization does in this

work.

Finally, our design of transactions memory is quite simple compared to any serious transac-

tional memory implementation. There has been over a decade of work in optimizing transactional

117

memory implementations that would likely be useful in our system, particularly when we add sup-

port for nested transactions, which we have only sketched the design of but which are not currently

implemented in the system.

7.1.3 Semantics

While we have defined an operational semantics that defines the dynamic behavior of programs

written using these new features, we have defined neither a type system nor proved the semantics

sound. Proving it sound would be a useful result because of the exclusion properties that surround

both memoization and mutable state — disallowing mutable state within memoization and inter-

ference between two concurrent expressions that modify the heap are both dynamically ensured,

but it would be more useful to the programmer to provide a static error along with a guarantee that

programs that typecheck never get stuck.

We would like to show that our language is linearizable — that is, that each function call ap-

pears to take effect instantaneously [42]. While our system wraps all uses of mutable state into

atomic regions, providing a guarantee that the effects of each expression evaluation will appear

instantaneous with respect to all concurrent expressions, proving linearizability requires more an

extension of our semantics that allows us to precisely characterize the potential execution histo-

ries.

118

REFERENCES

[1] U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization. In Conference Record
of the 30th Annual ACM Symposium on Principles of Programming Languages (POPL ’03),
pages 14–25, New York, NY, 2003. ACM.

[2] A. W. Appel. Simple generational garbage collection and fast allocation. Software – Practice
and Experience, 19(2):171–183, 1989.

[3] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing.
ACM Transactions on Programming Languages and Systems, 11(4):598–632, Oct. 1989.

[4] S. Auhagen. Hybrid Chunking. Master’s thesis, University of Chicago, Apr. 2012. Available
from http://www.cs.uchicago.edu/phd/ms_completed.

[5] S. Auhagen, L. Bergstrom, M. Fluet, and J. Reppy. Garbage Collection for Multicore NUMA
Machines. In MSPC 2011: Memory Systems Performance and Correctness, New York, NY,
June 2011. ACM.

[6] P. Barth, R. S. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict, functional
language with state. In Functional Programming Languages and Computer Architecture
(FPCA ’91), volume 523 of Lecture Notes in Computer Science, pages 538–568, New York,
NY, Aug. 1991. Springer-Verlag.

[7] R. Barton, D. Adkins, H. Prokop, M. Frigo, C. Joerg, M. Renard, D. Dailey, and C. Leiserson.
Cilk Pousse, 1998. Available from http://people.csail.mit.edu/pousse/.

[8] L. Bergstrom. Arity raising and control-flow analysis in Manticore. Master’s thesis, Univer-
sity of Chicago, Nov. 2009. Available from http://manticore.cs.uchicago.edu.

[9] L. Bergstrom. Measuring NUMA effects with the STREAM benchmark. Technical Report
TR-2012-04, Department of Computer Science, University of Chicago, May 2012.

[10] L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Lazy tree splitting. Journal of
Functional Programming, 22(4-5):382–438, Sept. 2012.

[11] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85–97,
Mar. 1996.

[12] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system. In Proceedings of the 5th ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (PPoPP ’95), pages 207–216,
New York, NY, July 1995. ACM.

[13] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must be
deterministic by default. In Proceedings of the First USENIX conference on Hot Topics in
Parallelism, pages 4–4, Berkeley, CA, 2009. USENIX Association.

119

[14] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. In
Proceedings of the 2008 SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’08), pages 68–78, New York, NY, 2008. ACM.

[15] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree of processors.
In Functional Programming Languages and Computer Architecture (FPCA ’81), pages 187–
194, New York, NY, Oct. 1981. ACM.

[16] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, Reading, MA, 1997.

[17] M. M. T. Chakravarty, G. Keller, R. Leshchinskiy, and W. Pfannenstiel. Nepal – nested
data parallelism in Haskell. In Proceedings of the 7th International Euro-Par Conference on
Parallel Computing, volume 2150 of Lecture Notes in Computer Science, pages 524–534,
New York, NY, Aug. 2001. Springer-Verlag.

[18] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow. Data Par-
allel Haskell: A status report. In Proceedings of the ACM SIGPLAN Workshop on Declarative
Aspects of Multicore Programming, pages 10–18, New York, NY, Jan. 2007. ACM.

[19] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel Pro-
gramming in OpenMP. Morgan Kaufmann Publishers, New York, NY, 2001.

[20] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection for multiprocessor
systems. In Conference Record of the 21st Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL ’94), pages 70–83, New York, NY, Jan. 1994. ACM.

[21] D. Doligez and X. Leroy. A concurrent, generational garbage collector for a multithreaded
implementation of ML. In Conference Record of the 20th Annual ACM Symposium on Prin-
ciples of Programming Languages (POPL ’93), pages 113–123, New York, NY, Jan. 1993.
ACM.

[22] K. Emoto, S. Fischer, and Z. Hu. Generate, test, and aggregate. In H. Seidl, editor, Program-
ming Languages and Systems, volume 7211 of Lecture Notes in Computer Science, pages
254–273. Springer-Verlag, New York, NY, 2012.

[23] M. Fluet, N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Status Report: The Manticore
Project. In Proceedings of the 2007 ACM SIGPLAN Workshop on ML, pages 15–24, New
York, NY, Oct. 2007. ACM.

[24] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded parallelism in Manticore.
Journal of Functional Programming, 20(5–6):537–576, 2011.

[25] E. R. Gansner and J. H. Reppy, editors. The Standard ML Basis Library. Cambridge Univer-
sity Press, Cambridge, England, 2004.

[26] M. Garcı́a de la Banda, M. Hermenegildo, and K. Marriott. Independence in CLP languages.
ACM Transactions on Programming Languages and Systems, 22(2):296–339, 2000.

120

[27] L. George, F. Guillame, and J. Reppy. A portable and optimizing back end for the SML/NJ
compiler. In Fifth International Conference on Compiler Construction, pages 83–97, Apr.
1994.

[28] GHC. The Glasgow Haskell Compiler. Available from http://www.haskell.org/
ghc.

[29] D. K. Gifford, P. Jouvelot, and M. A. Sheldon. The FX-87 reference manual. Technical
Report TR-407, Massachusetts Institute of Technology, Sept. 1987.

[30] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole. Report on the FX programming
language. Technical Report TR-531, Massachusetts Institute of Technology, Feb. 1992.

[31] D. K. Gifford and J. M. Lucassen. Integrating functional and imperative programming. In
Conference record of the 1986 ACM Conference on Lisp and Functional Programming, pages
22–38, New York, NY, 1986. ACM.

[32] W. G. Griswold and G. M. Townsend. The design and implementation of dynamic hashing
for sets and tables in Icon. Software – Practice and Experience, 23(4):351–367, Apr. 1993.

[33] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: a benchmark for software transac-
tional memory. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pages 315–324, New York, NY, 2007. ACM.

[34] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel execution of
Prolog programs: A survey. ACM Transactions on Programming Languages and Systems,
23(4):472–602, 2001.

[35] R. H. Halstead Jr. Implementation of multilisp: Lisp on a multiprocessor. In Conference
Record of the 1984 ACM Symposium on Lisp and Functional Programming, pages 9–17,
New York, NY, Aug. 1984. ACM.

[36] T. Harris, S. Marlow, and S. P. Jones. Haskell on a shared-memory multiprocessor. In Pro-
ceedings of the 2005 Haskell Workshop, pages 49–61, New York, NY, 2005. ACM.

[37] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory transactions.
In Proceedings of the 10th ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPoPP ’05), pages 48–60, New York, NY, June 2005. ACM.

[38] W. L. Harrison. The interprocedural analysis and automatic parallelization of scheme pro-
grams. Lisp and Symbolic Computation, 2:179–396, 1989.

[39] S. Herhut, S.-B. Scholz, and C. Grelck. Controlling chaos: On safe side-effects in data-
parallel operations. In Proceedings of the ACM SIGPLAN Workshop on Declarative Aspects
of Multicore Programming, pages 59–67, New York, NY, Jan. 2009. ACM.

121

[40] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-concurrent
transactional objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPoPP ’08), pages 207–216, New York, NY, Feb. 2008.
ACM.

[41] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers, New York, NY, 2008.

[42] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[43] J. Hughes. Lazy memo-functions. In Functional Programming Languages and Computer
Architecture (FPCA ’85), pages 129–146, New York, NY, 1985. Springer-Verlag.

[44] D. Jones, Jr., S. Marlow, and S. Singh. Parallel performance tuning for Haskell. In Proceed-
ings of the 2009 Haskell Workshop, pages 81–92, New York, NY, 2009. ACM.

[45] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. In Conference
Record of the 37th Annual ACM Symposium on Principles of Programming Languages
(POPL ’10), pages 19–30, New York, NY, 2010. ACM.

[46] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. Optimistic
parallelism requires abstractions. In Proceedings of the 2007 SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’07), pages 211–222, New York,
NY, June 2007. ACM.

[47] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Computer, C-28(9):690 –691, Sep 1979.

[48] P.-A. Larson. Dynamic hash tables. Communications of the ACM, 31(4):446–457, Apr. 1988.

[49] V. Y. Lum, P. S. T. Yuen, and M. Dodd. Key-to-address transform techniques: A fundamental
performance study on large existing formatted files. Communications of the ACM, 14(4):228–
239, Apr. 1971.

[50] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. Warren, A. Calderwood,
P. Szeredi, S. Haridi, and Others. The Aurora or-parallel Prolog system. New Generation
Computing, 7(2):243–271, Feb. 1990.

[51] L. Mandel and L. Maranget. The JoCaml Language Release 3.11 Documentation and User’s
Manual, Dec. 2008. Available from http://jocaml.inria.fr/manual/index.
html.

[52] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Conference Record of the
32nd Annual ACM Symposium on Principles of Programming Languages (POPL ’05), pages
378–391, New York, NY, 2005. ACM.

122

[53] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore Haskell. In Pro-
ceedings of the 14th ACM SIGPLAN International Conference on Functional Programming,
pages 65–77, New York, NY, August–September 2009. ACM.

[54] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, Feb. 1991.

[55] D. Michie. ”Memo” functions and machine learning. Nature, 218:19–22, Apr. 1968.

[56] K. F. Moore and D. Grossman. High-level small-step operational semantics for transactions.
In Conference Record of the 35th Annual ACM Symposium on Principles of Programming
Languages (POPL ’08), pages 51–62, New York, NY, 2008. ACM.

[57] R. S. Nikhil. ID Language Reference Manual. Laboratory for Computer Science, MIT,
Cambridge, MA, July 1991.

[58] R. S. Nikhil and Arvind. Implicit Parallel Programming in pH. Morgan Kaufmann Publish-
ers, San Francisco, CA, 2001.

[59] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer Science,
375(1-3):271–307, Apr. 2007.

[60] C. Perfumo, N. Sönmez, S. Stipic, O. Unsal, A. Cristal, T. Harris, and M. Valero. The limits
of software transactional memory (STM): Dissecting Haskell STM applications on a many-
core environment. In Proceedings of the 5th Conference on Computing Frontiers (CF ’08),
pages 67–78, New York, NY, May 2008. ACM.

[61] W. Pugh. An improved replacement strategy for function caching. In Conference record of
the 1988 ACM Conference on Lisp and Functional Programming, pages 269–276, New York,
NY, July 1988. ACM.

[62] W. W. Pugh. Incremental Computation and the Incremental Evaluation of Functional Pro-
grams. PhD thesis, Cornell University, Ithaca, NY, USA, 1988.

[63] M. Rainey. Effective Scheduling Techniques for High-Level Parallel Programming Lan-
guages. PhD thesis, University of Chicago, Aug. 2010. Available from http://
manticore.cs.uchicago.edu.

[64] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 2nd edition, 2003.

[65] O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables. Journal of the
ACM, 53(3):379–405, May 2006.

[66] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 204–213, New York,
NY, 1995. ACM.

123

[67] A. Shaw. Data parallelism in Manticore. Master’s thesis, University of Chicago, July 2007.
Available from http://manticore.cs.uchicago.edu.

[68] D. Zhang and P.-A. Larson. LHlf: Lock-free linear hashing (poster paper). In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPoPP ’12), pages 307–308, New York, NY, Feb. 2012. ACM.

[69] L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan. Partial memoization of concurrency
and communication. In Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming, pages 161–172, New York, NY, 2009. ACM.

124

